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Graphical Abstract

Efficient synthesis of 2-arylquinazoling& copper-catalyzed dual oxidative benzylic C-H artiores of methylarenes
Li-Yan Liu", Yi-Zhe Yan', Ya-Jie Bao, Zhi-Yong Wang*

Hefei National Laboratory for Physical Sciencedvatroscale, CAS Key Laboratory of Soft Matter Ctetrgi& Collaborative
Innovation Center of Suzhou Nano Science and TémgydJniversity of Science and Technology of Chitefei 230026,
China
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A novel copper-catalyzed dual oxidative benzyliti@minations of methylarenes with 2-aminobenzokestdan the presence of ammonium
acetate was developed. This reaction represergw @avenue for 2-arylquinazolines with good yields.
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1. Introduction

In recent years, the synthesis of quinazolinesitnderivatives has become a hot spot in orgaymthetic chemistry due to their
broad biological and medicinal activities, suchaatibacterial, anticarcinogenic and antihypertemgivoperties [1-5]. Usually, the
traditional synthesis of quinazolines involves teats of Bischler cyclization, dicarbonyl compoundgg&h diamines and reactions
from 2-aminobenzonitriles or anthranilic acids aalvas N-arylbenzamides [6-9pur group have been focusing in the synthesis of
guinazolines and a variety of excellent approadbehe quinazolines were developed [10-13]the same time, other groups also
developed some novel methods to prepare these zgliima derivatives [14-20]. For example, Li [20]vadoped a Kl-catalyzed
synthesis of quinazolines from 2-aminobenzoketotadgene and ammonium salt. In these synthesekethstep is to construct C-N
bonds of the cyclization. Recently, transition-niegtalyzed oxidative aminations of >s@-H bond have emerged as important
methods for C-N bond formations because of shapsstand atom-economical advantages [21-38]. Inicpéat, copper as an
inexpensive and lowly toxic metal catalyst, hasnbemployed to catalyze the formation of C-N befaia sf§ C-H amination [39-49].
For instance, copper-catalyzed cascade couplirrghaflobenzaldehyde with acetamidine hydrochloraebenzaldehyde) to construct
C-N bond was reported [53-58evertheless, these methods generally suffered liroitations of substrate generality and availapili
of starting material. Especially, for those sulissabearing electro-withdrawing group, there reactiardly occurs. Therefore, to
develop some novel and efficient method for thetsssis of quinazolines still remains highly deslieab

Herein, we report a novel copper-catalyzed doublieladive C-H aminations of methylarenes with 2-aofienzoketones and
ammonium acetate, constructing one C=N bond andCeNebond in one step.

2. Experimental

Unless otherwise indicated, all commercial reagemis solvent were used without additional purifimatH-NMR spectra were
recorded with a Bruker AVIII-400 spectrometer. Cligah shifts (in ppm) were referenced to tetrametiighe ¢ =0) in CDC} as
internal standard>C spectra were obtained by the same NMR spectroraetewere calibrated with CDOP = 77.00). HRMS (ESI)
were recorded on a Wat&fsQ-TOF Premier Mass Spectrometer.

2.1. Preparation of substrates

Y Corresponding author.
E-mail addresszwang3@ustc.edu.cn
T These authors equally contributed to this work.
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Substrated a, 1f, 1m and1n are commercially available. Other substratds e, 1g-11 and 10) were prepared using our previous
literature procedure [10].

2.2. Experimental Procedure for preparation3of

Substratel (0.2 mmol), NHOAc (31.2 mg, 0.4 mmol), CugPH,0 (6.8 mg, 20 mol%), TBHP (96L, 70% aq, 0.6 mmol), were
added to a tube, followed by addition of solvarf mL). The mixture was stirred at assigned tentpeezand monitored by TLC. The
solution was cooled to r.t., diluted with ethyl tate (5 mL), washed with saturated aqueous sodiysnogen sulfite. The aqueous
layers was extracted with EtOAc (3x10 mL), the coret organic layers were dried over,86), filtered, and evaporated under
vacuum. The residue was purified by column chrogratohy on silica gel (petroleum ether: ethyl aeetaR0:1) to afford the desired
product3.

Characterization data of compourgigere given in Supporting information.

3. Results and discussion

We began our studies with the reaction of (2-anghenyl)-phenyl-methanoneld 1 equiv.), NHOAc (2 equiv.),tert-butyl
hydroperoxide (TBHP, 70% in water, 2 equiv.) aoaiant, 20 mol% Cu(OAg)as catalyst and 2 mL toluen2g] as the solvent and
reagent. When heated under air af80vernight, 2,4-diphenyl quinazolindg@ was obtained in 43% yield (Table 1, entry 1). Whe
we replaced Cu(OAgyith other transition metal acetates, the reacgfietd was reduced (Table 1, entries 2-4). Amongouer copper
salts examined (Table 1, entries 5-9), copper @#alehydrate gave the best yield of 86% (Tablentry 6). Next, we optimized the
oxidant such as dert-butyl peroxide(DTBP), cumene hydroperoxide (CHP),®4 (30% in water) and &Table 1, entries 10-13).
Also, the nitrogen sources (Table 1, entries 14&l®) the reaction temperature (Table 1, entriesQ)Avere optimized, but no better
yield was obtained. In addition, we increased theling of TBHP to 3 equiv. sincka was not used out, givingaain 88% vyield
(Table 1, entry 20). Finally, the optimal conditsornere described in entry 20.

Table 1.
Optimization of reaction condition8.
Ph
M/[O] N
N source /)\
toluene ga) N Ph
overnight 3aa

Entry Catalyst Oxidant N sources Temp Yield

() (%)
1 Cu(OAc) TBHP NHOAcC 80 43
2 Co(OAc)-4H,0 TBHP NHOAC 80 42
3 Ni(OAc)-4H,0 TBHP NHOAC 80 38
4 Pd(OAc) TBHP NHOAc 80 24
5 CuBp TBHP NH,OAc 80 46
6 CuC}-2H,0 TBHP NHOAc 80 86
7 Cu(OH} TBHP NHOAc 80 62
8 CuSQ-5H,0 TBHP NHOAc 80 67
9 CuCQ TBHP NHOAc 80 51
10 CuC}-2H,0 DTBP NHOAc 80 <10
11 CuC}-2H,0 CHP NHOAc 80 43
12 CuC}-2H,0 H.O, NH,OAc 80 n.d.
13 CuC}-2H,0 (0} NH,OAc 80 n.d.
14 CuC}-2H,0 TBHP NH4CI 80 50
15 CuC}-2H,0 TBHP (NH,).SO, 80 45
16 CuC}-2H,0 TBHP NH-H,0° 80 65
17 CuC}-2H,0 TBHP NHOAC 90 78
18 CuC}-2H,0 TBHP NHOAC 100 70
19 CuC}-2H,0 TBHP NHOAC 110 65
20 CuC}-2H,0 TBHP NHOAC 80 88

#Reaction conditionsta (0.2 mmol), N source (0.4 mmol), catalyst (0.04 efjroxidant (0.4 mmol)2a (2 mL), overnight.
bIsolated yield, n.d.=not detected.

©25% in water.

40.6 mmol TBHP was used.

Subsequently, we investigated the substrate sciojivsaeaction under the optimized reaction cdndig and obtained the product
(3aa-30a Fig.1). Firstly, when Ris an aromatic substituent, the reaction of sabs$rla-1d can be carried out to give the
corresponding producaa3da with good yields. Substrates with electro-withdiragvgroup (4-F and 4-Br) gave higher yields than
substrates with electro-donating group (4-Me) anghenyl ring. When Ris a 2-naphthyl substituent, the correspondingipco3ea
was generated with an 88% vyield. To our delighbstatelf-1| with aliphatic substituents also gave the corradpw products3fa-
3la in good yields. When Ris an aliphatic alkyl group, the alkyl with thetttary carbon favoured the reaction, as showmlm
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Notably, it was found that Fbenzylic C-H can be oxidized into C=0 botdgive 3ga’. On the other hand,’Rubstituent had a little
influence on the reaction. Wher &ternated from electron-donation group (5-Me)laz#o-withdrawing group (5-Cl and 5-N)the
yields was reduced to some extent, as shov@mia 3naand3oa

F Br Me ‘
X :
~ ~
O N/)\ Ph N/)\ Ph N/)\ Ph N/)\ Ph N/)\ Ph N "Ph o~

3aa, 88% 3ba, 85% 3ca 85% 3da, 75% 3eq 88% 3fa, 83% 3ga’ 62% 3ha, 74%
( 15 O O
= /)\ = = = — —
N)\Ph N >Ph N)\Ph N)\Ph N)\Ph NJ\ph N)\ph
3ia, 61% 3ja, 77% 3ka, 73% 3la, 84% 3ma, 61% 3na, 64% 303 52%

Fig.1. Structures and yields of compourgsa-3oa

Then we tried to use different methylareress the solvent and regent to extend generalitthisf reaction (Table 2). Both
methylarenes bearing electro-donating gro®ip-Ze) and weaker electro-withdrawing groupf @nd2g) could generate the desired
products3ab-3ag with good to excellent yields. The position of tinethyl group on the phenyl ring @faffected the reaction yields
slightly (Table 2, entries 1-3). However, when s electro-withdrawing-group was induced iotdho-position @h), no product
was detected (Table 2, entry 7), perhaps due tstthag electronic effect of the nitro group.

Table 2.Substrate scope of methylarents.

CuCI2-2H20/T BHP @\)% N
@f& \O NH,OAc N/J\G
R3

80°C, overnight |

2b-2h 3ab-3ah \R?’
Entry R Product Yield (%)
1 0-Me (2b) 3ab 92
2 m-Me (2¢) 3ac 90
3 p-Me (2d) 3ad 90
4 3,5-di-Me Re) 3ae 86
5 p-Cl (2f) 3af 87
6 p-Br (29) 3ag 87
7 0-NO; (2h) 3ah n.d.
@ Reaction conditionsla (0.2 mmol), NHOAc (0.4 mmol), TBHP (70% in water, 0.6 mmol), Ca#@H,0 (0.04 mmol),2 (2 mL), 80°C,
overnight.

® |solated yield.
n.d. = not detected.

80°C, overnight  30% Kn/Kp=9/1

Ph
iti i standard conditions
@ 1a standlard ‘COITId‘ItIOFIS 3aa L (b) o ft 3aa
Radical inhibitor ! o
TEMPO 70% ! N Ph o7%
1,1-diphenylethylene  65% H
| 4
1 CDs
CUCkL2H,O/TBHP ! D p Standard
NH4OAc 3 (d) 4>cond|tlons 3aa+ d-3aa
(c) 1a + PhCHO 3aa | la + +
DMSO i D D

D
2a(lmL) d-2a(lmL)

Scheme 1Control experiment and KIE experiment

To gain an insight into the mechanism, severalrobmxperiments were carried out. Firstly, it waserved that the reaction was
not obviously inhibited in the presence of 2,2 &Bamethyl-1-piperidinyloxy (TEMPO) or 1,1-diphdathlene. No benzyl radical
was obtained by EPR experiment [55, 56]. Two ressitggested that the reaction did not undergo iaalagathway (Scheme 1a).
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When (2-benzylamino-phenyl)-(phenyl)-methandnsas employed as a substrate to carry out theioeaghder standard conditions,
67% of 3aa was obtained. This indicated thétmay be the intermediate of the reaction (Scheme Mbyeover, trace amount of
benzaldehyde could be detected in the model readtowever, when 1 equiv. of benzaldehyde was aseslibstrate, only 30% yield
of 3aa was obtained (Scheme 1c). This indicated that dldehyde may be not the intermediate of the reactnally, a large
intermolecular kinetics isotope effedt ko = 9) was observed by4 NMR and HRMS from toluene ardj-toluene, which indicated
that the C-H cleavage was a rate-determining Sepdme 1d).

On the basis of the above results and the previgparts [39-50], a plausible catalytic cycle ofstliansformation is proposed
(Scheme 2). Initially, the coordination &f to one Clispecies and subsequent ligand exchange generatespper comple,
which forms the benzyl/CuspeciesB by benzylic C-H activation. Then the oxidation Bfwith another Cli species gives the
benzyl/Cl' complexC and one Cuspecies. Reductive elimination Gfgives the intermediaté¢ and another Cispecies. Andl were
converted intoE with £H elimination. Finally,E with NH; were converted inté& via a similar catalytic cycle, which form3aa
through a condensation and oxidation. The geneftespecies is then oxidized to the'Gipecies by TBHP.

1aNH,R
CuCh ———» CICUNHR — 2 o pr” Scd'NHR
_Hcl _HCl
A cuCh
C-H activation
CuCl
[O], HCI cucl
u
-H,0 = Ph/\(ltu"'NHR
Cl
Ph/\NHR C
cd'cl,

B-H elimination

4
2CuCh ——— CuCl + HCI
-CuClHCI p| NHR :
D

[0l NH2 NH
302 - MM e \g
-2H0 P NHR E
F
Scheme 2. A plausible catalytic cycle.

4. Conclusion

In summary, we developed a copper-catalyzed oxidamination of benzylic C-H Bonds of methylareméth ammonia and 2-
aminobenzoketones under mild conditions. By vidiéighis method, a series of 2-arylquinazolines wffisiently synthesized in good
yields. Copper-catalyzed oxidative C-H aminatiomathylarenes for the synthesis of other heteresyisl ongoing in our laboratory.
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