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A method for the synthesis of stable aryldiazonium salts possessing an organic 1,1,2,3,3-pentacyanop-
ropenide anion is reported.
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Aryldiazonium salts have very useful applications in organic
synthesis as well as in industry, in the synthesis of azo dyes.1 Aryl-
diazonium salt formation followed by azocoupling is applied as a
sensitive reaction to nitrite anion (Greass reagent). These salts
may be used as surface initiators of polymerization2 and as light-
sensitive materials3 and most are known to have a low level of sta-
bility. Their stability depends on the aromatic ring substituents
and the nature of the anion. Tetrafluoroborates,4 tosylates,5 and
disulfonimides6 are the most stable salts. The presence of inorganic
anions in these substances decreases or makes dissolution of these
salts impossible in many organic solvents.

Of the organic anions which can stabilise aryldiazonium cations
it is necessary to note the 1,1,2,3,3-pentacyanopropenide anion.
1,1,2,3,3-Pentacyanopropene itself is a strong CH-acid, its strength
being comparable to 12 M sulfuric acid (pKa<�8.5).7 Earlier several
aryldiazonium salts with this anion were produced.8 However,
they were obtained via an exchange reaction in a diphasic system
of solvents: water–ethyl acetate, from commercially accessible tet-
rafluoroborates. The tetramethylammonium 1,1,2,3,3-pentacya-
nopropenide that is used as a reagent in this patent was also
produced of tetracyanoethylene. We found that the malononitrile
autocoupling reaction9 in the presence of SeO2 made this anion
available.

Herein, a method for obtaining a number of aryldiazonium salts
of 1,1,2,3,3-pentacyanopropene 1–10 was developed via the ex-
change reaction of pyridinium 1,1,2,3,3-pentacyanopropenide with
ll rights reserved.

hanov).
aryldiazonium chlorides in aqueous medium (Scheme 1).10 Aryldi-
azonium salts in the form of chlorides were produced directly
before the exchange reaction with the appropriate primary aryl-
amines without isolation.11 After the pyridinium 1,1,2,3,3-pentacy-
anopropenide has been added as a hot solution to the reaction
mixture, the precipitation of the aryldiazonium 1,1,2,3,3-pentacy-
anopropenides was observed. The presence of 1,1,2,3,3-pentacya-
nopropenide anion in salts 1–10 was confirmed by IR-spectra—
intensive absorption band in the field of 2200 cm�1 and by 13C
NMR spectra - signals of cyano group 114.2, 114.9, 117.3 and car-
bon atoms at 58.0 (C-10, 30), 135.9 (C-20). These are present in the
spectra of pyridinium 1,1,2,3,3-pentacyanopropenide.

The resulting aryldiazonium 1,1,2,3,3-pentacyanopropenides12

1–10 were sufficiently stable and could be isolated. However, they
can decay spontaneously and be polluted by admixtures, which is
accelerated by heating and sunlight. Depending on the presence of
substituents, the shelf-lives of these aryldiazonium salts can vary
from days to several weeks and more. Salts with electron-acceptor
substituents on the aromatic rings, 7 and 9, were much more stable
than salts with donor substituents, 2 and 3, or without 1. The latter
representatives showed appreciable signs of decomposition within
several hours after isolation, while salts 7 and 9 showed good sta-
bility and could be stored for more than a month below 0 �C.
Highly polluted salt could be purified by reprecipitation from ace-
tone by the addition of diethyl ether.

Aryldiazonium 1,1,2,3,3-pentacyanopropenides readily took
part in azocoupling with phenol or reaction with N,N-dimethylan-
iline with the formation of azocoupling products. Due to the
solubility of these salts, this reaction could be carried out in polar
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Scheme 1.
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organic solvents, for example, in acetone. It was not necessary to
apply any additional activation in the azocoupling with N,N-
dimethylaniline. However, the azocoupling with phenol required
the addition of an aqueous solution of alkali. The aryldiazonium
1,1,2,3,3-pentacyanopropenides dissolved in a number of dipolar
aprotic solvents, such as dimethylformamide, dimethylsulfoxide,
and hexamethylphosphotriamide were observed to decompose
with elimination of nitrogen.

In conclusion, we offer a new, simple, and efficient method for
the synthesis of aryldiazonium salts possessing a 1,1,2,3,3-penta-
cyanopropenide anion using aryldiazonium chlorides and pyridini-
um 1,1,2,3,3-pentacyanopropenide by means of exchange reaction
in water solution. The simplicity of the procedure, good yields, and
sufficiently stable products are the main advantages of this
method.
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