BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY

An efficient Pd–NHC catalyst system in situ generated from Na₂PdCl₄ and PEG-functionalized imidazolium salts for Mizoroki–Heck reactions in water

Nan Sun^{*}, Meng Chen, Liqun Jin, Wei Zhao, Baoxiang Hu, Zhenlu Shen and Xinquan Hu^{*}

Full Research Paper	Open Access
Address: College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China	<i>Beilstein J. Org. Chem.</i> 2017, <i>13,</i> 1735–1744. doi:10.3762/bjoc.13.168
- Email: Nan Sun* - sunnan@zjut.edu.cn; Xinquan Hu* - xinquan@zjut.edu.cn	Received: 07 June 2017 Accepted: 03 August 2017 Published: 21 August 2017
* Corresponding author	Associate Editor: B. Stoltz
Keywords: aqueous homogeneous catalysis; Mizoroki–Heck reaction; Na ₂ PdCl ₄ ; PEG-functionalized imidazolium salts	© 2017 Sun et al.; licensee Beilstein-Institut. License and terms: see end of document.

Abstract

Three PEG-functionalized imidazolium salts L1-L3 were designed and prepared from commercially available materials via a simple method. Their corresponding water soluble Pd–NHC catalysts, in situ generated from the imidazolium salts L1-L3 and Na₂PdCl₄ in water, showed impressive catalytic activity for aqueous Mizoroki–Heck reactions. The kinetic study revealed that the Pd catalyst derived from the imidazolium salt L1, bearing a pyridine-2-methyl substituent at the N3 atom of the imidazole ring, showed the best catalytic activity. Under the optimal conditions, a wide range of substituted alkenes were achieved in good to excellent yields from various aryl bromides and alkenes with the catalyst TON of up to 10,000.

Introduction

Nowadays, both increasing environmental concerns and drastic commercial competition are the driving forces to develop more sustainable and economic processes for important chemicals syntheses in both academic and industrial fields [1,2]. In fine chemical industries, organic solvents still dominate in modern synthetic processes since they are capable of dissolving a wide range of organic compounds and controlling the reaction selectivity and rate. However, they are often volatile, toxic, flammable and expensive as well as might introduce a bulk of hazardous waste treatment issues. Thus, great efforts have been put into reducing or eliminating those organic solvents by replacing them with more environmentally acceptable alternatives [3]. It is beyond doubt that water is a preferred choice because of its abundance, non-toxicity, non-flammability, as well as minimum environmental impacts. In addition, using water as medium often leads to exceptional chemical reactivity and selectivity owing to its unique physicochemical properties [4-6]. The palladium-catalyzed cross-coupling reactions to form C-C bonds are very powerful synthetic tools in modern organic synthesis [7]. With their increasing applications in the synthesis of pharmaceuticals, natural products and functional materials [8-10], moving these useful transformations to occurring in aqueous media became more and more attractive [11]. Despite there are several strategies for palladium-catalyzed cross-coupling reactions in water, such as microwave heating [12], ultrasonic irradiation [13,14] and ligand-free methodology [15,16], the more efficient and preferable one is the use of water-soluble ligated palladium catalysts. This approach not only enhances the water solubility of the catalyst, but also facilitates the recovery of the catalyst by separating the aqueous phase and subsequently for the potential reuse of catalyst [17]. Initially, such catalysts have been obtained through modifying traditional palladium-phosphine catalysts by grafting various hydrophilic substituents on phosphine ligands [18-27]. However, most of these phosphine ligands are air sensitive and required tedious work to preparation. In addition, the easy dissociation of common P-Pd bonds under aqueous reaction conditions often restricted the reuse of the catalyst and led to undesired residues. Therefore, in recent years, efforts have been turned to the development of water-soluble non-phosphine ligands [28-34]. In this context, N-heterocyclic carbenes (NHCs) have been recognized as the preferable candidates [35,36]. In contrast to common phosphine- and nitrogen-based ligands, NHCs exhibit stronger σ -donating and weaker π -accepting properties, which make the corresponding Pd-NHC complexes more air and water stable. Furthermore, the convenient functionalization of the N atom of the NHC ring allows for the possible incorporation of water soluble moieties, thus providing more opportunities for water soluble catalyst design [37-39].

Since the pioneering report of a sulfonate-functionalized NHC ligand by Shaughnessy [40], a number of water-soluble NHC ligands, functionalized with sulfonate- [41-46], carboxylate-[47-52], polyether- [53-59] and other hydrophilic groups [60-63], have been developed and used in the aqueous Pd-catalyzed cross-coupling reactions. Among them, most of them were contributed to Suzuki–Miyaura reactions and only a very

few examples were reported for Mizoroki–Heck reactions [45,51,53,57]. Previous research by Rösch and other groups disclosed that introducing a hemilable donor group (such as N, O, S etc.) on the NHC rings was favorable for the palladiumcatalyzed Mizoroki–Heck cross-coupling reactions [64,65]. These electron-donating groups could provide a flexible environment for the Pd center and thus favoring the complexation and the migratory insertion of an alkene. Cavell reported that a pyridine functionalized Pd–NHC complex showed outstanding catalytic activity in Mizoroki–Heck reactions with DMF as solvent [66].

With this regards, we herein report the development of a new poly(ethylene glycol, PEG) and pyridine bi-functionalized imidazolium salt L1 (Figure 1), which was employed as a water soluble NHC ligand precursor for an in situ generated Pd–NHC catalyst for Mizoroki–Heck reactions in water. Meanwhile, two analogues, phenyl (L2) and naphthyl (L3) functionalized imidazolium salts were synthesized and their catalytic activities in aqueous Mizoroki–Heck reactions were also studied.

Results and Discussion

PEGs are a kind of highly water soluble polymers from the polymerization of ethylene oxide [67]. Owing to their significant advantages, including widely commercial availability, biocompatibility, chemical and thermal stability and ease to be derived, PEGs have been widely used as phase-transfer catalysts (PTC) or in the preparation of water soluble ligands for aqueous organic reactions during the past decades [68,69]. More recently, several PEG-functionalized azolium salts have been synthesized as water soluble NHC precursors for aqueous Pd-catalyzed cross-coupling reactions [56-59,70]. Fujihara also pointed out that the flexible linear long-chain structure of PEGs could wrap and stabilize the metal center and thus significantly enhanced the catalytic efficiency [70]. Therefore, we chose PEG as functionalization group to prepare water soluble catalysts.

The PEG-functionalized imidazolium salts L1-L3 were prepared via a three-step reaction sequence as depicted in

Scheme 1. Firstly, the commercially available MeO-PEG₁₉₀₀-OH was reacted with MsCl using pyridine as base in CH₂Cl₂ to form MeO-PEG₁₉₀₀-OMs, which was then treated with sodium imidazole in THF to form the imidazole-functionalized PEG (MeO-PEG₁₉₀₀-Im). The resulted MeO-PEG₁₉₀₀-Im was heated with various organic bromides (2-(bromomethyl)pyridine, benzyl bromide and 1-(bromomethyl)naphthalene) to generate the corresponding imidazolium salts L1–L3 under solvent-free conditions. All imidazolium salts were water-soluble and air-stable. The resulted salts L1–L3 were characterized by ¹H NMR, ¹³C NMR and MALDI–TOF–MS analyses (see Supporting Information File 1).

The catalytic performance of the synthesized imidazolium salts as NHC precursors for Pd-catalyzed Mizoroki-Heck reactions in water was investigated. A model reaction was carried out by using 4-bromoacetophenone (1a) and styrene (2a) as the substrates, water as solvent and Na₂PdCl₄/L1 as the catalyst. The mixture of Na₂PdCl₄, L1 and base in water were preheated at 60 °C for 30 min before the addition of substrates [41]. The effect of base was first explored. As the selected experimental results illustrated in Table 1, almost no reaction was observed without base at 100 °C for 12 h (entry 1, Table 1). The reaction could be obviously promoted by a wide range of common bases, such as Et₃N, NaHCO₃, Na₂CO₃, K₂CO₃, NaOH, NaOEt and NaOt-Bu. The best result was obtained with NaOEt as the base. With 2.0 equivalents of NaOEt, the desired coupling product 3aa was achieved in 97% GC yield (entry 7, Table 1). Employing NaOt-Bu could also provide an excellent yield (91%, entry 8, Table 1). Weaker bases, such as Et₃N and NaHCO₃, led to lower yields (entries 2 and 3, Table 1). The performance of NaOEt and NaOt-Bu was obviously better than that of NaOH. To clarify that this improvement might be due to the generation of EtOH and t-BuOH from the hydrolysis of NaOEt and NaOt-Bu in water, we then studied the effect of EtOH and t-BuOH on the reaction. In contrast to the reaction in neat water

with NaOH as base, the yields of 3aa were increased from 68% to 88% and 78%, respectively, after the addition of 2.0 equivalents of EtOH and t-BuOH, inferring that EtOH and t-BuOH could facilitate the reaction. However, both of them were inferior to the reactions using NaOEt and NaOt-Bu as the base directly (entries 9 and 10, Table 1). Furthermore, it was found that N₂ atmospheric conditions were crucial for the reaction and a nearly quantitative GC yield was resulted with 0.05-0.1 mol % catalyst loadings (entries 11 and 12, Table 1). Further decreasing the catalyst loading to 0.01 mol % resulted in a 89% GC yield of the coupling product 3aa (entry 13, Table 1). Additionally, increasing the molar ratio of L1 and Na₂PdCl₄ to 1.5 did not obviously affect the yield (entry 14, Table 1). However, without L1, the GC yield of 3aa was dramatically decreased to 25%, which hinted that L1 played a crucial role in this transformation (entry 15, Table 1). We also attempted to carry out the reaction at lower reaction temperature; however, much lower conversion was found (entry 16, Table 1). Moreover, a blank experiment showed that no reaction occurred without Na₂PdCl₄ (entry 17, Table 1). To confirm that Na₂PdCl₄ and L1 in situ generated the Pd-NHC species, we treated Na₂PdCl₄, L1 and NaOEt in D₂O at 60 °C for 30 min, and then performed NMR analyses. The ¹H NMR spectrum clearly showed that the proton signal of the 2-position (9.41 ppm) of the imidazolium salt L1 disappeared. Two downfield signals at 180.9 and 170.9 ppm appeared in the ¹³C NMR spectrum, which is similar to the reported ¹³C NMR analysis for Pd-NHC species [66]. It is strongly suggested that a Pd-NHC complex was formed from deprotonation of L1 under the reaction conditions. However, the exact structure of this complex is not clear yet.

With the preliminary reaction conditions in hand, we then further compared the catalytic performance of those Pd-complexes derived from phenyl and naphthyl analogues L2 and L3 with that of pyridine functionalized NHC precursor L1.

^aReaction conditions: 4-bromoacetophenone (**1a**, 1.0 mmol), styrene (**2a**, 1.2 mmol), base (2.0 mmol), Na₂PdCl₄ (0.001 mmol, 0.1% aqueous solution), L**1** (0.001 mmol, 1% aqueous solution), **1**.5 mL H₂O, 100 °C, 12 h. The mixture of L**1**, Na₂PdCl₄ and base in water was preheated in water at 60 °C for 30 min before adding substrates **1a** and **2a**. ^bGC yields were determined by using the area normalization method and calculated based on **1a**. ^cPurged with N₂. ^dCarried out at 90 °C. ^eWithout Na₂PdCl₄, L**1** (0.1 mol %).

A kinetic study of the coupling between 4-bromoacetophenone (1a) and styrene (2a) was performed in the presence of 0.01 mol % of Na₂PdCl₄/L and 2.0 equivalents of NaOEt at 100 °C in water and all the three reactions preceded for 24 h. As shown in Figure 2, the reaction using Na₂PdCl₄/L1 as the catalyst had a relatively shorter induction period and a higher catalytic activity than those of Na₂PdCl₄/L2 and Na₂PdCl₄/L3. After 24 h, a 100% conversion of 1a was observed in the Na₂PdCl₄/L1 catalytic system, a conversion of 87% in Na₂PdCl₄/L2 and 77% in Na₂PdCl₄/L3. This result might be attributed to the side-arm pyridine group acting as a hemilable coordination site and thus enhanced the catalytic activity of the palladium complex in Mizoroki-Heck reactions. Furthermore, the TON of the coupling of 4-bromoacetophenone (1a) and styrene (2a) with Na₂PdCl₄/L1 as the catalyst was calculated to be 10,000, which is much higher than for previously reported catalytic systems under aqueous conditions.

After obtaining the optimal conditions, we then started to explore the substrate scope of the newly developed catalytic system for Mizoroki–Heck reactions in water. First, a variety of *para*-substituted phenyl bromides **1a–1** were tested to couple with styrene (**2a**) and the results were summarized in Table 2

Figure 2: Kinetic profiles of Mizoroki–Heck reactions in water, Na₂PdCl₄/L1 (square), L2 (circle), and L3 (triangle). Reaction conditions: 4-bromoacetophenone (1a, 1.0 mmol), styrene (2a, 1.2 mmol), NaOEt (2.0 mmol), 0.01 mol % Na₂PdCl₄, Pd/L = 1:1 (molar ratio), 1.5 mL H₂O, 100 °C.

(entries 1–12). Under the optimized reaction conditions (0.05 mol % Na_2PdCl_4 and L1, 100 °C, 2.0 equivalents of NaOEt for 12 h), the coupling reactions of aryl bromides 1a-c with strongly electron-withdrawing substituents (COCH₃, CHO

Table 2: Mizoroki–Heck reactions between substituted aryl bromides and styrene. ^a							
		/────Na₂PdCl₄/ L1 (x mol	%), T (°C)				
	Ar—Br +	NaOEt (2.0 equiv)	, N ₂ , 12 h				
	1a–u	2a	-	Baa—ua			
Entry	Ar–Br 1 (R)	Product 3	Pd/ L1 (mol %)	<i>T</i> (°C)	Yield ^b (%)		
R-Br R-							
1	1a (R = COCH ₃)	3aa	0.05	100	96		
2	1b (R = CHO)	3ba	0.05	100	98		
3	1c(R = NO ₂)	3ca	0.05	100	95		
4	1d (R = CF ₃)	3da	0.05	120	94		
5	1e (R = F)	3ea	0.05	120	87		
6	1f (R = Cl)	3fa	0.05	120	90		
7	1g (R = Br)	3ga	0.05	120	87		
8	1h (R = H)	3ha	0.1	120	76		
9	1i (R = CH ₃)	318	0.1	120	88		
10	1 ($\mathbf{R} = \mathbf{OCH}_3$)	3ja	0.1	120	53		
11	$1K (R = NH_2)$	3Ka 21a	0.05	100	87		
120	п (к = Оп)	Sia	0.05	100	60		
	Br						
13	1m (3-COCH ₃)	3ma	0.05	100	91		
14	1n (3-CHO)	3na	0.05	100	89		
15	1o (3-CH ₃)	3oa	0.1	120	77		
	R R	R					
16	1p (2-COCH ₃)	Зра	0.05	100	<10		
17	1q (2-CHO)	3qa	0.05	100	51		
18	1r (2-CH ₃)	3ra	0.1	120	73		
19	Br 1s	3sa	0.1	120	84		
20	N=Br 1t	N= 3ta	0.05	120	97		
21	Br N 1u	N Jua	0.05	120	86		

^aReaction conditions: Ar–Br 1 (1.0 mmol), styrene (2a, 1.2 mmol), NaOEt (2.0 mmol), Na₂PdCl₄ (0.05–0.1 mol %, 0.1% aqueous solution), L1 (0.05–0.1 mol %, 1% aqueous solution), 1.5 mL H₂O, 100 °C, 12 h, purged with N₂. The mixture of L1, Na₂PdCl₄ and base in water was preheated in water at 60 °C for 30 min before adding substrates 1 and 2a. ^bIsolated yields. ^c3.0 Equivalents of NaOEt was used.

and NO₂) proceeded smoothly and the desired coupling products 3aa-ca were obtained in almost quantitative yields (entries 1-3, Table 2). However, higher reaction temperature (120 °C) was necessary for the coupling of aryl bromides 1d-g with moderate electron-withdrawing substituents (CF₃, F, Cl and Br) and their coupling products 3da-ga could be still obtained in good to excellent yields (87-94%, entries 4-7, Table 2). It was not surprising that substrates of aryl bromides **1h**–j with electron-donating substituents (H, CH₃ and OCH₃) showed rather difficulties for the completion of the reaction. With slightly adjusting the reaction conditions (higher reaction temperature (120 °C) and higher catalyst loading (0.1 mol %), reasonable yields of coupling products 3ha-ja could be obtained (entries 8-10, Table 2). It should be pointed out that in the reaction of 1,4-dibromobenzene (1g), only mono-olefinated product 3ga was formed and not a trace of any di-olefinated product was detected. We also found that amino and hydroxy substituted aryl bromides 1k and 1l exhibited high reactivity in the present aqueous catalytic systems (entries 11 and 12 vs entries 1-3, Table 2). It might be attributed to the hydrogen bonding action between amino or hydroxy groups and water and thus activated these two substrates. Then, the reactivity of meta- or ortho-substituted phenyl bromides 1m-r were examined (entries 13-18, Table 2). Compared with para-substituted analogues 1a, 1b and 1i, the meta-substituted phenyl bromides 1m, 1n and 1o showed slightly lower reactivities under the same reaction conditions (entries 13-15 vs entries 1, 2, 9, Table 2). Nevertheless, the steric hindrance of phenyl bromides with a substituent at the ortho-position obviously stagnated the coupling reaction and the yields of the corresponding coupling products 1pa, 1qa and 1ra were much lower than their paraand meta-substituted analogues (entries 16-18, Table 2). Besides the substituted phenyl bromides, 2-bromonaphthalene (1s) and some N-heteroaromatic bromides (3-bromopyridine (1t) and 3-bromoquinoline (1u)) could smoothly couple with 2a to afford the corresponding coupling products 3sa, 3ta and 3ua in good to excellent yields (84, 97 and 86%, respectively, entries 19-21, Table 2).

The scope of alkenes was also investigated to couple with 4-bromoacetophenone in water (Table 3). These alkenes included *para*-substituted styrenes **2b–d** (OCH₃, CH₃ and Cl), 2-vinylnaphthalene (**2e**), acrylic acid (**2f**), 4-vinylpyridine (**2g**), as well as an internal alkene ((*E*)-stilbene, (**2h**)). To our delight, all these tested alkenes smoothly transformed into the corresponding products **3ab–ah** in excellent yields (85–97%) with 0.05–0.1 mol % of Na₂PdCl₄/L1 at 100 or 120 °C (Table 3). It is noteworthy that a trace amount of 1,1-disubstituted ethylene isomers and/or *Z*-isomers in coupling products were also observed in some cases. However, the selectivity of *E*-isomers were always over 99% according to GC analyses.

One of the important advantages of using water-soluble catalysts for reactions in water is the easy isolation of products by extraction with a water immiscible solvent, while retaining the catalyst in the aqueous phase for recovery and potential reuse. Therefore, the recyclability of the Na₂PdCl₄/L1 catalytic system for Mizoroki-Heck reactions in water was examined by using the coupling of 4-bromoacetophenone (1a) and styrene (2a) under the optimal conditions as a model reaction. After each cycle, the yielded coupling product was extracted with MTBE. Then, fresh 4-bromoacetophenone, styrene and base were added into the catalyst-containing aqueous phase for further reaction. The results in Figure 3 show that the conversion of 4-bromoacetophenone was 85% for first recycle and 56% for second recycle, while the selectivity of (E)-4-acetylstilbene (3aa) was unchanged (>99%), which revealed that the catalytic system still remained certain catalytic activity.

lytic Mizoroki–Heck coupling reaction of 4-bromoacetophene (1a) and styrene (2a).

Conclusion

In summary, we have developed three PEG-functionalized imidazolium salts L1–L3 from commercially available MeO-PEG₁₉₀₀-OH, imidazole, and various arylmethyl bromides (2-bromomethylpyridine for L1, benzyl bromide for L2 and 1-bromomethylnaphthalene for L3). It was shown that these imidazolium salts L1–L3 could be utilized as water soluble NHC ligand precursors in combination with Na₂PdCl₄ to form in situ the corresponding Pd–NHC catalysts for Mizoroki–Heck reactions in water without any organic co-solvent or phase transfer reagent. The results indicate that L1 bearing a side-armed pyridine at N3-position of the imidazole ring exhibited the best catalytic activity in Mizoroki–Heck reactions, in which the pyridine group might serve as a hemilable donating functional group in the catalytic process. For the coupling of 4-bromoacetophenone and styrene, the TON of Na₂PdCl₄/L1

^aReaction conditions: 4-bromoacetophenone (**1a**, 1.0 mmol), alkenes **2** (1.2 mmol), NaOEt (2.0 mmol), Na₂PdCl₄ (0.05–0.1 mol %, 0.1% aqueous solution), **L1** (0.05–0.1 mol %, 0.1% aqueous solution), **L1** (0.05–0.1 mol %, 0.1% aqueous solution), 1.5 mL H₂O, 100 °C, 12 h, purged with N₂. The mixture of **L1**, Na₂PdCl₄ and base in water was preheated in water at 60 °C for 30 min before adding substrates **1a** and **2**. ^bIsolated yields. ^c3.0 Equivalents of NaOEt was used.

catalytic system reached up to 10,000. Under the optimal conditions, large amounts of substituted alkenes were obtained in good to excellent yields using the Na₂PdCl₄/L1 catalyst system with only a 0.05–0.1 mol % palladium loading. To the best of our knowledge, the catalyst loading in the current report for aqueous Mizoroki–Heck couplings of aryl bromides is much lower than other previously reported counterparts. Moreover, imidazolium salt L1 was conveniently synthesized from commercially available materials. This newly developed protocol provides an efficient, practical and environmental benign method for the construction of various alkene derivatives.

Experimental General

All chemicals were reagent grade and used as purchased. Monomethylated PEG₁₉₀₀ (MeO-PEG₁₉₀₀-OH) was obtained from Meryer Chem. Tech. Co. Ltd, China. All proton and ¹³C nuclear magnetic resonance (NMR) spectra were recorded on Bruker AVANCE III 500 MHz spectrometer in deuterated solvents with tetramethylsilane (TMS) as internal standard. Mass spectrometry data (MALDI-TOF) of the three imidazolium salts L1-L3 were collected on a Bruker ultrafleXtreme mass spectrometer. Low-resolution mass analyses were performed on a Thermo Trace ISQ GC-MS instrument in EI mode (70 eV) or a Thermo Scientific ITQ 1100TM mass spectrometer in ESI mode. High-resolution mass spectra were recorded in the EI mode on a Waters GCT Premier TOF mass spectrometer with an Agilent 6890 gas chromatography using a DB-XLB column $(30 \text{ m} \times 0.25 \text{ mm} (i.d.), 0.25 \text{ }\mu\text{m})$. Melting points (uncorrected) were determined on a Büchi M-565 apparatus. Gas chromatography (GC) analyses were performed on Shimadzu GC-20A instrument with FID detector using a RTX-5 capillary column $(30 \text{ m} \times 0.32 \text{ mm} (i.d.), 0.25 \text{ }\mu\text{m})$. Flash column chromatography was performed on silica gel (200-300 mesh) with petroleum ether/ethyl acetate as eluent. De-ionized water was used in all reactions.

Preparation of PEG-functionalized imidazolium salts **L1**, **L2** and **L3** Synthesis of MeO-PEG₁₉₀₀-OMs

MeO-PEG₁₉₀₀-OH (38.0 g , 0.02 mol) and pyridine (3.16 g, 0.04 mol) were dissolved in 50 mL of dry DCM at an ice-water bath and under N2 atmosphere, followed by adding dropwise a solution of methanesulfonyl chloride (MsCl, 4.58 g, 0.04 mol) in 200 mL of dry DCM. After completion of addition, the mixture was stirred at room temperature for 24 h. The reaction was quenched with 100 mL of ice-water and the pH was adjusted to 7 with a 20% aqueous NaOH solution. The organic layer was separated, washed with water, dried with Na₂SO₄ and filtered. After removal of the solvent under vacuum, the residual was precipitated with methyl tert-butyl ether (MTBE) to afford 38.3 g (97%) of MeO-PEG₁₉₀₀-OMs as a white solid. ¹H NMR (CDCl₃) & 4.34-4.32 (m, 2H, CH₂OMs), 3.74-3.44 (m, 198H, CH₂ of PEG chain), 3.33 (s, 3H, PEG-OCH₃), 3.04 (s, 3H, SO₂CH₃); ¹³C NMR (CDCl₃) δ 71.9–68.2 (C_{PEG}), 60.7, 58.2, 36.8.

Synthesis of MeO-PEG₁₉₀₀-Im

To a solution of imidazole (0.89 g, 13 mmol) in 120 mL of dry THF at room temperature under N₂ atmosphere was added NaH (60% dispersion in mineral oil, 0.8 g, 20 mmol). The mixture was then heated to 40 °C for 1 h to ensure the completion of H₂ releasing. After that, MeO-PEG₁₉₀₀-OMs (19.7 g, 10 mmol) was added and the mixture was refluxed for 24 h. Then, the resulting suspension was filtered off and the filtrate was concentrated under vacuum. Precipitation with MTBE afforded 18.2 g (93%) of MeO-PEG₁₉₀₀-Im as a light yellow solid. ¹H NMR (CDCl₃) δ 7.50 (s, 1H, CH_{imid}), 6.96 (s, 1H, CH_{imid}), 6.95 (s, 1H, CH_{imid}), 4.05 (t, *J* = 5.2 Hz, 2H, OCH₂), 3.68 (t, *J* = 5.2

Hz, 2H, NCH₂), 3.58–3.42 (m, 196H, CH₂ of PEG chain), 3.30 (s, 3H, PEG-OCH₃); ¹³C NMR (CDCl₃) δ 136.8, 128.2, 118.8, 71.2–69.8 (C_{PEG}), 58.2, 46.3.

Synthesis of imidazolium salts L1, L2 and L3

A mixture of MeO-PEG₁₉₀₀-Im (3.9 g, 2 mmol) and the corresponding organic bromide (2.4 mmol) was heated in a sealed tube at 100 $^{\circ}$ C for 24 h. The resulting imidazolium salts was isolated by precipitation with MTBE.

Imidazolium salt L1. Yield: 3.9 g (92%), pale brown solid; ¹H NMR (DMSO-*d*₆) δ 9.41 (s, 1H, CH_{imid}), 8.56 (d, *J* = 4.2 Hz, 1H, CH_{pyri}), 7.92–7.88 (m, 1H, CH_{pyri}), 7.84 (s, 2H, CH_{pyri}), 7.53 (d, *J* = 7.8 Hz, 1H, CH_{imid}), 7.41 (d, *J* = 7.1 Hz, 1H, CH_{imid}), 5.64 (s, 2H, CH_{benzyl}), 4.43 (t, *J* = 4.7 Hz, 2H, OCH₂), 3.81 (t, *J* = 4.7 Hz, 2H, NCH₂), 3.66–3.42 (m, 196H, CH₂ of PEG chain), 3.24 (s, 3H, PEG-OCH₃); ¹³C NMR (CDCl₃) δ 153.7, 149.6, 137.6, 137.3, 123.7, 123.0, 122.9, 122.7, 71.2–68.3 (C_{PEG}), 58.1, 53.0, 49.0; MALDI–TOF–MS *m/z*: [*M*_{n=49} – Br]⁺ calcd for C₁₁₀H₂₁₂N₃O₅₀, 2375.4; found, 2375.8.

Imidazolium salt L2. Yield: 3.9 g (92%), pale white solid; ¹H NMR (DMSO- d_6) δ 9.28 (s, 1H, CH_{imid}), 7.85–7.80 (m, 2H, CH_{Ar}), 7.44–7.40 (m, 5H, CH_{Ar}), 5.46 (s, 2H, CH_{benzyl}), 4.38 (t, *J* = 4.6 Hz, 2H, OCH₂), 3.79 (t, *J* = 4.6 Hz, 2H, NCH₂), 3.51–3.42 (m, 196H, CH₂ of PEG chain), 3.24 (s, 3H, PEG-OCH₃); ¹³C NMR (DMSO- d_6) δ 136.6, 135.0, 128.9, 128.7, 128.4, 123.1, 122.2, 71.34–68.2 (C_{PEG}), 58.0, 51.7, 49.0; MALDI–TOF–MS *m*/*z*: [*M*_{n=49} – Br]⁺ calcd for C₁₁₁H₂₁₃N₂O₅₀, 2374.4; found, 2374.8.

Imidazolium salt L3. Yield: 3.8 g (88%), pale white solid; ¹H NMR (DMSO- d_6) δ 9.28 (s, 1H, CH_{imid}), 8.15 (d, J = 8.0Hz, 1H, CH_{Ar}), 8.04–8.03 (m, 2H, CH_{Ar}), 7.84 (s, 1H, CH_{Ar}), 7.80 (s, 1H, CH_{Ar}), 7.64–7.57 (m, 3H, CH_{Ar}), 7.52 (d, J = 6.9Hz, 1H, CH_{imid}), 5.98 (s, 2H, CH_{benzyl}), 4.36 (t, J = 2.4 Hz, 2H, OCH₂), 3.76 (t, J = 4.7 Hz, 2H, NCH₂), 3.51–3.41 (m, 196H, CH₂ of PEG chain), 3.24 (s, 3H, PEG-OCH₃); ¹³C NMR (DMSO- d_6) δ 136.7, 133.5, 130.5, 130.2, 129.7, 128.9, 127.8, 127.2, 126.4, 125.6, 123.02, 122.97, 122.5, 71.3–68.1 (C_{PEG}), 58.0, 49.8, 49.0; MALDI–TOF–MS m/z: [$M_{n=49} - Br$]⁺ calcd for C₁₁₅H₂₁₅N₂O₅₀, 2424.4; found, 2424.9.

General procedure for Mizoroki–Heck reactions in water

To a 10 mL tube, Na_2PdCl_4 (0.1% aqueous solution, 0.05–0.1 mol %), imidazolium salts **L1–L3** (1% aqueous solution, 0.05–0.1 mol %), NaOEt (2.0 mmol) and 1.5 mL water were successively added, followed by preheating at 60 °C for 30 min. Then, aryl bromide (1.0 mmol) and styrene (1.2 mmol)

were added, purged with N₂, sealed and heated at 100 °C. After 12 h, the solution was extracted with MTBE (5 mL \times 2) and the organic layers combined, dried over anhydrous Na₂SO₄, and concentrated under vacuum. Finally, the resulted residual were purified by flash chromatography on silica to afford the desired cross-coupling alkene products. The purity of the obtained products was confirmed by NMR and the yields were based on aryl bromides.

Supporting Information

Supporting Information File 1

Characterization data of Mizoroki–Heck products and copies of NMR spectra. [http://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-13-168-S1.pdf]

Acknowledgements

This work was supported by the National Natural Science Foundations of China (21473160). We also thank for the support from "Zhejiang Key Course of Chemical Engineering and Technology" and "Zhejiang Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province" of the Zhejiang University of Technology.

References

- Anastas, P.; Eghbali, N. Chem. Soc. Rev. 2010, 39, 301–312. doi:10.1039/B918763B
- Sheldon, R. A. Chem. Soc. Rev. 2012, 41, 1437–1451. doi:10.1039/C1CS15219J
- 3. Sheldon, R. A. Green Chem. 2005, 7, 267–278. doi:10.1039/b418069k
- Li, C.-J.; Chan, T.-H. Organic reactions in aqueous media; Wiley-VCH: New York, 1997.
- Butler, R. N.; Coyne, A. G. Chem. Rev. 2010, 110, 6302–6337. doi:10.1021/cr100162c
- Simon, M.-O.; Li, C.-J. Chem. Soc. Rev. 2012, 41, 1415–1427. doi:10.1039/C1CS15222J
- de Meijere, A.; Diederich, F. Metal-catalyzed cross-coupling reactions, 2nd ed.; Wiley-VCH: Weinheim, 2008. doi:10.1002/9783527619535
- Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4442–4489. doi:10.1002/anie.200500368
- Torborg, C.; Beller, M. Adv. Synth. Catal. 2009, 351, 3027–3043. doi:10.1002/adsc.200900587
- 10. Magano, J.; Dunetz, J. R. *Chem. Rev.* **2011**, *111*, 2177–2250. doi:10.1021/cr100346q
- 11. Li, C.-J. Chem. Rev. 2005, 105, 3095-3166. doi:10.1021/cr030009u
- Dallinger, D.; Kappe, C. O. Chem. Rev. 2007, 107, 2563–2591. doi:10.1021/cr0509410
- Poláčková, V.; Huťka, M.; Toma, Š. Ultrason. Sonochem. 2005, 12, 99–102. doi:10.1016/j.ultsonch.2004.05.011
- 14. Zhang, Z.; Zha, Z.; Gan, C.; Pan, C.; Zhou, Y.; Wang, Z.; Zhou, M.-M. J. Org. Chem. 2006, 71, 4339–4342. doi:10.1021/jo060372b
- 15. Bumagin, N. A.; More, P. G.; Beletskaya, I. P. *J. Organomet. Chem.* **1989**, *371*, 397–401. doi:10.1016/0022-328X(89)85235-0

- Basu, B.; Biswas, K.; Kundu, S.; Ghosh, S. Green Chem. 2010, 12, 1734–1738. doi:10.1039/c0gc00122h
- 17. Shaughnessy, K. H. *Chem. Rev.* **2009**, *109*, 643–710. doi:10.1021/cr800403r
- Casalnuovo, A. L.; Calabrese, J. C. J. Am. Chem. Soc. 1990, 112, 4324–4330. doi:10.1021/ja00167a032
- Genet, J. P.; Blart, E.; Savignac, M. Synlett 1992, 715–717. doi:10.1055/s-1992-21465
- Bumagin, N. A.; Bykov, V. V.; Sukhomlinova, L. I.; Tolstaya, T. P.; Beletskaya, I. P. *J. Organomet. Chem.* **1995**, *486*, 259–262. doi:10.1016/0022-328X(94)05056-H
- 21. Genet, J. P.; Savignac, M. J. Organomet. Chem. **1999**, *576*, 305–317. doi:10.1016/S0022-328X(98)01088-2
- Uozumi, Y.; Kimura, T. Synlett 2002, 2045–2048. doi:10.1055/s-2002-35605
- 23. Amengual, R.; Genin, E.; Michelet, V.; Savignac, M.; Genet, J. P. *Adv. Synth. Catal.* **2002,** *344*, 393–398. doi:10.1002/1615-4169(200206)344:3/4<393::AID-ADSC393>3.0.CO;2 -K
- Moore, L. R.; Shaughnessy, K. H. Org. Lett. 2004, 6, 225–228. doi:10.1021/ol0360288
- DeVasher, R. B.; Moore, L. R.; Shaughnessy, K. H. J. Org. Chem. 2004, 69, 7919–7927. doi:10.1021/jo048910c
- Shaughnessy, K. H. Eur. J. Org. Chem. 2006, 1827–1835. doi:10.1002/ejoc.200500972
- Jeffery, T. Tetrahedron Lett. 1994, 35, 3051–3054. doi:10.1016/S0040-4039(00)76825-0
- 28. Azoui, H.; Baczko, K.; Cassel, S.; Larpent, C. Green Chem. 2008, 10, 1197–1203. doi:10.1039/b804828b
- Pawar, S. S.; Dekhane, D. V.; Shingare, M. S.; Thore, S. N. Tetrahedron Lett. 2008, 49, 4252–4255. doi:10.1016/j.tetlet.2008.04.148
- 30. Zhang, G.; Luan, Y.; Han, X.; Wang, Y.; Wen, X.; Ding, C.; Gao, J. Green Chem. 2013, 15, 2081–2085. doi:10.1039/c3gc40645h
- Nehra, P.; Khungar, B.; Pericherla, K.; Sivasubramanian, S. C.; Kumar, A. *Green Chem.* **2014**, *16*, 4266–4271. doi:10.1039/C4GC00525B
- 32. Potier, J.; Menuel, S.; Rousseau, J.; Tumkevicius, S.; Hapiot, F.; Monflier, E. *Appl. Catal.*, A **2014**, *479*, 1–8. doi:10.1016/j.apcata.2014.04.021
- 33. Khan, R. I.; Pitchumani, K. Green Chem. 2016, 18, 5518–5528. doi:10.1039/C6GC01326K
- Waheed, M.; Ahmed, N. Tetrahedron Lett. 2016, 57, 3785–3789. doi:10.1016/j.tetlet.2016.07.028
- Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290–1309. doi:10.1002/1521-3773(20020415)41:8<1290::AID-ANIE1290>3.0.CO; 2-Y
- Kantchev, E. A. B.; O'Brien, C. J.; Organ, M. G. Angew. Chem., Int. Ed. 2007, 46, 2768–2813. doi:10.1002/anie.200601663
- 37. Velazquez, H. D.; Verpoort, F. Chem. Soc. Rev. 2012, 41, 7032–7060. doi:10.1039/c2cs35102a
- 38. Schaper, L.-A.; Hock, S. J.; Herrmann, W. A.; Kühn, F. E. Angew. Chem., Int. Ed. 2013, 52, 270–289. doi:10.1002/anie.201205119
- Levin, E.; Ivry, E.; Diesendruck, C. E.; Lemcoff, N. G. Chem. Rev. 2015, 115, 4607–4692. doi:10.1021/cr400640e
- Moore, L. R.; Cooks, S. M.; Anderson, M. S.; Schanz, H.-J.; Griffin, S. T.; Rogers, R. D.; Kirk, M. C.; Shaughnessy, K. H. Organometallics 2006, 25, 5151–5158. doi:10.1021/om060552b

- 41. Fleckenstein, C.; Roy, S.; Leuthäußer, S.; Plenio, H. *Chem. Commun.* **2007**, 2870–2872. doi:10.1039/B703658B
- 42. Roy, S.; Plenio, H. *Adv. Synth. Catal.* **2010**, *352*, 1014–1022. doi:10.1002/adsc.200900886
- Türkmen, H.; Pelit, L.; Çetinkaya, B. J. Mol. Catal. A: Chem. 2011, 348, 88–93. doi:10.1016/j.molcata.2011.08.008
- 44. Godoy, F.; Segarra, C.; Poyatos, M.; Peris, E. Organometallics 2011, 30, 684–688. doi:10.1021/om100960t
- 45. Yuan, D.; Teng, Q.; Huynh, H. V. Organometallics **2014**, *33*, 1794–1800. doi:10.1021/om500140g
- 46. Zhong, R.; Pöthig, A.; Feng, Y.; Riener, K.; Herrmann, W. A.; Kühn, F. E. *Green Chem.* **2014**, *16*, 4955–4962. doi:10.1039/C4GC00986J
- 47. Churruca, F.; SanMartin, R.; Inés, B.; Tellitu, I.; Domínguez, E. Adv. Synth. Catal. 2006, 348, 1836–1840. doi:10.1002/adsc.200606173
- Inés, B.; SanMartin, R.; Jesús Moure, M.; Domínguez, E. Adv. Synth. Catal. 2009, 351, 2124–2132. doi:10.1002/adsc.200900345
- Türkmen, H.; Can, R.; Çetinkaya, B. Dalton Trans. 2009, 7039–7044. doi:10.1039/b907032j
- 50. Tu, T.; Feng, X.; Wang, Z.; Liu, X. *Dalton Trans.* **2010**, *39*, 10598–10600. doi:10.1039/c0dt01083a
- 51. Wang, Z.; Feng, X.; Fang, W.; Tu, T. *Synlett* **2011**, 951–954. doi:10.1055/s-0030-1259723
- 52. Li, L.; Wang, J.; Zhou, C.; Wang, R.; Hong, M. Green Chem. 2011, 13, 2071–2077. doi:10.1039/c1gc15312a
- 53. Gülcemal, S.; Kahraman, S.; Daran, J.-C.; Çetinkaya, E.; Çetinkaya, B. J. Organomet. Chem. 2009, 694, 3580–3589. doi:10.1016/j.jorganchem.2009.07.010
- 54. Zhang, X.; Qiu, Y.; Rao, B.; Luo, M. Organometallics 2009, 28, 3093–3099. doi:10.1021/om8011695
- Karimi, B.; Akhavan, P. F. Chem. Commun. 2011, 47, 7686–7688. doi:10.1039/c1cc00017a
- 56. Liu, N.; Liu, C.; Jin, Z. *Green Chem.* **2012**, *14*, 592–597. doi:10.1039/c2gc16486h
- 57. Liu, Y.; Wang, Y.; Long, E. *Transition Met. Chem.* **2014**, *39*, 11–15. doi:10.1007/s11243-013-9765-x
- 58. Shi, J.-c.; Yu, H.; Jiang, D.; Yu, M.; Huang, Y.; Nong, L.; Zhang, Q.; Jin, Z. Catal. Lett. 2014, 144, 158–164. doi:10.1007/s10562-013-1126-z
- Zhou, Z.; Zhao, Y.; Zhen, H.; Lin, Z.; Ling, Q. Appl. Organomet. Chem. 2016, 30, 924–931. doi:10.1002/aoc.3522
- Yang, C.-C.; Lin, P.-S.; Liu, F.-C.; Lin, I. J. B. Organometallics 2010, 29, 5959–5971. doi:10.1021/om100751r
- Luo, F.-T.; Lo, H.-K. J. Organomet. Chem. 2011, 696, 1262–1265. doi:10.1016/j.jorganchem.2010.11.002
- 62. Zhou, Z.; Qiu, J.; Xie, L.; Du, F.; Xu, G.; Xie, Y.; Ling, Q. Catal. Lett. 2014, 144, 1911–1918. doi:10.1007/s10562-014-1323-4
- 63. Meise, M.; Haag, R. *ChemSusChem* **2008**, *1*, 637–642. doi:10.1002/cssc.200800042
- 64. Albert, K.; Gisdakis, P.; Rösch, N. Organometallics **1998**, *17*, 1608–1616. doi:10.1021/om9709190
- Normand, A. T.; Cavell, K. J. *Eur. J. Inorg. Chem.* 2008, 2781–2800. doi:10.1002/ejic.200800323
- McGuinness, D. S.; Cavell, K. J. Organometallics 2000, 19, 741–748. doi:10.1021/om990776c
- Chen, J.; Spear, S. K.; Huddleston, J. G.; Rogers, R. D. Green Chem.
 2005, 7, 64–82. doi:10.1039/b413546f

- 68. Bergbreiter, D. E. *Chem. Rev.* **2002**, *102*, 3345–3383. doi:10.1021/cr010343v
- Bergbreiter, D. E.; Tian, J.; Hongfa, C. Chem. Rev. 2009, 109, 530–582. doi:10.1021/cr8004235
- 70. Fujihara, T.; Yoshikawa, T.; Satou, M.; Ohta, H.; Terao, J.; Tsuji, Y. Chem. Commun. **2015**, *51*, 17382–17385. doi:10.1039/C5CC07588B

License and Terms

This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The license is subject to the *Beilstein Journal of Organic Chemistry* terms and conditions: (http://www.beilstein-journals.org/bjoc)

The definitive version of this article is the electronic one which can be found at: doi:10.3762/bjoc.13.168