View Article Online View Journal

Organic & Biomolecular Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: C. Wang, H. Jiang, W. Chen, J. Dong, Z. Chen and H. Cao, *Org. Biomol. Chem.*, 2017, DOI: 10.1039/C7OB01242J.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/obc

Published on 15 June 2017. Downloaded by East Tennessee State University on 15/06/2017 23:45:14.

ROYAL SOCIETY OF CHEMISTRY

Journal Name

COMMUNICATION

Silver-Catalyzed [3+2] Domino Reaction: An Efficient Strategy to Synthesize Imidazole-5-carbaldehydes

Received 00th January 20xx, Accepted 00th January 20xx

Changcheng Wang,^a Hangqi Jiang,^a Weifeng Chen,^a Jun Dong,^b* Zhengwang Chen,^c and Hua Cao^a *

DOI: 10.1039/x0xx00000x

www.rsc.org/

An unprecedented regioselective silver-catalyzed [3+2] domino reaction of amidines and ynals for the formation of C-N bonds has been developed. The reaction provided a new route to prepare imidazole-5-carbaldehydes which are important intermediate for the construction of fine chemicals. The reaction proceeds smoothly with a broad range of substrates to give imidazoles in good yields.

metal-catalyzed Transition organic synthetic reactions¹ are powerful tools for the formation of new carbon-carbon and carbon-hetero bonds in both industrial applications and academic research. A lot of great and successful methods, such as Heck reaction,² Suzuki reaction,³ Negishi coupling,⁴ Sonogashira coupling⁵ and Buchwald-Hartwig reaction,⁶ have been developed for the synthesis of complex molecules from readily accessible starting materials under mild conditions. On the basis of these classical transformations, new and facile routes have been developed to prepare fine chemicals. These advancements have encouraged chemists to design an inexpensive, environmentally friendly and nontoxic catalytic system. With the development of green chemistry and increased concern over environmental issues,⁷ one of the current challenges in organic synthesis is to develop green methods. As the biggest

pollution problem in most of organic transformation is caused by organic solvents, the development of efficient synthetic methods for organic transformation with nontoxic solvents is an important goal. It is well known that water is a non-toxic, non-hazardous, non-flammable, uniquely redoxstable, inexpensive green solvent, therefore, using water as the reaction solvents⁸ has attracted considerable attention.

Imidazole derivatives recognized as a significant class of skeleton in many natural products, pharmaceuticals, and biologically active molecules.⁹ The commercially available drugs, for instance, Ketoconazole, Clotrimazole, Miconazole and Tinidazole, are derived from imidazole scaffolds. One of the most important reaction is the Debus-Radziszewski method¹⁰ for the construction of imidazole derivatives. As far as transition metal-catalyzed strategies access to imidazoles are concerned, significant advances based on Pd-, Cu-, and Fe-catalyzed reactions have been achieved in the field. ¹¹ Although many efforts have been devoted to prepare imidazole derivatives.¹² the search for the development of more environmentally friendly reaction is still highly desirable.

Combined with our previous work on the synthesis of furans¹³. and imidazo[1,2-a]pyridines¹⁴, herein, we report an efficient Ag-catalyzed [3+2] domino process to synthesize imidazole-5-carbaldehydes from amidins and ynals.

^aSchool of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China

^b School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China

^c Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi province, Gannan Normal University, Ganzhou, 341000, China

⁺ Footnotes relating to the title and/or authors should appear here.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

Published on 15 June 2017. Downloaded by East Tennessee State University on 15/06/2017 23:45:14

DOI: 10.1039/C7OB01242J Journal Name

Ph ^H Ph + NH +		CHO catalyst, oxidant solvent, additive, 10h Ph 2a		Ph Ph Ph 3a	
entry	catalyst	additive	solvent	oxidant	yield ^b (%)
1	AgOTf	AcOH	DMSO	O ₂	63
2	AgNO ₃	AcOH	DMSO	O ₂	39
3	AgOAc	AcOH	DMSO	O ₂	22
4	Ag ₂ O	AcOH	DMSO	O ₂	25
5	AgSbF ₆	AcOH	DMSO	O ₂	trace
6	$AgBF_4$	AcOH	DMSO	O ₂	trace
7	Cu(OAc) ₂	AcOH	DMSO	O ₂	n.d.
8	Cul	AcOH	DMSO	O ₂	12
9	AuCl	AcOH	DMSO	O ₂	trace
10	AuCl₃	AcOH	DMSO	O ₂	trace
11	AgOTf	TFA	DMSO	O ₂	13
12	AgOTf	TsOH	DMSO	O ₂	trace
13	AgOTf	AcOH	DMA	O ₂	41
14	AgOTf	AcOH	DMF	O ₂	33
15	AgOTf	AcOH	toluene	O ₂	<5
16	AgOTf	AcOH	DMSO/H ₂ O=5:1	O ₂	78
17	AgOTf	AcOH	DMSO/H ₂ O=2:1	O ₂	80
18	AgOTf	AcOH	DMSO/H ₂ O=1:1	O ₂	77
19	AgOTf	AcOH	H ₂ O	O ₂	trace
20	AgOTf	AcOH	DMSO/H ₂ O=2:1	DDQ	trace
21	AgOTf	AcOH	DMSO/H ₂ O=2:1	$K_2S_2O_8$	trace
22	AgOTf	AcOH	DMSO/H ₂ O=2:1	твнр	trace
23 ^c	AgOTf	AcOH	DMSO/H ₂ O=2:1	-	n.d.
24 ^d	AgOTf	AcOH	DMSO/H ₂ O=2:1	-	n.d.

⁶Reaction conditions: **1a** (0.25 mmol), **2a** (0.3 mmol), catalyst (5 mol %), additive (5 mol %), and oxidant (2.0 equiv) in solvent (2 mL) at 120 °C for 8 h. ^b Determined by GC analysis.^cReaction conducted at N₂ atmosphere. ^dReaction conducted at Ar atmosphere.

Scheme 1. The formation of byproduct 4a.

Initially, N-phenyl-benzamidine (1a) and phenylpropynal (2a) were chosen as model substrates, and the results are described in Table 1. The transformation was carried out in the presence of AgOTf (5 mol %) and AcOH (5 mol %) in DMSO (2 mL) under O_2 as the oxidant at 120 °C (Table 1, entry 1). After 12 h, we were pleased to find that the product **3a** was generated in 63% yield with a little byproduct **4a** in 12% yields (Scheme 1). According to the preliminary result in entry 1, we next evaluated the influence of other silver,

including AgNO₃, Ag₂O, AgOAc, AgSbF₆, and AgBF₄ (Table 1, entries 2-6). It was found that a decreased yield was obtained in the reaction. The poor yields were observed when copper- (Cu(OAc)₂, CuI) and gold (AuCl, AuCl₃) salts were employed (Table 1, entries 7-10). Furthermore, Unsatisfactory yields were formed when TsOH or TFA was used as additive (Table 1, entries 11-12). The effect of solvents were next tested. Other solvents, such as DMA, DMF, or toluene, did not lead to any improved result (Table 1, entries 13-15). We then attempted to improve the yield of product 3a by adding water that restrained dehydration of 1a and 2a to produce intermediate I and later form 4a. As we expected, the desired product 3a was generated in 77-80% yields when the reaction carried out by using DMSO and H₂O as the co-solvent (Table 1, entries 16-18). However, no imdazoles formation was observed by using H₂O as the solvent (Table 1, entry 19). Then, different oxidants (DDQ, $K_2S_2O_8$) were also employed and only trace amount of 3a was formed (Table 1, entries 20-22).

Scheme 2. Scope of the AgOTf-Catalyzed Reaction.

With the optimized catalytic system in hand, we then explored the substrate scope of amidines with diverse substituents. The results are shown in Scheme 2. Published on 15 June 2017. Downloaded by East Tennessee State University on 15/06/2017 23:45:14.

Journal Name

The reaction was successfully extended to various Nsubstituted amidines (Ar¹). All of the reactions proceeded smoothly under the optimized conditions and gave the substituted imidazole aldehydes (3a-3i). This transformation tolerated different substituents, such as electron-rich (CH₃, OCH₃) and electron-poor (F, Cl), on the benzene ring of N-substituted amidines (Ar¹). The effect of Ar² was then investigated for this Ag-catalyzed strategy. The substituted groups on the arene (Ar^2) such as CH₃ and OCH₃ remained unaffected and were also well-tolerated under optimized conditions (3j-3p). All those reactions afforded the corresponding products in moderate to good yields. To further investigate useful substrate, we use acetimidamide. But unfortunately, the desired product was not detected in this reaction (Scheme 3).

This journal is © The Royal Society of Chemistry 20xx

We were also pleased to find that this Agcatalyzed process could be successfully applied to different ynals and the results are described in Scheme 4. A variety of ynals, bearing either electron-donating (4-CH₃, 4-OMe, 3,4-dimethyl) groups or electronwithdrawing groups (Br) on the phenyl ring, reacted smoothly with various amidines, affording the corresponding products (3q-3y) in 60-82% yields. Notably, the bromo substituent products could be subjected to further transformations to prepare diverse molecules. The molecular structure of product 3t was determined by X-ray crystallography (Figure 1).

DOI: 10.1039/C7OB01242J COMMUNICATION

Scheme 5. Proposal Mechanism

On the basis of above results, a plausible mechanism for this reaction is illustrated in Scheme 5. For the synthesis of 3a, the carbon-carbon triple bond of 2a is activated by coordination with Ag-salt to give the intermediate A,¹⁵ followed 1a attack the Ag-coordinated triple bond to give the intermediate **B**. The intermediate **B** then undergoes dehydrogenation oxidation¹⁶ in the presence of oxygen to give the final product 3a and releases the Ag catalyst.

Conclusions

COMMUNICATION

In summary, we have successfully developed a facile regioselective silver-catalyzed [3+2] domino reaction of amidines and ynals for the formation of C-N bonds. This strategy has provided a new route for the synthesis of imidazole-5-carbaldehydes that are important materials and intermediates for the construction of complex organic compounds. This reaction has several advantages: 1) the reaction has employed O_2 as a clean oxidant instead of other chemical oxidants; 2) the employment of H₂O and DMSO as the co-solvents is cheaper; 3) this reaction has showed good selectivity and susceptible aldehyde products have been formed without further oxidation.

This research was financially Supported by National Natural Science Foundation of China (41271263), the Innovation and Strong School Project of Guangdong Pharmaceutical University (2015cxqx212), the NSF of Jiangxi Provincial Education Department (GJJ160924) and Project of Innovation for Enhancing Guangdong Pharmaceutical University, Provincial Experimental Teaching Eemonstration Center of Chemistry & Chemical engineering.

Notes and references

Published on 15 June 2017. Downloaded by East Tennessee State University on 15/06/2017 23:45:14

1 (a) G. Eppe,D. Didier and I. Marek, *Chem. Rev.* **2015**, *115*, 9175-9206; (b) C. M. R. Volla,I. Atodiresei and M. Rueping, *Chem. Rev.* **2014**, *114*, 2390-2431; (c) D. Alberico,M. E. Scott and M. Lautens, *Chem. Rev.* **2007**, *107*, 174-238; (d) M. Brovetto,D. Gamenara,P. S. Mendez and G. A. Seoane, *Chem. Rev.* **2011**, *111*, 4346-4403; (e) A. Molnar, *Chem. Rev.* **2011**, *111*, 2251-2320; (f) Z. Tan,H. Jiang and M. Zhang, *Chem. Commun.* **2016**, *52*, 9359-9362; (g) Z. Tan,H. Jiang and M. Zhang, *Org. Lett.* **2016**, *18*, 3174-3177.

2 (a) R. F. Heck, *Org. React.* **1982**, *27*, 345-390; (b) R. F. Heck and J. P. Nolley, *J. Org. Chem.* **1972**, *37*, 2320-2322.

3 (a) N. Miyaura, K. Yamada and A. Suzuki, *Tetrahedron Lett.* 1979, 20, 3437-3440; (b) N. Miyaura and A. Suzuki, *Chem. Comm.* 1979, 866-867; (c) T. Kawashima, T. Takao and H. Suzuki, *J. Am. Chem. Soc.* 2007, *129*, 11006-11007; (d) T. Kawakami and H. Suzuki, *Tetrahedron Lett.* 2000, *41*, 7093-7096; (e) A. R. Katritzky, K. Suzuki, S. K. Singh and H. Y. He, *J. Org. Chem.* 2003, *68*, 5720-5723.

4 (a) E. Negishi and L. Anastasia, *Chem. Rev.* **2003**, *103*, 1979-2018; (b) E.-i. Negishi, Z. Huang, G. Wang, S. Mohan, C. Wang and H. Hattori, *Acc. Chem. Res.* **2008**, *41*, 1474-1485; (c) S. Baba and E. Negishi, *J. Am. Chem. Soc.* **1976**, *98*, 6729-6731.

5 (a) K. Sonogashira, *J. Organomet. Chem.* **2002**, *653*, 46-49; (b) K. Sonogashira,Y. Tohda and N. Hagihara, *Tetrahedron Lett.* **1975**, *16*, 4467-4470; (c) R. Chinchilla and C. Nájera, *Chem. Soc. Rev.* **2011**, *40*, 5084-5121; (d) R. N. Chinchilla, *C., Chem. Rev.* **2007**, *107*, 874-922.

6 (a) M. Palucki, J. P. Wolfe and S. L. Buchwald, J. Am. Chem. Soc.
1996, 118, 10333-10334; (b) D. S. Surry and S. L. Buchwald, Chem.
Sci. 2011, 2, 27-50; (c) J. F. Hartwig, Acc. Chem. Res. 1998, 31, 852-

860; (d) J. P. Wolfe,S. Wagaw,J. F. Marcoux and S. L. Buchwald, Acc. Chem. Res. **1998**, *31*, 805-818; (e) J. F. Hartwig, Angew. Chem. Int. Ed. **1998**, *37*, 2046-2067.

7 (a) W. Q. Wu and H. F. Jiang, Acc. Chem. Res. 2012, 45, 1736-1748; (b) A. Z. Wang, H. F. Jiang and H. J. Chen, J. Am. Chem. Soc. 2009, 131, 3846–3847; (c) A. Z. Wang and H. F. Jiang, J. Am. Chem. Soc. 2008, 130, 5030–5031.

8 (a) K. Arya, D. S. Rawata and H. Sasaib, *Green Chem.* 2012, 14, 1956-1963; (b) V. Rustagi, T. Aggarwal and A. K. Verma, *Green Chem.* 2011, 13, 1640-1643; (c) P. B. Arockiam, C. Fischmeister, C. Bruneau and P. H. Dixneuf, *Green Chem.* 2013, 15, 67-71; (d) P. Norcott, C. Spielman and C. S. P. McErlean, *Green Chem.* 2012, 14, 605-609.

9 (a) M. Xiao,S. Ahn,J. Wang,J. Chen,D. D. Miller,J. T. Dalton and
W. Li, J. Med. Chem. 2013, 56, 3318-3329; (b) J. Gising,M. T.
Nilsson,L. R. Odell,S. Yahiaoui,M. Lindh,H. Iyer,A. M. Sinha,B. R.
Srinivasa,M. Larhed,S. L. Mowbray and A. Karlén, J. Med. Chem.
2012, 55, 2894-2898; (c) J. Chen,Z. Wang,C.-M. Li,Y. Lu,P. K.
Vaddady,B. Meibohm,J. T. Dalton,D. D. Miller and W. Li, J. Med.
Chem. 2010, 53, 7414-7427.

10 (a) H. Debus, Annalen der Chemie und Pharmacie **1858**, 107, 199-208; (b) B. Radziszewski, Ber. Dtsch. Chem. Ges. **1882**, 15, 1493-1496.

11 (a) C. Sämann, E. Coya and P. Knochel, Angew. Chem. Int. Ed. 2014, 53, 1430-1434; (b) A. Juzgado, M. M. Lorenzo-García, M. Barrejón, Ana M. Rodríguez, J. Rodríguez-López, S. Merino and J. Tejeda, Chem. Commun. 2014, 50, 15313--15315; (c) J. Li and L. Neuville, Org. Lett. 2013, 15, 1752-1755; (d) J. M. Joo, B. B. Touré and D. Sames, J. Org. Chem. 2010, 75, 4911-4920; (e) F. Shibahara, T. Yamauchi, E. Yamaguchi and T. Murai, J. Org. Chem. 2012, 77, 8815-8820; (f) B. Delest, P. Nshimyumukiza, O. Fasbender, J. M.-B. B. Tinant, F. Darro and R. Robiette, J. Org. Chem. 2008, 73, 6816-6823; (g) M. R. Sheets, A. Li, E. A. Bower, A. R. Weigel, M. P. Abbott, R. M. Gallo,A. A. Mitton and D. A. Klumpp, J. Org. Chem. 2009, 74, 2502-2507; (h) S. Aly, M. Romashko and B. A. Arndtsen, J. Org. Chem. 2015, 80, 2709-2714; (i) S. Tong, Q. Wang, M.-X. Wang and J. Zhu, Angew. Chem. Int. Ed. 2015, 54, 1293-1297; (j) W. Hao,Y. Jiang and M. Cai, J. Org. Chem. 2014, 79, 3634-3640; (k) C.-Y. Chen, W.-P. Hu, P.-C. Yan, G. C. Senadi and J.-J. Wang, Org. Lett. 2013, 15, 6116-6119.

12 (a) F. Bellina,S. Cauteruccio,L. Mannina,R. Rossi and S. Viel, J. Org. Chem. 2005, 70 3997-4005; (b) R. A. Altman,E. D. Koval and S. L. Buchwald, J. Org. Chem. 2007, 72, 6190-6199; (c) F. Bellina,S. Cauteruccio and R. Rossi, J. Org. Chem. 2007, 72, 8543-8546; (d) D. Tang,P. Wu,X. Liu,Y.-X. Chen,S.-B. Guo,W.-L. Chen,J.-G. Li and B.-H. Chen, J. Org. Chem. 2013, 78, 2746-2750; (e) K. Mal and I. Das, J. Org. Chem. 2016, 81, 932-945; (f) M. R. Smith,A. J. Blake,C. J. Hayes,M. F. G. Stevens and C. J. Moody, J. Org. Chem. 2009, 74, 9372-9380; (g) Y.-B. Nie,L. Wang and M.-W. Ding, J. Org. Chem. 2012, 77, 696-700; (h) T. Lv,Z. Wang,J. You,J. Lan and G. Gao, J. Org. Chem. 2015, 80, 4729-4735; (j) K. Rajaguru,R. Suresh,A. Mariappan,S. Muthusubramanian and N. Bhuvanesh, Org. Lett. 2014, 16, 744-747; (k) S. Pusch and T. Opatz, Org. Lett. 2014, 16, 5430-5433; (l) Y. Zhu,C. Li,J. Zhang,M. She,W. Sun,K. Wan,Y.

DOI: 10.1039/C7OB01242J

Journal Name

Published on 15 June 2017. Downloaded by East Tennessee State University on 15/06/2017 23:45:14.

Journal Name

Wang,B. Yin,P. Liu and J. Li, *Org. Lett.* **2015**, *17*, 3872-3875; (m) Z. Jiang,P. Lu and Y. Wang, *Org. Lett.* **2012**, *14*, 6266-6269.

13 (a) P. Guo, Changcheng Wang, Y. Chen, C. Ou, H. Jiang, W. Chen, W. Chen and H. Cao, *RSC Adv.* **2016**, *6*, 39563-39567; (b) H. Cao, H. Y. Zhan, J. H. Cen, J. X. Lin, Y. G. Lin, Q. X. Zhu, M. L. Fu and H. F. Jiang, *Org. Lett.* **2013**, *15*, 1080-1083.

14 (a) H. Cao, H. Y. Zhan, Y. G. Lin, X. L. Lin, Z. D. Du and H. F. Jiang, *Org. Lett.* **2012**, *14*, 1688-1691. ; (b) S. Lei, Y. Mai, C. Yan, J. Mao and H. Cao, *Org. Lett.* **2016**, *18*, 3582-3585; (c) H. Cao, X. Liu, J. Liao, J. Huang, H. Qiu, Q. Chen and Y. Chen, *J. Org. Chem.* **2014**, *79*, 11209-11214; (d) H. Cao, X. H. Liu, L. Zhao, J. H. Cen, J. X. Lin, Q. X. Zhu and M. L. Fu, *Org. Lett.* **2014**, *16*, 146-149; (e) S. Lei, H. Cao, L. Chen, J. Liu, H. Cai and J. Tan, *Adv. Synth. Catal.* **2015**, *357*, 3109-3144; (f) H. Zhan, L. Zhao, J. Liao, N. Li, Q. Chen, S. Qiu and H. Cao, *Adv. Synth. Catal.* **2015**, *357*, 46-50; (g) H. Cao, S. Lei, N. Li, L. Chen, J. Liu, H. Cai, S. Qiu and J. Tan, *Chem. Commun.* **2015**, *51*, 1823-1825; (h) S. Lei, G. Chen, Y. Mai, L. Chen, H. Cai, J. Tan and H. Cao, *Adv. Synth. Catal.* **2016**, *358*, 67-73.

15 H. Cao,X. Wang,H. Jiang,Q. Zhu,M. Zhang and H. Liu, *Chem. Eur. J.* **2008**, *14*, 11623-11633.

16 (a) R. Bernini, G. Fabrizi, A. Sferrazza and S. Cacchi, *Angew. Chem. Int. Ed.* **2009**, *48*, 8078 -8081; (b) Z. Shi, C. Zhang, S. Li, D. Pan, S. Ding, Y. Cui and N. Jiao, *Angew. Chem. Int. Ed.* **2009**, *48*, 4572 -4576.