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Four acyclic maleimide-based enediyne compounds with different hydrophilicity were synthesized through Sonogashira reaction to reveal a self-delivery 
antitumor drug platform. As proved by ESR analysis, the enediyne compounds undergo Bergman-like cyclization and generate diradical intermediates at 
physiological temperature, which are able to induce DNA-cleavage through the abstraction of H atoms from the sugar-phosphate backbones. When the 
critical aggregation concentration is reached in water, the amphiphilic enediyne compounds self-assemble into nanoparticles and possess the 
self-delivery ability to be facilely admitted by tumor cells, resulted in greatly improved cytotoxicity (IC50 down to 10μM) and much higher tumor cell 
apoptosis rate (up to 86.6%) in comparison with either the hydrophilic or the lipophilic enediyne compound. The enhanced endocytosis of the 
amphiphilic enediyne compounds was further confirmed through confocal laser scanning microscopy analysis. The unveiled relationship between the 
hydrophilicity of enediyne drugs and their therapeutic efficacy will provide a guideline for the design of new self-delivery drugs employed in medicinal 
applications. 
 

Introduction 
Cancer is a complex disease causing severe pain on the 

patients and ranked as the leading cause of human death. Cancer 
is considered as the single most important barrier to increasing 
life expectancy in all the countries in the 21st century according to 
the GLOBOCAN results in 2018.1 In recent years, various 
therapeutics have been developed for cancer treatment including 
chemotherapy, immunotherapy, radiation therapy and surgical 
excision2,3. Among these therapeutics, the chemotherapy, which 
relies on the high cytotoxicity of chemotherapeutic agents plays 
an important role. It is therefore critical to explore and identify 
new chemotherapeutic agents to achieve more efficient 
chemotherapy and curing of cancer. 

The majority of chemotherapeutic agents are extracted from 
nature resources and were approved by the United States Food 
and Drug Administration (USFDA) historically,4,5 like paclitaxel, 
camptothecin and their analogs. Since the late 1980s, a series of 
natural occurring compounds have attracted great research 
attentions for their extremely high cytotoxicity.6,7 These 
compounds, to name a few, calicheamicin,8 dynemicins,9 
C-1027,10 possess the enediyne structure which are readily 
triggered in vivo to generate diradicals through Bergman or 
Bergman-like cyclization.11 The highly reactive diradicals can 
abstract the H atoms from the DNA’s sugar-phosphate backbones 
to cause DNA cleavage and finally kill the cancer cells. Much 
research progress has been made with the natural enediyne 
antibiotics,12-15 and recently the USFDA has approved two 
antibody drug conjugates, Mylotarg® and Besponsa®, with 
calicheamicin as the “warhead”.16,17 Despite their high potential in 

developing new anticancer drugs, the enediyne family remains 
very small because of the limitation on the extraction and 
total-synthesis technique, with only 11 structurally characterized 
members known to date15. Broadening the enediyne family 
through designing their non-natural analogues is highly important. 
Many enediyne with various structural features were synthesized 
and their biological properties were evaluated.18 In our previous 
work, we found that the onset temperatures of a thermal 
Bergman cyclization reaction was drastically lowered when a 
maleimide moiety was introduced at the ene position.19 Following 
this line, we have synthesized several acyclic enediyne antibiotics 
with maleimide structure to achieve moderate to high cytotoxicity 
towards tumor cells.20-22 

Direct administration of small molecular drugs suffers from 
low bioavailability, nonspecific cytotoxicity, severe side effects, 
rapid drug elimination, and severe multidrug resistance (MDR).23 
To this end, nanoscale drug-carriers including liposomes, 
polymeric micelles, inorganic nano-frameworks have been 
employed on drug delivery.24-28 These nanoscale drug delivery 
systems show higher therapeutic efficacy and lower side effects 
than free drugs due to the enhanced permeability and retention 
(EPR) effect.29 However, the drug-carriers themselves have no 
therapeutic effect, and the unpredicted degradation of the 
carriers might cause side-effects.30,31 The drug self-delivery 
systems (DSDSs), in which active drugs exhibit nanoscale 
characteristic to realize intracellular delivery by themselves have 
been rapidly developed to address these issues.32-34 The DSDSs 
hold the following features: (i) accumulation in tumors due to the 
EPR effect; (ii) excellent drug loading capacities (up to 100% for 
pure nanodrugs); (iii) no carrier-induced toxicity and 
immunogenicity.35-40 
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Herein, we report four maleimide-based enediyne compounds 
with different hydrophilicity. Among which, two of them exhibit 
the potential as DSDSs. The two hydroxyl groups endow them 
hydrophilicity, while the rest parts endow them lipophilicity. 
When the concentrations of these two enediyne compounds 
reach the critical aggregation concentration (CAC), self-assembled 
nanoparticles with size around 100 nm were formed, which would 
accumulate in tumor tissues through EPR effect and enter the 
tumor cells by receptor-mediated endocytosis41,42. Encouragingly, 
the enediyne compounds with DSDS feature show much higher 
cytotoxicity than their hydrophilic or lipophilic counterparts, 
suggesting a simple yet efficient drug design strategy.  

Results and Discussion 
The four enediynes (EDY) (Fig. 1) were synthesized from 

3,4-diiodomaleimides and terminal alkynes through Sonogashira 
reaction (ESI). The chemical structure of EDY A-C were verified by 
1H NMR, 13C NMR and HR-MS spectroscopies (ESI), while the EDY 
D is referred to our previous work.43 The molecular structure of 
the EDY A and B were carefully designed to endow them 
amphiphilicity to meet the criteria of DSDSs, while the EDY C was 
designed as a hydrophilic control and EDY D was used as a 
hydrophobic control. The physicochemical parameters of these 
enediynes are listed in Table S1. All of the enediyne compounds 
are likely to exhibit good absorption or permeation to cancer cells 
according to the Lipinski’s Rule of Five (Ro5, MWT ≤ 500, log P ≤ 5, 
H-bond donors ≤ 5, H-bond acceptors ≤ 10).44  
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Figure 1 Chemical structures of enediyne compounds. 

The critical aggregation concentration (CAC) of two 
amphiphilic enediynes were measured by using Nile Red as a 
fluorescent probe.45 The fluorescence emission of Nile Red 
increases drastically when it is transferred from an aqueous 
solution to a hydrophobic environment, indicating the formation 
of micellar (or micelle-like) assembly.46-48 Figure S10 shows that 
the CAC values of the EDY A and EDY B are 19 μM and 7 μM, 
respectively. The lower CAC value of EDY B is related to its higher 
LogP value (Table S1), which is beneficial to promote the 
formation of self-assembly for DSDSs. The hydrophilic EDY C is 
freely soluble in aqueous solutions, however, it might encounter 
difficulty when admitted by tumor cells as cell membranes are 
lipophilic phospholipid bilayers. The lipophilic EDY D (LogP, 5.46) 
might enter the tumor cells through penetration or diffusion, but 
its bioavailability would be rather low due to its low solubility in 

cell culturing media or blood stream. 
The self-assembled nanoparticles (NPs) of EDY A and B were 

prepared by slowly adding their THF solutions into water, 
followed by removal of THF through evaporation. The DLS curves 
(Figure 2A and 2B) of the assemblies show the formation of EDY 
NPs with narrow size distributions. The average hydrodynamic 
diameter of EDY A NPs and EDY B NPs are 97.5 nm and 129 nm, 
respectively. TEM images (Figure 2C, 2D) show that the NPs are 
spherical micelles with average diameter of 80 nm for EDY A, and 
100 nm for EDY B. The slight difference of the size measured with 
DLS and TEM is due to the shrinkage of nanoparticles in a drying 
state during TEM sample preparation.  

Enediyne compounds undergo Bergman or Bergman-like 
cycloaromatization to generate diradical intermediates, endowing 
them DNA-cleavage ability and cytotoxicity. To verify this 
transformation, the structural change of the enediyne compounds, 
in particular, the reaction of the triple bonds was characterized 
with FT-IR and Raman spectroscopies. EDY A was chosen as the 
representative compound for this study as all four compounds 
share the same enediyne core structure. The characteristic peak 
of the stretching of triple bond in EDY A is observed at 2211 cm-1. 
This peak disappeared completely after EDY A was kept in 
methanol at 37ºC for 2 days, while the other peaks almost 
unchanged (Figure S11).  

 
Figure 2 (A) (B) DLS curves of EDY A and EDY B NPs. (C) (D) TEM images of 
EDY A and EDY B nanoparticles. 
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Figure 3 (A) ESR spectra of the EDY A-PBN adduct in methanol at 37 ℃. 

Electron spin resonance (ESR) spectroscopy analysis was used 
to verify the radical nature of the cycloaromatization. The highly 
reactive carbon radicals generated from the reaction were 
trapped by radical-trapping agents and turn into stable free 
radicals for ESR study.49 Usuki et al. conducted a spin-trapping 
experiment on calicheamicin to confirm the generation and the 
evolution of radical species in ethanol solution.50 Regarding to this, 
phenyl tert-butyl nitrone (PBN) was used for this experiment (PBN 
itself shows no ESR signal, Figure S12A). As shown in Figure 3, ESR 
spectrum of the mixture of EDY A and PBN in methanol exhibits 
triplet signals51 with hyperfine coupling of 1.5 mT. The minor 
triplets in the spectrum might come from the radical species 
formed from the H-abstraction of the solvent molecules by the 
highly reactive diradical intermediates followed by radical addition 
with PBN. Interestingly, the intensity of the recorded ESR signals 
increased in a time dependent manner in 5 days, suggesting that 
the generation of radical species from EDY A would last for a long 
time. Similarly, ESR spectrum of the mixture of EDY B and PBN in 
DMSO exhibits triplet ESR signals (Figure S12B).  

  

Figure 4 Cleavage of DNA by EDY A at different concentrations for 72 h at 
37 ºC. Lane 1: DNA (4 μL) in TE buffer (2 μL, pH 7.6); lane 2: DNA (4 μL) + 
DMSO (2 μL); Lane 3: DNA (4 μL) + EDY A (200 mM) in DMSO (2 μL); lane 4: 
DNA (4 μL) + EDY A (100 mM) in DMSO (2 μL) ; lane 5: DNA (4 μL) + EDY 
A(50 mM) in DMSO (2 μL) 

DNA cleavage experiments were conducted to further prove 
the ability of the diradicals to abstract H atoms from the DNA’s 
sugar-phosphate backbones. Two kinds of supercoiled plasmid 
DNA were used for this study by analysing the conversion of DNA 
from native supercoiled (Form I) to circular relaxed form (Form II, 
single-strand cleavage).6 The supercoiled plasmid DNA was 
incubated with EDY A at 37 ºC for 72 h and then subjected to 
agarose gel electrophoresis (Figure 4). Free DNA or DNA treated 
with DMSO were set as control group. The supercoiled DNA are 
significantly converted to Form II in the presence of EDY A (lane 3, 
4, 5) in a concentration dependent manner, while almost no 
change was found for the control group (lane 1, 2). All the above 
results indicate that the EDY are able to generate diradical 
through cycloaromatization at physiological temperature to cause 
DNA cleavage, endowing them the potential as antitumor agents. 
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Figure 5 The relative geometrical mean fluorescence intensities of Hela 
cells incubated with the EDY A nanoparticles for different time and then 
analyzed with flow cytometry. Insert: representative flow cytometry 
histogram profiles of Hela cells cultured with EDY A nanoparticles for 3.5 h, 
the untreated cells are used as a control. 

It is generally acknowledged that the nanoparticular drugs 
with size in the range of tens to hundreds of nanometer could be 
internalized into cells through receptor-mediated endocytosis41 
while the small molecular drugs mainly go through diffusion. 
Whether the EDY compounds could be effectively transported 
into tumor cells is a crucial aspect for their therapeutic efficacy. To 
this end, confocal laser scanning microscopy (CLSM) and flow 
cytometry technique were used to evaluate the cellular uptake of 
the EDY compounds, and Hela cells were chosen as model cells. 
Taking advantages of the blue fluorescent emission of these 
enediyne compounds (Figure S13), they were directly used as the 
fluorescence probes for the cell internalization analysis. 

For CLSM study, HeLa cells were respectively treated with EDY 
A (5μM, below CAC), EDY A NPs (50 μM, above CAC), EDY C (50 
μM) and cultured for 24 h before observation. Propidium iodide 
(PI) solution was used to stain the nuclei. As shown in Figure 6a, 
the small molecular EDY A was found in the cancer cells, proving 
the successful molecular design of the EDY molecule according to 
the Lipinski’s Rule of Five (Ro5). Interestingly, when the 
concentration of EDY A is higher than the CAC, both cytoplasm 
and nuclei of the cells exhibit intense blue fluorescence, 
demonstrating that EDY A NPs were efficiently internalized by 
cancer cells in 24 h through endocytosis. The much brighter 
fluorescence in Figure 6b than that in Figure 6a indicates that the 
endocytosis of nanoparticular drugs is more efficient than the 
diffusion or permeation of the small molecule drugs. In a sharp 
contrast, even at a high concentration, the blue fluorescence of 
EDY C is almost invisible in HeLa cells (Fig. 6c), indicating that the 
highly hydrophilic drug had encountered difficulty to permeate 
through the lipophilic cytomembrane. Flow cytometry analysis 
was performed to further confirm the gradual internalization of 
the EDY A NPs. Hela cells were firstly incubated with EDY A NPs 

(50 μM) at 37 °C for the predetermined time intervals (0.5 h, 1.5 h, 
2.5 h and 3.5 h) and then subjected for flow cytometry analysis. 
The fluorescence of EDY A was monitored with a 375 nm laser and 
the cells without any treatment were taken as a control. As shown 
in Figure 5, the fluorescence intensity of EDY A NPs in Hela cells 
steadily increases with the extension of culture time. 

 

Figure 6 CLSM images of Hela cells treated with a) EDY A at the 
concentration of 5 μM b) EDY A Nps at the concentration of 50 μM and c) 
EDY C at the concentration of 50 μM for 24 h. Cell nuclei are stained with 
PI. The scale bar represents 50 μm. 

The proliferation inhibition of all four enediyne compounds 
against a model cancer lines, HeLa cells, was evaluated by 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide 
(MTT) assay. The HeLa cells were firstly cultured with the 
enediyne compounds at concentrations ranging from 0.9 to 60 
μM and then respectively treated with MTT and characterized 
with fluorescence spectroscopy. The cells treated with 0.1% 
DMSO was used as a control. The cell proliferation results are 
shown in Figure 7. After incubation for 48 h, EDY C almost shows 
no cytotoxicity within the concentration range, which is in 
consistent with the cell internalization result. EDY A starts to show 
the proliferation inhibition of Hela cells when the concentration is 
below the CAC value (19 μM). When the concentration is higher 
than CAC value, EDY A would self-assemble into nanoparticles and 
shows profound inhibition of the proliferation of Hela cells (over 
80%). The therapeutic efficacy of EDY B is more dependent on its 
concentration. When the concentration of EDY B is lower than the 
CAC value (7 μM), the cytotoxicity towards HeLa cells is rather low. 
However, when the concentration of EDY B is higher than the CAC 
value, the cytotoxicity of the formed EDY B NPs is greatly 
improved. The IC50 concentrations of EDY A (11.2 μM) and EDY B 
(10 μM) are lower than that of their lipophilic analogue EDY D 
(22.06 μM) and hydrophilic analogue EDY C (>100 μM), proving 
that the DSDSs would greatly enhance the bioavailability of the 
enediyne compounds and their therapeutic efficiency. Indeed, the 
cytotoxicity of both EDY A and EDY B are comparable with many 
clinically used antitumor agents such as doxorubicin and 
cisplatin.52,53 
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Figure 7 In vitro cytotoxicity study on Hela cells incubated with different 
concentrations of EDY A, B Nps and EDY C, D for 24h determined by MTT 
assay. Data are shown as means ± SD (n = 3). A significant decrease 
compared with EDY C-treated cells is denoted by “*” (P < 0.05), “**” (P < 
0.01) and “***” (P < 0.001). A significant decrease compared with EDY 
D-treated cells is denoted by “#” (P < 0.05), “##” (P < 0.01) and “###” (P < 
0.001) 

Generally, driving tumor cells into apoptosis pathway is a 
principal mechanism of most cytotoxic drugs to show their 
chemotherapeutic ability.54 To confirm the fact that the induced 
death of cancer cells incubated with enediyne compounds is 
mainly through cell apoptosis, fluorescein isothiocyante 
(FITC)-Annexin V/PI apoptosis detection kit was applied to qualify 
the ratio of apoptosis cells. HeLa cells were respectively treated 
with the enediyne compounds (30 μM) for 24 h, followed by 
staining with FITC-Annexin V/PI. The cells without any treatment 
were applied as a control. As shown in Figure 8, the apoptotic 
percentages induced by EDY A-D are 64.8%, 86.6%, 20.8%, and 
49.4%, respectively, while the necrotic cells were not significant in 
all groups. The significant higher apoptosis rate induced by the 
nanoparticular enediyne compounds (both above their CAC) 
further corroborate the high efficiency of the amphiphilic DSDSs 
to show great potential in chemotherapy and cancer curing. 
 

 

Figure 8 (A) Flow cytometry analysis for apoptosis of Hela cells induced by 
EDY A, B Nps and EDY C, D at the concentration of 30 μM for 24 h. Lower 
left, living cells; lower right, early apoptotic cells; upper right, late 
apoptotic cells; upper left, necrotic cells. Inserted numbers in the profiles 
indicate the percentage of the cells present in this area. (B) Ratio of 
apoptotic Hela cells based on the results of flow cytometry measurements. 
Values represent mean ± SD (n = 3). A significant increase in the apoptosis 
rate compared with the EDY C-treated cells is denoted with “**” (P < 0.01) 
and “***” (P < 0.001), and a significant increase compared with EDY 
D-treated cells is denoted with “#” (P < 0.01) and “##” (P < 0.001). 

Conclusions 
We have designed and synthesized four acyclic enediyne 

compounds, which are able to generate active diradicals and lead 
to DNA cleavage through Bergman cyclization or Bergman-like 
reaction. The molecular amphiphilic nature of two of the 
enediynes endow them ability to self-assemble into nanoparticles 
in water and to be self-delivered into tumor tissues through the 
EPR effect with a high drug loading capacity (100%). After being 
internalized into the HeLa cells through endocytosis, the 
self-assembled enediyne nanoparticles would be swallowed by 
the lysosome and disassembled into free enediyne, which further 
cause the DNA-cleavage and induce tumor cell death through 
apoptosis pathway. In comparison, both the hydrophilic and 
lipophilic enediyne compounds have encountered difficulties to 
be delivered into tumor cells and resulted in deteriorated 
cytotoxicity. This study clearly shows that by sophisticated 
adjusting the hydrophilic/lipophilic balance of a small molecular 
drug, the therapeutic efficacy could be greatly enhanced, 
provides a simple yet reasonable guideline for the development 
of new chemotherapeutic agents with self-delivery feature. 
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The supporting information for this article is available on the 
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