

Available online at www.sciencedirect.com

Carbohydrate Research 339 (2004) 393-400

Carbohydrate RESEARCH

Synthesis of the pentasaccharide repeating unit of the major O-antigen component from Pseudomonas syringae pv. ribicola NVPPB 1010

Emiliano Bedini,^a Gaspare Barone,^a Carlo Unverzagt^b and Michelangelo Parrilli^{a,*}

^aDipartimento di Chimica Organica e Biochimica, Università di Napoli ''Federico II'', Complesso Universitario Monte Santangelo, Via Cintia 4, 80126 Napoli, Italy

^bBioorganische Chemie, Gebäude NWI, Universität Bayreuth, 95440 Bayreuth, Germany

Received 29 May 2003; revised 3 October 2003; accepted 6 October 2003

Abstract—The synthesis of the repeating unit of the major *O*-antigen component from *Pseudomonas syringae* pv. *ribicola* NVPPB 1010 is reported. The strategy used was based on the successive coupling of a trisaccharide rhamnosyl trichloroacetimidate with a rhamnosyl acceptor with a free hydroxyl group on C-2. The pentasaccharide was then obtained by coupling with a *N*-Troc-tri-*O*-acetyl-glucosamine trichloroacetimidate. The synthesis allowed the oligomerisation of the repeating unit. © 2003 Elsevier Ltd. All rights reserved.

Keywords: Pseudomonas ribicola; O-chain; Glycosylation; Oligosaccharides; Repeating unit

1. Introduction

It has been recently reviewed¹ that O-chains of lipopolysaccharides (LPS) from phytopathogenic bacteria typically consist of repeating units composed of rhamnan backbones bearing single monosaccharide branches. Only a few types of sugars constitute these monosaccharide side chains, for example, GlcNAc.

Glucosaminylated rhamnans, that occur in human pathological bacteria, have been largely studied^{2,3} and their repeating units have been synthesized.^{4,5} They very often contain the GlcNAc residue as a component of the

backbone structure, whereas the LPS from phytopathogenic bacteria very often present the GlcNAc unit as single monosaccharide side chain.

Since the role of the O-chain structures in phytopathogenic bacteria is much less known in comparison with the O-chain from human pathological bacteria, the synthesis of their repeating unit is strictly requested. Therefore, in order to investigate the structure–bioactivity relationship of the O-chain in plant infection, the synthesis of the glucosaminylated rhamnan repeating unit **A** (Scheme 1) of the phytopathogenic *P. syringae* pv. *ribicola* NVPPB 1010 bacterium, the causative agent

Scheme 1. Repeating unit of the major O-antigen component from P. syringae pv. ribicola NVPPB 1010.

* Corresponding author. Tel.: +39-081-674147; fax: +39-081-674393; e-mail: parrilli@unina.it

^{0008-6215/\$ -} see front matter $\odot 2003$ Elsevier Ltd. All rights reserved. doi:10.1016/j.carres.2003.10.002

Scheme 2. Retrosynthetical analysis of structure A.

of defoliation of *Ribes aurum*,⁷ is, at the best of our knowledge, for the first time reported.[†] The approach described in this paper aims at the synthesis of a penta-saccharide building block that can also be employed to obtain higher oligomers of the repeating unit **A**.

2. Results and discussion

As outlined in Scheme 1, the major repeating unit of the O-chain from *P. syringae* pv. *ribicola* NVPPB 1010 consists of a rhamnan backbone tetrasaccharide with a GlcNAc branch. This residue is attached to O-3 of a rhamnosyl residue, which is elongated by the rhamnosyl chain at C-2.

Retrosynthetic analysis of the benzylated pentasaccharide repeating unit 1 suggested a trisaccharide and a glucosaminyl donor and a rhamnosyl acceptor with a free OH group at C-2 and a selectively removable protecting group at C-3. We chose at best the building blocks 2, 3^9 and 4, respectively (Scheme 2).

The synthesis of the trisaccharide donor **2** has been already reported in one of ours recent short communications.¹⁰ It begins with the coupling of the thioglycoside 5^{10} and the acceptor 6^{11} following the typical conditions for the activation of disarmed thioglycoside with NIS/TfOH¹² (Scheme 3). The disaccharide **7** was obtained in high yield (82%). A selective removal of the chloroacetyl group on **7** with thiourea in ethanol (80% yield) afforded **8**, that, following the same activation condition used before, was then coupled with thioglycoside **5** obtaining the trisaccharide **9** in excellent yield (96%). Treating **9** with anhydrous FeCl₃ in CH₂Cl₂,¹³ we could selectively cleave the benzyl protecting group on the anomeric position of **9**, obtaining a hemiacetal that was directly converted in the trisaccharide imidate **2** in an overall yield of 44% over two steps.

The rhamnosyl acceptor **4** was obtained by selective allylation of benzyl 4-*O*-benzoyl- α -L-rhamnopyranoside **10**,¹⁰ whose α -anomeric configuration was assigned by low-field ¹H NMR chemical shift value (δ 5.191). The *cis*-diol **10** was activated as a stannylene acetal by refluxing with Bu₂SnO in 10:1 benzene–methanol. Subsequent alkylation with allyl bromide–Bu₄NBr in toluene gave the desired 3-allylated compound **4** in 85% yield (Scheme 4).

The tetrasaccharide 11 was obtained after coupling of the trisaccharide imidate 2 with the acceptor 4 in 79%yield. The α -configuration of the new glycosidic bond in 11 was ascertained by a coupled HMQC-COSY experiment ($J_{C-1',H-1'} = 173 \text{ Hz}$). Subsequent deallylation of compound 11 with PdCl₂ in 5:2 methanol-dichloromethane furnished the tetrasaccharide acceptor 12 in 94% yield. Some dechloroacetylation of the starting material 11 was observed (5% detected by NMR and ESI-MS), however, this side reaction stopped after the initial phase. The following glycosylation of the tetrasaccharide 12 with the glucosaminyl donor 3^9 afforded the pentasaccharide 13 in 45% yield together with a 51% recovery of unreacted 12. The β -configuration of the new glycosidic bond was confirmed by a coupled HMQC-COSY experiment ($J_{C-1',H-1'} = 164 \text{ Hz}$).

The final steps to the target molecule 1 required the deprotection of pentasaccharide 13. The initial deprotection strategy was based on the conversion of the *N*-Troc group into an *N*-Ac group and a subsequent *O*-deacylation. Surprisingly the *N*-Troc/*N*-Ac conversion

[†] When this work was already completed we were acquainted with an alternative synthesis of our target, in a paper where a general method for the synthesis of glucosaminylated rhamnanic backbones was reported.⁸

Scheme 3. Reagents and conditions: (a) NIS, TfOH, molecular sieves 4 Å, CH_2Cl_2 , -20 °C, 90 min; 82%; (b) NH_2CSNH_2 , EtOH, rt, 16 h, 80%; (c) NIS, TfOH, molecular sieves 4 Å, CH_2Cl_2 , -20 °C, 15 min; 96%; (d) i: anhydrous FeCl₃, CH_2Cl_2 , rt, 45 min; ii: Cl_3CCN , DBU, CH_2Cl_2 , 0 °C, 80 min; 44% over two steps.

Scheme 4. Reagents and conditions: (a) i: Bu₂SnO, 10:1 benzene–methanol, reflux, 90 min; ii: AllBr, Bu₄NBr, toluene, 65 °C, 90 min; 85% over two steps; (b) BF₃·OEt₂, molecular sieves 4Å, CH₂Cl₂, -50 °C, 30 min; 79%; (c) PdCl₂, 5:2 methanol–dichloromethane, rt, 4h; 94%; (d) TMSOTf, molecular sieves 4Å, CH₂Cl₂, -10 °C, 3h; 45%; (e) i: 2M KOH, THF, 40 °C, 19 h; ii: Ac₂O, MeOH, rt, 2h; 56% over two steps.

with Zn/Ac_2O^9 was ineffective with the pentasaccharide 13. Thus, a different deprotection strategy was envisioned starting with the complete removal of all ester groups and the subsequent replacement of the Troc moiety by an *N*-acetyl group. This approach was also not successful because the *N*-Troc function was converted to a methyl carbamate during methanolysis with NaOMe in MeOH. Finally, treatment of 13 with 2 M KOH in THF assured global deacylation and basic removal of the Troc moiety. The free amino group of the intermediate pentasaccharide was selectively acetylated with Ac₂O in MeOH to obtain the desired repeating unit 1. In Table 1 the ¹H and ¹³C NMR chemical shifts for the synthetic pentasaccharide **1** and the natural O-chain⁶ show very good accordance, except for few values; in particular the ¹³C NMR C-3^D signal is shifted highfield (8.2 ppm) in comparison with the value of the natural O-chain, due to the absence of the glycosylation shift for our oligosaccharide structure. There are other differences related to some ¹H and ¹³C NMR values of the residue A, due to the effect of the benzyl group as a glycon.

In conclusion, we have synthesized a rhamnanic pentasaccharide containing a GlcNAc branch corresponding to the major O-chain repeating unit from *P. syringae* pv. *ribicola* NVPPB 1010. It is noteworthy that

Sugar residue	H-1	H-2	H-3	H-4	H-5	H-6	H-6′
А	4.83	4.13	3.84	3.51	3.70	1.27	
	(-0.27)	(-0.18)	(-0.13)	(-0.03)	(-0.14)	(-0.04)	
В	5.26	4.02	3.85	3.45	3.52	1.13	
	(-0.07)	(-0.04)	(-0.05)	(-0.04)	(-0.17)	(-0.15)	
С	4.95	4.13	3.86	3.53	3.79	1.23	
	(-0.11)	(-0.01)	(0.01)	(-0.06)	(-0.01)	(-0.11)	
D	5.06	4.25	4.07	3.47	3.84	1.29	
	(-0.01)	(0.10)	(0.16)	(-0.12)	(-0.03)	(-0.03)	
Е	4.68	3.71	3.53	3.39	3.39	3.71	3.88
	(-0.07)	(-0.03)	(-0.05)	(-0.03)	(-0.06)	(-0.04)	(-0.06)
	C-1	C-2	C-3	C-4	C-5	C-6	
А	C-1 98.5	C-2 77.6	C-3 81.5	C-4 69.9	C-5 70.3	C-6 18.0	
А	C-1 98.5 (-3.6)	C-2 77.6 (0.3)	C-3 81.5 (0.01)	C-4 69.9 (-2.5)	C-5 70.3 (0.3)	C-6 18.0 (0.2)	_
A B	C-1 98.5 (-3.6) 100.7	C-2 77.6 (0.3) 79.2	C-3 81.5 (0.01) 70.9	C-4 69.9 (-2.5) 73.3	C-5 70.3 (0.3) 70.6	C-6 18.0 (0.2) 17.9	
A B	C-1 98.5 (-3.6) 100.7 (-0.1)	C-2 77.6 (0.3) 79.2 (0.1)	C-3 81.5 (0.01) 70.9 (-0.4)	C-4 69.9 (-2.5) 73.3 (-0.4)	C-5 70.3 (0.3) 70.6 (0.1)	C-6 18.0 (0.2) 17.9 (-0.1)	
A B C	C-1 98.5 (-3.6) 100.7 (-0.1) 102.8	C-2 77.6 (0.3) 79.2 (0.1) 71.1	C-3 81.5 (0.01) 70.9 (-0.4) 78.9	C-4 69.9 (-2.5) 73.3 (-0.4) 72.4	C-5 70.3 (0.3) 70.6 (0.1) 70.3	C-6 18.0 (0.2) 17.9 (-0.1) 18.0	
A B C	C-1 98.5 (-3.6) 100.7 (-0.1) 102.8 (0.2)	C-2 77.6 (0.3) 79.2 (0.1) 71.1 (-0.2)	C-3 81.5 (0.01) 70.9 (-0.4) 78.9 (-0.2)	C-4 69.9 (-2.5) 73.3 (-0.4) 72.4 (-0.4)	C-5 70.3 (0.3) 70.6 (0.1) 70.3 (0.3)	C-6 18.0 (0.2) 17.9 (-0.1) 18.0 (-0.4)	
A B C D	C-1 98.5 (-3.6) 100.7 (-0.1) 102.8 (0.2) 103.0	C-2 77.6 (0.3) 79.2 (0.1) 71.1 (-0.2) 71.5	C-3 81.5 (0.01) 70.9 (-0.4) 78.9 (-0.2) 71.4	C-4 69.9 (-2.5) 73.3 (-0.4) 72.4 (-0.4) 70.6	C-5 70.3 (0.3) 70.6 (0.1) 70.3 (0.3) 70.9	C-6 18.0 (0.2) 17.9 (-0.1) 18.0 (-0.4) 18.0	
A B C D	C-1 98.5 (-3.6) 100.7 (-0.1) 102.8 (0.2) 103.0 (-0.1)	C-2 77.6 (0.3) 79.2 (0.1) 71.1 (-0.2) 71.5 (0.2)	C-3 81.5 (0.01) 70.9 (-0.4) 78.9 (-0.2) 71.4 (-8.2)	C-4 69.9 (-2.5) 73.3 (-0.4) 72.4 (-0.4) 70.6 (-2.1)	C-5 70.3 (0.3) 70.6 (0.1) 70.3 (0.3) 70.9 (0.3)	C-6 18.0 (0.2) 17.9 (-0.1) 18.0 (-0.4) 18.0 (0.1)	
A B C D E	C-1 98.5 (-3.6) 100.7 (-0.1) 102.8 (0.2) 103.0 (-0.1) 104.5	C-2 77.6 (0.3) 79.2 (0.1) 71.1 (-0.2) 71.5 (0.2) 56.6	C-3 81.5 (0.01) 70.9 (-0.4) 78.9 (-0.2) 71.4 (-8.2) 75.3	C-4 69.9 (-2.5) 73.3 (-0.4) 72.4 (-0.4) 70.6 (-2.1) 71.0	C-5 70.3 (0.3) 70.6 (0.1) 70.3 (0.3) 70.9 (0.3) 76.7	C-6 18.0 (0.2) 17.9 (-0.1) 18.0 (-0.4) 18.0 (0.1) 62.1	

Table 1. ¹H and ¹³C NMR chemical shifts (δ in ppm) of 1 (in parentheses the differences in ppm between 1 and the related natural O-polysaccharide⁶ are given)

the synthetic approach used should also permit the anomeric activation of the repeating unit to obtain higher oligomers suitable for structure–activity studies.

3. Experimental

3.1. General methods

¹H and ¹³C NMR spectra were recorded on a Bruker DRX-400 NMR (400 MHz) and Bruker Avance-360 NMR (360 MHz) in DMSO- d_6 (internal standard, for ¹H: $(CH_3)_2$ SO at δ 2.49; for ¹³C: $(CH_3)_2$ SO at δ 39.5), in CDCl₃ (internal standard, for ¹H: CHCl₃ at δ 7.26; for ¹³C: CDCl₃ at δ 77.0) and in D₂O (internal standard, for ¹H: $(CH_3)_2$ CO at δ 2.22; for ¹³C: $(CH_3)_2$ CO at δ 31.5, respectively). Assignment of proton and carbon chemical shifts were based on DQF-COSY, TOCSY, ROESY, HSQC and HMQC-COSY experiments. Positive ESI-MS spectra were recorded on a Finnigan LCQ-DECA ion trap mass spectrometer. Optical rotations were measured on a JASCO P-1010 polarimeter. Elementary analysis were performed on a Carlo Erba 1108 instrument. Analytical thin layer chromatography (TLC) was performed on aluminium plates precoated with Merck Silica Gel 60 F_{254} as the adsorbent. The plates were developed with 5% H₂SO₄ ethanolic solution and then heated to 130 °C. Column chromatography was performed on Kieselgel 60 (63-200 mesh). Gel filtration chromatography were performed on a Biogel P2 column $(1.0 \times 20 \text{ cm})$ with H₂O as eluant.

3.2. Benzyl (2,4-di-*O*-benzoyl-3-*O*-chloroacetyl- α -L-rhamnopyranosyl)-(1 \rightarrow 2)-3,4-di-*O*-benzoyl- α -L-rhamnopyranoside (7)

To a stirred solution of thioglycoside 5^9 (1.658 g, 3.37 mmol), acceptor 6¹⁰ (1.208 g, 2.61 mmol) and NIS (1.665 g, 7.41 mmol) in CH₂Cl₂ (50 mL) containing powdered 4A molecular sieves, at -20 °C was added TfOH (130 μ L, 1.50 mmol) and the mixture was stirred until TLC showed that the reaction was complete (90 min). The brown solution was then filtered on Celite; the filtrate was diluted with CH₂Cl₂ (150 mL) and then extracted with $Na_2S_2O_3$ 10% (200 mL), and then with KHCO₃ 2 M (200 mL). The organic phase was dried and concentrated. Silica gel chromatography (14:1 cyclohexane-ethyl acetate) of the residue afforded 7 (1.915 g, 82%) as a white foam. $[\alpha]_{D}$ +79.4 (c 0.5, CH₂Cl₂); ¹H NMR (360 MHz, DMSO-*d*₆): δ 7.99–7.30 (m, 25H, 5Ph), 5.686 (dd, $J_{3,4} = 9.8$ Hz, $J_{3,2} = 3.0$ Hz, 1H, H-3^A), 5.672 (br s, 1H, H-2^B), 5.606 (dd, $J_{3,4} = 9.9$ Hz, $J_{3,2} = 3.3$ Hz, 1H, H-3^B), 5.441 (t, $J_{4,3} = J_{4,5} = 9.8$ Hz, 1H, H-4^A), 5.360 $(t, J_{4,3} = J_{4,5} = 9.9 \text{ Hz}, 1\text{H}, \text{H}-4^{\text{B}}), 5.285 \text{ (br s, 1H, H}-1^{\text{B}}),$ 5.121 (br s, 1H, H-1^A), 4.813 (d, $J_{gem} = 11.9$ Hz, 1H, $OCH_2\Phi$), 4.665 (d, $J_{gem} = 11.9$ Hz, 1H, $OCH_2\Phi$), 4.407 (br s, 1H, H-2^A), 4.236 (d, $J_{gem} = 15.2$ Hz, 1H, CH_2 Cl), 4.11-4.21 (m, 3H, CH₂Cl, H-5^A, H-5^B), 1.261 (d, $J_{6,5} = 6.2 \text{ Hz}, 3\text{H}, \text{H-6}^{\text{A}}), 1.131 \text{ (d}, J_{6,5} = 6.1 \text{ Hz}, 3\text{H}, \text{H-}$ 6^B). ¹³C NMR (90 MHz, DMSO-*d*₆): δ 166.8–164.7 (5C, 5C=O), 137.1-127.9 (C-Ar), 98.1 (1C, C-1^A), 97.0 (1C, ${}^{1}J_{C,H} = 173 \text{ Hz}, \text{ C-1}^{\text{B}}$), 75.8 (1C, C-2^A), 71.9 (1C, C-4^A), 70.8 (1C, C-4^B), 70.4 (1C, C-3^B), 70.2 (1C, C-3^A), 69.6 $(1C, C-2^{B})$, 68.8 $(1C, OCH_{2}\Phi)$, 66.8 $(1C, C-5^{B})$, 66.2 $(1C, C-5^{B})$, 66. a white foam. $[\alpha]_{D}$ +

C-5^A), 40.7 (1C, CH_2Cl), 17.6 (1C, C-6^A), 17.2 (1C, C-6^B). ESI-MS for C₄₉H₄₅ClO₁₄ (m/z): M_r (calcd) 892.2, M_r (found) 915.1 (M+Na)⁺. Anal. calcd: C, 65.88; H, 5.08. Found: C, 66.01; H, 5.03.

3.3. Benzyl (2,4-di-*O*-benzoyl- α -L-rhamnopyranosyl)- (1 \rightarrow 2)-3,4-di-*O*-benzoyl- α -L-rhamnopyranoside (8)

A solution of 7 (1.860 g, 2,08 mmol) and thiourea (1.425 g, 18.72 mmol) in absolute EtOH (45 mL) was stirred at 25 °C until TLC showed that the reaction was complete (16 h). The solution was then concentrated and the residue was triturated with CH₂Cl₂ (150 mL) and then filtrated. The filtrate was extracted firstly with HCl 1 N (150 mL), then with KHCO₃ 2 M (150 mL) and finally with water (150 mL). The organic phase was dried and concentrated. Silica gel chromatography (11:1 cyclohexane-ethyl acetate) of the residue afforded 8 (1.367 g, 80%) as a white foam. $[\alpha]_{D} + 39 (c \ 0.3, CH_2Cl_2);$ ¹H NMR (360 MHz, DMSO- d_6): δ 8.03–7.30 (m, 25H, 5Ph), 5.711 (d, $J_{\text{H,OH}} = 5.6 \text{ Hz}$, 1H, OH-3^B), 5.679 (dd, $J_{3,4} = 9.9 \text{ Hz}, J_{3,2} = 3.0 \text{ Hz}, 1\text{H}, \text{H}-3^{\text{A}}), 5.525 \text{ (br s, 1H, }$ H-2^B), 5.423 (t, $J_{4,3} = J_{4,5} = 9.9$ Hz, 1H, H-4^A), 5.184 (t, $J_{4,3} = J_{4,5} = 9.8 \text{ Hz}, 1\text{H}, \text{H}-4^{\text{B}}), 5.130 \text{ (br s, 1H, H}-1^{\text{B}}),$ 5.033 (br s, 1H, H-1^A), 4.807 (d, $J_{gem} = 11.9$ Hz, 1H, $OCH_2\Phi$), 4.659 (d, $J_{gem} = 11.9$ Hz, 1H, $OCH_2\Phi$), 4.357 (br s, 1H, H-2^A), 4.240 (m, 1H, H-3^B), 4.128 (m, 1H, H- 5^{A}), 4.016 (m, 1H, H- 5^{B}), 1.255 (d, $J_{6.5} = 6.1$ Hz, 3H, H- 6^{A}), 1.067 (d, $J_{6,5} = 6.1 \text{ Hz}$, 3H, H- 6^{B}). ¹³C NMR (90 MHz, DMSO-*d*₆): δ 166.8–164.7 (4C, C=O), 137.0– 128.0 (C–Ar), 98.8 (1C, C-1^B), 97.2 (1C, C-1^A), 75.8 (1C, C-2^A), 74.2 (1C, C-4^B), 72.6 (1C, C-2^B), 72.0 (1C, C-4^A), 70.6 (1C, C- 3^{A}), 68.8 (1C, O- $CH_{2}\Phi$), 66.9 (1C, C- 5^{B}), 66.4 (1C, C-3^B), 66.3 (1C, C-5^A), 17.7 (1C, C-6^A), 17.4 (1C, C-6^B). ESI-MS for $C_{47}H_{44}O_{13}$ (*m/z*): M_r (calcd) 816.3, M_r (found) 839.3 (M+Na)⁺. Anal. calcd: C, 69.11; H, 5.43. Found: C, 69.00; H, 5.45.

3.4. Benzyl (2,4-di-*O*-benzoyl-3-*O*-chloroacetyl- α -Lrhamnopyranosyl)-(1 \rightarrow 3)-(2,4-di-*O*-benzoyl- α -Lrhamnopyranosyl)-(1 \rightarrow 2)-3,4-di-*O*-benzoyl- α -L-rhamnopyranoside (9)

A stirred solution of thioglycoside 5^9 (1.033 g, 2.10 mmol), acceptor 8 (1.318 g, 1.61 mmol) and NIS (1.039 g, 4.62 mmol) in CH₂Cl₂ (45 mL) containing freshly powdered 4 Å molecular sieves, was cooled at -20 °C. TfOH (80 µL, 0.92 mmol) was added and the mixture was stirred until TLC (3:1 cyclohexane–ethyl acetate) showed that the reaction was complete (15 min). The brown solution was then filtered on Celite, the filtrate diluted with CH₂Cl₂ (150 mL) and then extracted with Na₂S₂O₃ 10% (200 mL) and then with KHCO₃ 2 M (200 mL). The organic phase was dried and concentrated. Silica gel chromatography (25:2 cyclohexane–ethyl acetate) of the residue afforded 9 (1.921 g, 96%) as

a white foam. $[\alpha]_{D}$ +120.8 (c 1.9, CH₂Cl₂); ¹H NMR (360 MHz, DMSO-*d*₆): δ 8.07–7.33 (m, 35H, 7Ph), 5.676 $(dd, J_{3,4} = 10.0 \text{ Hz}, J_{3,2} = 3.0 \text{ Hz}, 1\text{H}, \text{H-}3^{\text{A}}), 5.662 \text{ (br s,})$ 1H, H-2^B), 5.441 (t, $J_{4,3} = J_{4,5} = 9.9$ Hz, 1H, H-4^A), 5.376 (t, $J_{4,3} = J_{4,5} = 9.9$ Hz, 1H, H-4^B), 5.337 (s, 1H, H-1[°]), 5.309 (s, 1H, H-1^B), 5.274 (dd, $J_{3,4} = 10.1$ Hz, $J_{3,2} = 3.1 \text{ Hz}, 1 \text{H}, \text{H}-3^{\text{C}}), 5.216 \text{ (t, } J_{4,5} = J_{4,3} = 9.9 \text{ Hz},$ 1H, H-4^C), 5.077 (br s, 1H, H-2^C), 5.054 (s, 1H, H-1^A), 4.806 (d, $J_{\text{gem}} = 11.9 \text{ Hz}$, 1H, OC $H_2\Phi$), 4.655 (bd, 2H, OCH₂Φ, H-3^B), 4.409 (br s, 1H, H-2^A), 4.144 (m, 3H, H- 5^{A} , H- 5^{B} , H- 5^{C}), $\delta = 4.069$ (d, $J_{gem} = 15.1$ Hz, 1H, CH₂Cl), $\delta = 3.995$ (d, $J_{gem} = 15.1$ Hz, 1H, CH₂Cl), $\delta = 1.248$ (d, $J_{6,5} = 6.2$ Hz, 3H, H-6^A), $\delta = 1.131$ (t, 6H, H-6^B, H-6^C). ¹³C NMR (90 MHz, DMSO-*d*₆): δ 166.4– 164.3 (7C, C=O), 137.0–127.9 (C–Ar), 98.6 (1C, C-1^B), 98.1 (1C, C-1^C, ${}^{1}J_{CH} = 176.1 \text{ Hz}$), 97.1 (1C, C-1^A), 76.5 (1C, C-2^A), 73.8 (1C, C-3^B), 72.9 (1C, C-4^B), 72.0 (1C, C-4^A), 71.7 (1C, C-2^B), 70.8 (1C, C-4^C), 70.5 (1C, C-3^A), 69.8 (1C, C-3^C), 69.5 (1C, C-2^C), 68.8 (1C, OCH₂ Φ), 66.8 (2C, C-5^B, C-5^C), 66.3 (1C, C-5^A), 40.6 (1C, CH₂Cl), 17.6 (1C, C-6^A), 17.2 (2C, C-6^B, C-6^C). ESI-MS for $C_{69}H_{63}ClO_{20}$ (m/z): M_r (calcd) 1246.4, M_r (found) 1269.3 (M+Na)⁺. Anal. calcd: C, 66.42; H, 5.09. Found: C, 66.54; H, 4.88.

3.5. (2,4-Di-*O*-benzoyl-3-*O*-chloroacetyl- α -L-rhamnopyranosyl)-(1 \rightarrow 3)-(2,4-di-*O*-benzoyl- α -L-rhamnopyranosyl)-(1 \rightarrow 2)-3,4-di-*O*-benzoyl- α -L-rhamnopyranosyl trichloroacetimidate (2)

To a solution of 9 (730 mg, 0.585 mmol) in CH₂Cl₂ (50 mL) was added anhydrous FeCl₃ (2.2 g, 13.6 mmol) and the green mixture so obtained was stirred at room temperature. When TLC (2:1 cyclohexane-ethyl acetate) showed complete conversion of 9 in a new product (45 min), CH_2Cl_2 was added (750 mL) and the solution was extracted with water (750 mL) and then with KHCO₃ 2 M (750 mL). The organic phase was dried and concentrated. Silica gel chromatography (9:2 cyclohexane-ethyl acetate) of the residue afforded an amorphous solid (352 mg, hemiacetal) that was solved in freshly distilled CH_2Cl_2 (6 mL). To the solution cooled at 0 °C were added Cl₃CCN (115 µL, 1.15 mmol) and DBU (14 µL, 0.11 mmol). When TLC (2:1 cyclohexaneethyl acetate) showed that the reaction was completed (80 min), the solution was concentrated at 20 °C. Silica gel chromatography (12:1 cyclohexane-ethyl acetate) of the residue afforded 2 (335 mg, 44%) as a white foam. $[\alpha]_{D}$ +120.8 (c 1.5, CH₂Cl₂); ¹H NMR (360 MHz, DMSO-*d*₆): δ 8.10–7.35 (m, 30H, 6Ph), 6.414 (s, 1H, H-1^A), 5.738 (d, $J_{3,4} = 9.6$ Hz, 1H, H-3^A), 5.658 (br s, 1H, H-2^B), 5.549 (t, $J_{4,3} = J_{4,5} = 9.8$ Hz, 1H, H-4^A), 5.414 (t, 3H, H-4^B, H-1^C, H-1^B), 5.271 (dd, $J_{3,4} = 10.1$ Hz, $J_{3,2} = 2.6 \text{ Hz}, 1 \text{H}, \text{H}-3^{\text{C}}), 5.208 \text{ (t, } J_{4,3} = J_{4,5} = 9.8 \text{ Hz},$ 1H, $H-4^{C}$), 5.083 (br s, 1H, $H-2^{C}$), 4.731 (d, $J_{3,4} = 9.7$ Hz, 1H, H-3^B), 4.653 (br s, 1H, H-2^A), 4.277

(m, 2H, H-5^A, H-5^B), 4.160 (m, 1H, H-5^C), 4.070 (d, $J_{gem} = 15.1$ Hz, 1H, CH_2Cl), 3.998 (d, $J_{gem} = 15.1$ Hz, 1H, OCH_2Cl), 1.283 (t, 6H, H-6^A, H-6^B), 1.127 (d, $J_{6,5} = 6.2$ Hz, 3H, H-6^C). ¹³C NMR (90 MHz, DMSO- d_6): δ 166.4–164.2 (7C, C=O), 157.3 (1C, C=NH), 134.1–128.6 (C–Ar), 98.2 (2C, C-1^B, C-1^C), 95.0 (1C, ¹ $J_{C,H} = 179$ Hz, C-1^A), 74.4 (C-2^A), 73.9 (C-3^B), 72.6 (C-4^B), 71.6 (C-2^B), 71.1 (C-4^A), 70.7 (C-4^C), 70.0 (C-3^A), 69.7 (C-3^C), 69.3 (C-2^C), 68.9 (C-5^A), 67.0 (C-5^B), 66.8 (C-5^C), 40.5 (OCH₂Cl), 17.4 (C-6^A, C-6^B), 17.0 (C-6^C). ESI-MS for C₆₄H₅₇Cl₄NO₂₀ (m/z): M_r (calcd) 1299.2, M_r (found) 1322.3 (M+Na)⁺. Anal. calcd: C, 59.04; H, 4.41; N, 1.08. Found: C, 59.54; H, 4.55; N, 1.07.

3.6. Benzyl 3-*O*-allyl-4-*O*-benzoyl-α-L-rhamnopyranoside (4)

To a solution of 10⁹ (252 mg, 0.703 mmol) in 10:1 benzene-methanol (5 mL), Bu₂SnO (215 mg, 0.861 mmol) was added and the mixture was stirred at reflux for 90 min, until the Bu₂SnO was completely dissolved. The mixture was dried in vacuo, and the white foamy residue was dissolved in toluene (2.5 mL). Bu₄NBr (230 mg, 0.714 mmol) and subsequently AllBr (610 µL, 7.4 mmol) were added and the solution was stirred at 65 °C. When the TLC (2:1 cyclohexane-ethyl acetate) showed that all the starting material 10 was consumed (90 min), the solution was dried in vacuo. Silica gel chromatography (6:1 petroleum ether-ethyl acetate) of the residue afforded 4 (237 mg, 85%) as a white foam: $[\alpha]_{\rm D}$ -33.8 (c 0.9, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 8.09–7.30 (m, 10 H, 2Ph), 5.82–5.64 (m, 1H, CH=CH₂), 5.311 (t, 1H, $J_{4,5} = J_{4,3} = 9.7 \,\text{Hz}, \text{H-4}$, 5.160 (dd, 1H, $J_{\text{vic}} = 17.2 \,\text{Hz}$, $J_{gem} = 1.6 \text{ Hz}, \text{ CH}=CH_2 \text{ trans}, 5.063 \text{ (dd, 1H,}$ $J_{\rm vic} = 10.2$ Hz, $J_{\rm gem} = 1.4$ Hz, CH=C H_2 cis), 4.987 (br s, 1H, H-1), 4.757 (d, 1H, J_{gem} = 12.0 Hz, OCH₂Ph), 4.556 (d, 1H, $J_{gem} = 12.0$ Hz, OC H_2 Ph), 4.16–3.84 (m, 5H, H-2, H-3, H-5, OCH₂CH=CH₂), 1.255 (d, 3H, $J_{6.5} = 6.2 \,\text{Hz}, \text{H-6}; ^{13}\text{C} \text{NMR} (100 \,\text{MHz}, \text{CDCl}_3):$ δ165.7 (1C, COPh), 134.2-128.0 (C-Ar), 133.1 (1C, CH=CH₂), 117.5 (1C, CH=CH₂), 98.4 (1C, C-1), 76.8 (1C, C-3), 73.2 (1C, C-4), 71.0 (1C, C-2), 69.3 (1C, OCH₂CH=CH₂), 68.8 (1C, OCH₂Ph), 66.5 (1C, C-5), 17.4 (1C, C-6). ESI-MS for $C_{23}H_{26}O_6$ (m/z): M_r (calcd) 398.2, M_r (found) 421.0 (M+Na)⁺. Anal. calcd: C, 69.33; H, 6.58. Found: C, 69.55; H, 6.56.

3.7. Benzyl (2,4-di-*O*-benzoyl-3-*O*-chloroacetyl- α -Lrhamnopyranosyl)-(1 \rightarrow 3)-(2,4-di-*O*-benzoyl- α -Lrhamnopyranosyl)-(1 \rightarrow 2)-(3,4-di-*O*-benzoyl- α -Lrhamnopyranosyl)-(1 \rightarrow 2)-3-*O*-allyl-4-*O*-benzoyl- α -Lrhamnopyranoside (11)

A mixture of imidate 2 (352 mg, 0.271 mmol), acceptor 4 (77 mg, 0.194 mmol) and freshly powdered 4 Å molecular sieves was suspended in absolute CH_2Cl_2 (9 mL). The

mixture was stirred at -50 °C and after 30 min BF₃·OEt₂ (34 µL, 0.271 mmol) was added. When TLC (2:1 cyclohexane-ethyl acetate) showed that the reaction was complete (30 min), the mixture was diluted with CH₂Cl₂ (10 mL), filtered over Celite, and the filtrate extracted with NaHCO₃ 1 M. The organic layer was collected, dried, and concentrated. The residue was purified by silica gel chromatography (6:1 petroleum ether-ethyl acetate) to give tetrasaccharide 11 (237 mg, 79%) as a white foam: $[\alpha]_{D}$ +88.4 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 8.20-7.23 (m, 40H, 8Ph), 5.837 (dd, 1H, J_{3,4} 9.7 Hz, J_{3,2} 3.2 Hz, H-3^B), 5.76–5.66 (m, 1H, CH=CH₂), 5.717 (br s, 1H, H-2^C), 5.552 (t, 1H, $J_{4,5} = J_{4,3}$ 9.7 Hz, H-4^B), 5.544 (t, 1H, $J_{4,5} = J_{4,3}$ 9.7 Hz, H-4^C), 5.439 (dd, 1H, $J_{3,4}$ 9.6 Hz, $J_{3,2}$ 3.3 Hz, H-3^D), 5.382 (t, 1H, $J_{4.5} = J_{4.3}$ 9.7 Hz, H-4^A), 5.366 (br s, 1H, H-1^B), 5.323 (t, 1H, $J_{4,5} = J_{4,3}$ 9.6 Hz, H-4^D), 5.236 (br s, 1H, H-1^C), 5.200 (br s, 1H, H-1^D), 5.183 (br s, 1H, H-2^D), 5.108 (dd, 1H, Jvic 17.6 Hz, Jgem 1.6 Hz, CH=CH₂ *trans*), 4.944 (br s, 1H, H-1^A), 4.935 (dd, 1H, J_{vic} 9.9 Hz, J_{gem} 1.6 Hz, CH=C H_2 cis), 4.793 (d, 1H, J_{gem} 12.2 Hz, OCH₂Ph), 4.596 (d, 1H, J_{gem} 12.2 Hz, OCH₂Ph), 4.588 (dd, 1H, *J*_{3,4} 9.7 Hz, *J*_{3,2} 3.3 Hz, H-3^C), 4.500 (br s, 1H, $H-2^{B}$), 4.25–4.18 (m, 2H, $H-2^{A}$, $H-5^{D}$), 4.17–4.03 (m, 3H, H-5^B, H-5^C, OCH₂CH=CH₂), 4.01–3.95 (m, 3H, H-3^A, H-5^A, OCH₂CH=CH₂), 3.730 (d, 1H, J_{gem} 14.9 Hz, COCH₂Cl), 3.682 (d, 1H, J_{gem} 14.9 Hz, COCH₂Cl), 1.304 (d, 3H, *J*_{6,5} 6.4 Hz, H-6^A), 1.286 (d, 3H, *J*_{6,5} 6.4 Hz, H-6^C), 1.228 (d, 3H, J_{6.5} 6.4 Hz, H-6^B), 1.200 (d, 3H, J_{6.5} 6.4 Hz, H-6^D); ¹³C NMR (100 MHz, CDCl₃): δ 167.1 (1C, COCH₂Cl), 165.3–164.6 (7C, COPh), 134.1 (1C, CH₂CH=CH₂), 133.7–127.5 (C-Ar), 117.1 (1C, CH₂CH=CH₂), 99.9 (1C, J_{C,H} 173 Hz, C-1^B), 98.7 (1C, C-1^C), 98.6 (1C, C-1^D, ${}^{1}J_{C,H} = 173 \text{ Hz}$), 97.8 (1C, C-1^A), 77.0 (1C, C-3^A), 75.8 (1C, C-2^B), 74.6 (1C, C-3^C), 74.3 (1C, C-2^A), 73.3 (1C, C-4^A), 73.2 (1C, C-4^C), 71.9 (1C, C-4^B), 71.8 (1C, C-5^B), 71.6 (2C, C-2^C, C-5^A), 71.1 (1C, C-4^D), 70.3 (1C, C-3^B), 70.2 (1C, C-3^D), 69.7 (1C, C-2^D), 68.8 (1C, OCH₂Ph), 67.4 (2C, C-5^C, C-5^D), 67.0 (1C, CH₂CH=CH₂), 40.0 (1C, COCH₂Cl), 18.7–18.4 (4C, C-6^A, C-6^B, C-6^C, C-6^D). ESI-MS for $C_{85}H_{81}ClO_{25}(m/z)$: $M_{\rm r}$ (calcd) 1536.5, $M_{\rm r}$ (found) 1559.6 (M+Na)⁺. Anal. calcd: C, 66.38; H, 5.31. Found: C, 66.60; H, 5.27.

3.8. Benzyl (2,4-di-*O*-benzoyl-3-*O*-chloroacetyl- α -L-rhamnopyranosyl)-(1 \rightarrow 3)-(2,4-di-*O*-benzoyl- α -L-rhamnopyranosyl)-(1 \rightarrow 2)-(3,4-di-*O*-benzoyl- α -L-rhamnopyranosyl)-(1 \rightarrow 2)-4-*O*-benzoyl- α -L-rhamnopyranoside (12)

To a solution of tetrasaccharide **11** (115 mg, 0.075 mmol) in 5:2 methanol–dichloromethane, anhydrous PdCl₂ (1.3 mg, 7.5 μ mol) was added and the mixture was stirred at room temperature until TLC (2:1 cyclohexane–ethyl acetate) indicated (4 h) that the starting material was consumed. The mixture was fil-

tered over Celite diluted with dichloromethane (50 mL) and extracted with saturated NaCl solution (50 mL). The organic layer was collected and dried. Silica gel chromatography (11:2 cyclohexane-ethyl acetate) of the residue afforded **12** (105 mg, 94%) as a white foam. $[\alpha]_{D}$ +80.2 (c 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 8.16–7.23 (m, 40H, 8Ph), 5.795 (dd, 1H, $J_{3,4} = 9.7$ Hz, $J_{3,2} = 3.3 \text{ Hz}, \text{H}-3^{\text{B}}$), 5.697 (br s, 1H, H-2^C), 5.569 (t, 1H, $J_{4,3} = J_{4,5} = 9.7 \,\text{Hz}, \text{ H-4}^{\text{B}}$, 5.556 (t, 1H, $J_{4,3} = J_{4,5} =$ 9.8 Hz, H-4^C), 5.437 (dd, 1H, $J_{3,4} = 9.9$ Hz, $J_{3,2} = 3.2$ Hz, H-3^D), 5.325 (t, 1H, $J_{4,3} = J_{4,5} = 9.9$ Hz, H-4^D), 5.279 (br s, 1H, H-1^B), 5.215 (br s, 1H, H-1^C), 5.197 (br s, 1H, H-1^D), 5.185 (br s, 1H, H-2^D), 5.138 (t, 1H, $J_{43} = J_{45} = 9.9 \,\mathrm{Hz}, \,\mathrm{H-4^{A}}, \,5.003 \,\mathrm{(br s, 1H, H-1^{A})},$ 4.789 (d, 1H, $J_{gem} = 12.2$ Hz, OC H_2 Ph), 4.593 (d, 1H, $J_{\text{gem}} = 12.2 \text{ Hz}$, 4.552 (dd, 1H, $J_{3.4} = 9.8 \text{ Hz}$, $J_{3,2} = 3.3 \text{ Hz}, \text{ H-3}^{\text{C}}$), 4.493 (br s, 1H, H-2^B), 4.23–4.12 (m, 4H, H-5^A, H-5^B, H-5^C, H-5^D), 4.115 (br s, 1H, H-2^A), 4.052 (dd, $J_{3,4} = 9.6$ Hz, $J_{3,2} = 3.2$ Hz, H-3^A), 3.728 (d, 1H, $J_{gem} = 14.6$ Hz, COC H_2 Cl), 3.687 (d, 1H, $J_{\text{gem}} = 14.6 \text{ Hz}, \text{ COC}H_2\text{Cl}), 1.348 \text{ (d, 3H, } J_{6.5} = 6.2 \text{ Hz},$ H-4^A), 1.313 (d, 3H, $J_{6,5} = 6.2$ Hz, H-4^C), 1.204 (d, 6H, $J_{6.5} = 6.2 \,\text{Hz}, \text{H-4}^{\text{B}}, \text{H-4}^{\text{D}});^{-13}\text{C} \text{NMR} (100 \,\text{MHz},$ CDCl₃): δ 167.1 (1C, COCH₂Cl), 165.3–164.6 (7C, COPh), 133.7–127.5 (C–Ar), 101.3 (C-1^B), 98.9 (2C, C-1^C, C-1^D), 97.4 (1C, C-1^A), 78.7 (1C, C-2^A), 75.9 (1C, C-2^B), 75.6 (1C, C-4^A), 74.6 (1C, C-3^C), 72.7 (1C, C-4^C), 71.5 (1C, C-4^B), 71.4 (1C, C-4^C), 71.1 (1C, C-4^D), 70.4 (1C, C-3^B), 70.3 (1C, C-3^D), 70.1 (2C, C-5^A, C-5^D), 69.5 (1C, C-2^D), 69.0 (1C, OCH₂Ph), 67.4 (2C, C-5^B, C-5^C), 66.2 (1C, C-3^A), 40.0 (1C, COCH₂Cl), 18.8 (1C, C-6^A), 18.6 (1C, C-6^C), 18.5 (2C, C-6^B, C-6^D). ESI-MS for $C_{85}H_{81}ClO_{25}$ (*m/z*): *M*_r (calcd) 1496.4, *M*_r (found) 1519.3 (M+Na)⁺. Anal. calcd: C, 65.75; H, 5.18. Found: C, 65.90; H, 5.18.

3.9. Benzyl (2,4-di-*O*-benzoyl-3-*O*-chloroacetyl- α -Lrhamnopyranosyl)-(1 \rightarrow 3)-(2,4-di-*O*-benzoyl- α -Lrhamnopyranosyl)-(1 \rightarrow 2)-(3,4-di-*O*-benzoyl- α -Lrhamnopyranosyl)-(1 \rightarrow 2)-[3,4,6-tri-*O*-acetyl-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)- β -D-glucopyranosyl-(1 \rightarrow 3)]-4-*O*-benzoyl- α -L-rhamnopyranoside (13)

A suspension of acceptor **12** (100 mg, 0.067 mmol), imidate **3**⁸ (81 mg, 0.134 mmol) and freshly powdered 4 Å molecular sieves in absolute dichloromethane (2 mL) was stirred at -10 °C. After 30 min TMSOTf (0.47 µL, 2.7 µmol) was added and the mixture was kept at -10 °C until TLC (2:1 cyclohexane–ethyl acetate) showed that **3** was completely consumed (3 h). The reaction was quenched with Et₃N (18 µL), the mixture was filtered over Celite, extracted with water, and dried. Silica gel chromatography (9:2 cyclohexane–ethyl acetate) gave two fractions, one affording unreacted acceptor **12** (52 mg, 51%), the other contained the desired pentasaccharide **13** (59 mg, 45%) as a white foam: $[\alpha]_D$ +53.0

(c 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ 8.18– 7.24 (m, 40H, 8Ph), 5.812 (dd, $J_{3,4} = 9.9$ Hz, $J_{3,2} = 3.2$ Hz, 1H, H-3^B), 5.644 (br s, 1H, H-2^C), 5.619 (t, $J_{4,3} = J_{4,5} = 10.0 \,\text{Hz}$, 1H-4^C), 5.594 (t, $J_{4,3} =$ $J_{4,5} = 9.9$ Hz, 1H, H-4^B), 5.522 (br s, 1H, H-1^C), 5.467 (dd, $J_{3,4} = 9.9$ Hz, $J_{3,2} = 3.2$ Hz, 1H, H-3^D), 5.419 (br s, 1H, H-1^B), 5.376 (t, $J_{4,3} = J_{4,5} = 9.8$ Hz, 1H, H-4^A), 5.321 (t, $J_{4,3} = J_{4,5} = 9.8$ Hz, 1H, H-4^D), 5.211 (br s, 2H, H-1^D, H-2^D), 5.114 (t, $J_{3,4} = J_{3,2} = 9.5$ Hz, 1H, H-3^E), 4.96–4.88 (m, 2H, H-1^A, H-4^E), 4.80–4.73 (m, 3H, H-1^E, NH, OC H_2 Ph), 4.663 (dd, $J_{3,4} = 10.0$ Hz, $J_{3,2} = 3.3$ Hz, 1H, H-3^C), 4.599 (d, 1H, $J_{gem} = 12.0$ Hz), 4.585 (br s, 1H, H-2^B), 4.338 (dq, 1H, $J_{5,4} = 10.0$ Hz, $J_{5,6} = 6.2$ Hz, 1H, H-5^C), 4.31–4.07 (m, 8H, H-2^A, H-3^A, H-5^B, H-5^D, $2 \times \text{H-6}^{\text{E}}$, $2 \times \text{OC}H_2\text{CCl}_3$), 3.983 (dq, 1H, $J_{5,4} = 9.8 \text{ Hz}$, $J_{5.6} = 6.2 \text{ Hz}, 1\text{H}, \text{H}-5^{\text{A}}), 3.745 \text{ (d}, J_{\text{gem}} = 15.0 \text{ Hz}, 1\text{H},$ $COCH_2Cl$), 3.698 (d, $J_{gem} = 15.0$ Hz, 1H, $COCH_2Cl$), 3.654 (m, 1H, H-5^E), 3.523 (q, $J_{2,1} = J_{2,3} = 9.4$ Hz, 1H, H-2^E), 2.02–1.92 (3s, 9H, 3×Ac), 1.457 (d, $J_{6.5} = 6.2$ Hz, 1H, H-6^D), 1.295 (d, $J_{6.5} = 6.2$ Hz, 1H, H-6^A), 1.256 $(d, J_{6.5} = 6.2 \text{ Hz}, 1 \text{ H}, \text{ H-6}^{\text{B}}), 1.148 (d, J_{6.5} = 6.2 \text{ Hz}, 1 \text{ H},$ H-6^C); ¹³C NMR (100 MHz, CDCl₃): δ 167.1 (1C, COCH₂Cl), 165.3–164.6 (8C, COPh, COCH₂CCl₃), 133.8–127.5 (C–Ar), 101.8 (C-1^E, ${}^{1}J_{CH} = 164$ Hz), 100.5 (C-1^B), 99.3 (C-1^C), 99.0 (C-1^D), 98.1 (C-1^A), 95.3 (OCH₂CCl₃), 78.5 (C-2^B), 78.1 (C-2^A), 77.0 (C-3^A), 74.7 (C-3^C), 73.8 (OCH₂CCl₃), 73.3 (C-4^A, C-4^C), 72.2 (C-2^C), 72.0 (C-4^B), 71.6 (C-5^E), 71.5 (C-4^D), 71.0 (C-3^E), 70.5 (C-3^D), 70.4 (C-3^B), 69.9 (C-2^D), 69.3 (OCH₂Ph), 69.0 (C-4^E), 67.6 (C-5^C), 67.3 (C-5^D), 67.2 (C-5^B), 66.9 $(C-5^{A})$, 62.3 $(C-6^{E})$, 56.1 $(C-2^{E})$, 40.2 $(COCH_{2}CI)$, 21.0 (Ac), 18.1 (C- $6^{\rm C}$), 17.5 (C- $6^{\rm A}$, C- $6^{\rm B}$), 17.3 (C- $6^{\rm D}$). ESI-MS for $C_{85}H_{81}ClO_{25}$ (*m/z*): M_r (calcd) 1957.5, M_r (found) 1958.65 (M+H)+. Anal. calcd: C, 59.42; H, 4.88; N, 0.71. Found: C, 59.49; H, 4.80; N, 0.70.

3.10. Benzyl α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ - α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ - α -L-rhamnopyranosyl)- $(1 \rightarrow 2)$ -[2-de-oxy-2-acetamido- β -D-glucopyranosyl- $(1 \rightarrow 3)$]- α -L-rhamnopyranoside (1)

To a solution of **13** (39 mg, 0.020 mmol) in THF (4.0 mL) was added 2 M aqueous KOH (400 μ L) and the mixture was stirred at 40 °C. After 19 h the TLC (5:1 isopropanol–water) showed that the reaction was complete. The mixture was diluted with MeOH (10 mL), neutralized with Amberlyst-15 H⁺, filtered and dried. The residue was dissolved in methanol (3.0 mL) and Ac₂O (300 μ L) was added. After 2 h the solution was dried to obtain and the residue was purified by gel filtration on a P-2 (Biorad) column using water as eluant, to obtain 1 (10 mg, 56%) as a white foamy solid: [α]_D –45 (*c* 0.5, H₂O); ¹H NMR (400 MHz, D₂O) (see also Table 1): δ 7.47–7.42 (m, 5H, Ph), 4.775 (d, 1H, $J_{gem} = 12.0$ Hz, OC H_2 Ph), 2.05 (s, 3H, Ac); ¹³C NMR (100 MHz, D₂O)

(see also Table 1): δ 129.3 (Ar), 70.4 (OCH₂Ph), 21.1 (Ac). ESI-MS for C₃₉H₆₁NO₂₂ (*m*/*z*): *M*_r (calcd) 895.4, *M*_r (found) 918.4 (M+Na)⁺. Anal. calcd: C, 52.28; H, 6.86; N, 1.56. Found: C, 52.45; H, 6.80; N, 1.55.

Acknowledgements

We thank Dr. Vincenzo Piscopo from Centro di Metodologie Chmico-Fisiche of the University Federico II of Naples for the NMR spectra, and MIUR, Rome, (Progetti di Ricerca di Interesse Nazionale 2002 M.P.) for the financial support.

References

- Corsaro, M. M.; de Castro, C.; Molinaro, A.; Parrilli, M. Recent Res. Devel. Phytochem. 2001, 5, 119–138.
- Knirel, Y.; Kochetkov, N. K. Biochemistry (Moscow) 1994, 59, 1325–1383.

- 3. Brade, H.; Opal, S. M.; Vogel, S. N.; Morrison, D. C. *Endotoxin in Health and Disease*; Marcel Dekker: New York, 1999.
- Mulard, L. A.; Clement, M.-J.; Imberty, A.; Delepierre, M. Eur. J. Org. Chem. 2002, 2486–2498.
- 5. Höög, C.; Rotondo, A.; Johnston, B. D.; Pinto, M. Carbohydr. Res. 2002, 337, 2023–2036.
- Ovod, V. V.; Zdorovenko, E. L.; Shashkov, A. S.; Kocharova, N. A.; Knirel, Y. A. *Eur. J. Biochem.* 2000, 267, 2372–2379.
- Young, J. M.; Saddler, G. S.; Takikawa, Y.; De Boer, S. H.; Vauterin, L.; Gardan, L.; Gvozdyak, R. I.; Stead, D. E. *Rev. Plant Pathol.* **1996**, *75*, 721–763.
- 8. Zhang, J.; Kong, F. Tetrahedron 2003, 1429-1441.
- Dullenkopf, W.; Castro-Palomino, J. C.; Manzoni, L.; Schmidt, R. R. Carbohydr. Res. 1996, 296, 35–147.
- 10. Bedini, E.; Parrilli, M.; Unverzagt, C. *Tetrahedron Lett.* **2002**, *43*, 8879–8882.
- 11. Norberg, T.; Oscarson, S.; Szőnyi, M. Carbohydr. Res. 1986, 152, 301–304.
- 12. Konradsson, P.; Udodong, U. E.; Fraser-Reid, B. Tetrahedron Lett. 1990, 31, 4313–4316.
- 13. Rodenbaugh, R.; Debenham, J. S.; Fraser-Reid, B. *Tetrahedron Lett.* **1996**, *37*, 5477–5478.