## Copper(II) Carboxylate Promoted Intramolecular Diamination of Terminal Alkenes: Improved Reaction Conditions and Expanded Substrate Scope

## Thomas P. Zabawa and Sherry R. Chemler\*

Department of Chemistry, The University at Buffalo, The State University of New York, Buffalo, New York 14260

schemler@buffalo.edu

Received March 19, 2007





The copper(II) carboxylate promoted diamination reaction has been improved by the use of the organic soluble copper(II) neodecanoate  $[Cu(ND)_2]$ .  $Cu(ND)_2$  allowed the less-polar solvent dichloroethane (DCE) to be used, and as a consequence, decomposition of less-reactive substrates could be avoided. High diastereoselectivity was observed in the synthesis of 2,5-disubstituted pyrrolidines. Ureas, bis(anilines), and  $\alpha$ -amido pyrroles derived from 2-allylaniline could also participate in the diamination reaction.

Nitrogen heterocycles that contain vicinal amines are privileged biologically active structures.<sup>1</sup> Compounds containing vicinal diamines have demonstrated a range of activity that includes antiparasitic [e.g., (*R*)-Praziquantel, Oxamniquine],<sup>2</sup> antidepressant (e.g., Mianserin),<sup>3</sup> anticancer [(–)-quinocarcin],<sup>4</sup> adenosine kinase,<sup>5</sup> and protease inhibitory activity (Figure 1).<sup>6</sup> Cyclic sulfamides, which are especially accessible via the technology described in this paper, appear frequently as components of small molecule enzyme inhibitors (Figure 1).<sup>7</sup>

ORGANIC LETTERS

2007 Vol. 9, No. 10

2035 - 2038

The synthesis of vicinal diamines via olefin diamination is an active area of research.<sup>1,8,9</sup> The intramolecular diamination of alkenes provides a direct entry into the cyclic vicinal diamine motif.<sup>9b,c</sup> We recently reported a novel intramolecular alkene diamination protocol promoted by copper(II) ace-

<sup>(1)</sup> Kotti, S. R. S. S.; Timmons, C.; Li, G. Chem. Biol. Drug Des. 2006, 67, 101.

<sup>(2) (</sup>a) Andrews, P.; Thomas, H.; Pohlke, R.; Seubert, J. *Med. Res. Rev.* **1983**, *3*, 147. (b) Reich, M. R.; Govindaraj, R. *Health Policy* **1998**, *44*, 1.
(c) Fenwick, A.; Keiser, J.; Utzinger, J. *Drugs Future* **2006**, *31*, 413.

<sup>(3)</sup> Brogden, R. N.; Heel, R. C.; Speight, T. M.; Avery, G. S. Drugs 1978, 16, 273.

<sup>(4)</sup> Scott, J. D.; Williams, R. M. Chem. Rev. 2002, 102, 1669.

<sup>(5)</sup> Bauser, M.; Delapierre, G.; Hauswald, M.; Flessner, T.; D'Urso, D.; Hermann, A.; Beyreuther, B.; De Vry, J.; Spreyer, P.; Reissmuller, E.; Meier, H. *Bioorg. Med. Chem. Lett.* **2004**, *14*, 1997.

<sup>(6) (</sup>a) Bachand, B.; Tarazi, M.; St-Denis, Y.; Edmunds, J. J.; Winocour, P. D.; Leblond, L.; Siddiqui, M. A. *Bioorg. Med. Chem. Lett.* **2001**, *11*, 287. (b) St-Denis, Y.; Levesque, S.; Bachand, B.; Edmunds, J. J.; Leblond, L.; Preville, P.; Tarazi, M.; Winocour, P. D.; Siddiqui, M. A. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 1181. (c) Bursavich, M. G.; Rich, D. H. *J. Med. Chem.* **2002**, *45*, 541.

<sup>(7)</sup> Winum, J.-Y.; Scozzafava, A.; Montero, J.-L.; Supuran, C. T. Med. Res. Rev. 2006, 26, 767.

<sup>(8)</sup> For reviews for olefin diamination: (a) Kemp, J. E. G. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 7, p 469. (b) Lucet, D.; Le Gall, T.; Mioskowski, C. *Angew. Chem., Int. Ed.* **1998**, *37*, 2580. (c) Mortensen, M. S.; O' Doherty, G. A. *Chemtracts: Org. Chem.* **2005**, *18*, 555.



Figure 1. Biologically active cyclic vicinal diamines.

tate.<sup>9b</sup> This protocol provided efficient synthesis of fused cyclic sulfamide pyrrolidines and piperidines (eq 1). This reac-



tion is a member of a growing class of copper(II)-promoted oxidative cyclizations that also includes the intramolecular copper(II)-promoted alkene carboamination reaction.<sup>10</sup>

We report herein an expansion of the diamination substrate scope to include substrates with other linked (RNHX<sub>n</sub>NHR) bis(amino) units. In addition, the diastereoselectivity in the oxidative cyclization of alkyl-substituted pent-4-enyl sulfamides and a deuterated alkene substrate was examined. The substrate expansion was enabled by the use of an organic soluble copper(II) salt, copper(II) neodecanoate [Cu(ND)<sub>2</sub>], and the less-polar solvent dichloroethane (DCE). The level and direction of observed diastereoselectivity, and comparison to the mechanistically similar copper(II)-promoted carboamination reaction, provided insight into a plausible reaction mechanism (vide infra).

The effect of solvent, copper(II) ligand, and heating method (oil bath vs microwave) was systematically examined as shown in Table 1. We quickly found that the solubility of the copper(II) carboxylate in the organic solvent was important to the efficiency of the reaction. In initial experiments, we used Cu(OAc)<sub>2</sub> with polar solvents (DMF) and an additive (4 equiv of DMSO, 90 °C, 48 h) (entries 1 and

Table 1. Temperature, Solvent, and Ligand Effects<sup>a</sup>

| $CuX_n$ (1.2 equiv),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                      |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| $\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                      |  |  |  |  |
| $\mathrm{CuX}_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | solvent                                                                                                                                                                                                                   | temp, time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | yield (%) <sup>b</sup>                                                                                                                                                                                               |  |  |  |  |
| Cu(OAc) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DMF                                                                                                                                                                                                                       | 90 °C, 48 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 78                                                                                                                                                                                                                   |  |  |  |  |
| $Cu(OAc)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DMF/DMSO                                                                                                                                                                                                                  | 90 °C, 48 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 92                                                                                                                                                                                                                   |  |  |  |  |
| $Cu(ND)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\mathbf{DMF}$                                                                                                                                                                                                            | 90 °C, 24 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 94                                                                                                                                                                                                                   |  |  |  |  |
| $Cu(ND)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DMF                                                                                                                                                                                                                       | 120 °C (µW), 20 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 90                                                                                                                                                                                                                   |  |  |  |  |
| $Cu(OAc)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $CH_{3}CN$                                                                                                                                                                                                                | 90 °C, 48 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38                                                                                                                                                                                                                   |  |  |  |  |
| $Cu(ND)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $CH_3CN$                                                                                                                                                                                                                  | 90 °C, 24 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 94                                                                                                                                                                                                                   |  |  |  |  |
| $Cu(ND)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DCE                                                                                                                                                                                                                       | 90 °C, 24 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73                                                                                                                                                                                                                   |  |  |  |  |
| $Cu(ND)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | toluene                                                                                                                                                                                                                   | 90 °C, 24 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40                                                                                                                                                                                                                   |  |  |  |  |
| $Cu(OAc)_2 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tert-amylOH                                                                                                                                                                                                               | 90 °C, 48 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38                                                                                                                                                                                                                   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} & \overbrace{O_2 S_1}^{NH} \\ \hline \\ \hline \\ Cu(OAc)_2 \\ Cu(OAc)_2 \\ Cu(ND)_2 \\ Cu(ND)_2 \\ Cu(OAc)_2 \\ Cu(ND)_2 \\ Cu(ND)_2 \\ Cu(ND)_2 \\ Cu(ND)_2 \\ Cu(OAc)_2 \\ Cu(OAc)_2 \\ \end{array}$ | $\begin{array}{c} \begin{array}{c} \begin{array}{c} & \end{array} \\ \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ \end{array} \\ \hline \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ \end{array} \\ \hline \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ \end{array} \\ \hline \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ \end{array} \\ \hline \end{array} \\ \end{array} \\$ | $\begin{array}{c c} & \underbrace{CuX_n \ (1.2 \ equiv),}_{K_2CO_3 \ (2 \ equiv)} & \underbrace{CuX_n \ S^{-NBi}_2}_2 \\ \hline \\ $ |  |  |  |  |

<sup>*a*</sup> All reactions were run in sealed tubes at 0.1 M w/r to 1.  $Cu(ND)_2 = copper(II)$  neodecanoate. <sup>*b*</sup>Yield refers to amount of product isolated after purification by flash chromatography on silica gel.

2, Table 1).<sup>9b</sup> We subsequently found that the use of more organic soluble copper(II) carboxylates, e.g., copper(II) neodecanoate [Cu(ND)<sub>2</sub>], allowed shorter reaction times (90 °C, 24 h) than the use of less-polar solvents (dichloroethane, toluene). The reaction time could be further reduced by the use of microwave heating (120 °C for 20 min, entry 4, Table 1). All of these reactions are carried out in pressure tubes.

Under the new reaction conditions  $[Cu(ND)_2, (CH_2Cl)_2]$ , the reactions of substrates **3**, **5**, and **7** were significantly improved (Table 2). At 120 °C or above, these less-reactive,

Table 2. Diamination of Challenging Substrates

| entry            | substrate                                                                             | product                            | conditions <sup>a</sup>     | yield (%) <sup>b</sup>      |
|------------------|---------------------------------------------------------------------------------------|------------------------------------|-----------------------------|-----------------------------|
| 1<br>2           |                                                                                       | N-SC                               | Bn<br>D <sub>2</sub> A<br>B | 56<br>81                    |
| 3<br>4<br>5<br>6 | <b>3</b> 0 <sub>2</sub><br><u>NH</u><br>0 <sub>2</sub> S. <sub>NHBn</sub><br><b>5</b> | 4<br><br>O <sub>2</sub> S-NBn<br>6 | A<br>B<br>C<br>D            | 43<br><b>86</b><br>55<br>48 |
| 7 (<br>8         | Me<br>NH<br>O <sub>2</sub> S. <sub>NHBn</sub>                                         |                                    | A<br>B                      | <i>decomp</i><br>81         |

<sup>*a*</sup> Reaction conditions A: 3 equiv of Cu(OAc)<sub>2</sub>, 2 equiv of K<sub>2</sub>CO<sub>3</sub>, DMF (0.1 M), DMSO (10 equiv), 120 °C, 48 h, sealed tube. Conditions B: 3 equiv of Cu(ND)<sub>2</sub>, 2 equiv of K<sub>2</sub>CO<sub>3</sub>, DCE (0.1 M), 120 °C, 48 h, sealed tube. Conditions C: Same as B except Cu(OAc)<sub>2</sub> was used instead of Cu(ND)<sub>2</sub>. Conditions D: Same as B except DMF was used instead of DCE. <sup>*b*</sup>Yield refers to amount of product isolated after purification by flash chromatography on silica gel.

more entropically challenging substrates tended to undergo decomposition (removal of the sulfamide) using the Cu-

<sup>(9)</sup> Recent metal-facilitated olefin diaminations: (a) Bar, G. L. J.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. J. Am. Chem. Soc. 2005, 127, 7308.
(b) Zabawa, T. P.; Kasi, D.; Chemler, S. R. J. Am. Chem. Soc. 2005, 127, 11250. (c) Streuff, J.; Hovelmann, C. H.; Nieger, M.; Muniz, K. J. Am. Chem. Soc. 2005, 127, 14586. (d) Du, H.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2007, 129, 762. (e) Wei, H.-X.; Kim, S. H.; Li, G. J. Org. Chem. 2002, 67, 4777.

<sup>(10) (</sup>a) Sherman, E. S.; Chemler, S. R.; Tan, T. B.; Gerlits, O. Org. Lett. **2004**, *6*, 1573. (b) Sherman, E. S.; Fuller, P. H.; Kasi, D.; Chemler, S. R. J. Org. Chem, **2007**, ASAP. (c) Chemler, S. R.; Fuller, P. H. Chem. Soc. Rev. **2007**, DOI: 10.1039/B607819M.

(OAc)<sub>2</sub>, DMSO, and DMF reaction conditions. It is possible that DMF or its decomposition product (Me<sub>2</sub>NH) could promote sulfamide decomposition. Under the new conditions, the isoindoline adduct **4** was obtained in 81% yield. The unsubstituted, aliphatic sulfamide **5** cyclized efficiently to provide pyrrolidine **6** in 86% yield. The *N*-2- $\gamma$ -butenyl-3methylphenyl-*N'*-benzylsulfamide (**7**) cyclized to form the tetrahydroquinoline adduct **8** in 81% yield.

The use of  $Cu(ND)_2$  and dichloroethane as solvent was especially important in the case of monosubstituted *N*-pent-4-enyl-*N'*-benzyl sulfamides **9**, **11**, and **13** (Table 3).

 Table 3.
 Diastereoselectivity in Cyclizations of Pent-4-enyl Sulfamides<sup>a</sup>



<sup>*a*</sup> Reaction conditions: 3 equiv of Cu(ND)<sub>2</sub>, 2 equiv of K<sub>2</sub>CO<sub>3</sub>, DCE (0.1 M), 120 °C, 48 h, sealed tube. <sup>*b*</sup>Yield refers to amount of product isolated upon purification by flash chromatography on silica gel. <sup>*c*</sup>Selectivity determined by analysis of the crude <sup>1</sup>H NMR spectrum.

Good to excellent levels of diastereoselectivity were observed with these substrates (Table 3). Reactions of substrates 9 with substitution  $\alpha$  to the sulfamide unit were highly diastereoselective, generating the cis-pyrrolidine core 10 with >20:1 selectivity (entries 1-3, Table 3). The high degree of *cis*-pyrrolidine selectivity is similar to that observed in the copper(II) carboxylate promoted carboamination reaction.<sup>10b</sup> Pent-4-enyl sulfonamide 11 containing an allylic stereocenter also provided a diastereoselective reaction (dr = 3:1) favoring the trans diastereomer (entry 4, Table 3). The 2-substituted pent-4-enyl sulfamide 13 afforded pyrrolidines cis-14 and *trans*-14 in a 1:1 ratio of diastereomers (entry 5, Table 3). Discussion of the reaction diastereoselectivity is provided in eq 2 (vide infra) and in the Supporting Information. We have previously demonstrated that sulfur dioxide can be reductively removed to reveal the diamine if desired.9b

The generality of the intramolecular diamination protocol was further examined as illustrated in Table 4. Although the



*N*-2-allylphenyl-*N'*-benzyl sulfamide **1** reacted at the lowest temperature of all the substrates examined (90 °C, Table 1), the reaction could be extended at higher temperature (120 °C) to analogous substrates with different diamine units such as ureas, bis(anilines), and  $\alpha$ -amidopyrroles. Diamination with the urea substrates **15a**-**c** produced bicyclic ureas **16a**-**c**, whereas cyclization of the  $\alpha$ -amidopyrrole **17** and the bis(aniline) **19** produced 1,4-diazines **18** and **20**. Cyclic ureas and 1,4-diazines are common components in biologically active compounds. The *N*-tosyl urea **15d** and aliphatic  $\gamma$ -pentenylureas were unreactive under the reaction conditions.

Upon the basis of the high diastereoselectivity of the diamination reactions with  $\alpha$  substituents, wherein the *cis*-pyrrolidines are highly favored, we propose that the first C-N bond is formed via a *syn*-aminocupration (e.g., transition state **21**), in analogy to the mechanistically similar copper(II)-promoted intramolecular carboamination reaction

Table 4. Formation of Cyclic Ureas and 1,4-Diazines

| entry                 | substrate                                                               | product                         | conditions <sup>a</sup> | yield (%) <sup>b</sup>             |
|-----------------------|-------------------------------------------------------------------------|---------------------------------|-------------------------|------------------------------------|
|                       | NH<br>O NHR                                                             |                                 | ∽<br>NR                 |                                    |
| 1<br>2<br>3<br>4<br>5 | 15a, R = Bn<br>15b, R = Ph<br>15c, R = Pr<br>15d, R = Ts<br>15d, R = Ts | 16a<br>16b<br>16c<br>16d<br>16d | A<br>B<br>A<br>A<br>B   | 69<br>68<br>59<br>no rxn<br>decomp |
| 6                     | NH<br>O<br>17                                                           | 0<br>18                         | МВ                      | 61                                 |
| 7                     | NH<br>NHTs                                                              |                                 | NTs B                   | 61 <sup><i>c</i></sup>             |
|                       | 19                                                                      | 20                              |                         |                                    |

<sup>*a*</sup> Reaction conditions A: 3 equiv of Cu(ND)<sub>2</sub>, 2 equiv of K<sub>2</sub>CO<sub>3</sub>, DCE (0.1 M), 120 °C, 48 h, sealed tube. Conditions B: same as A except DMF was used as solvent instead of DCE. <sup>*b*</sup>Yield refers to amount of product isolated after purification by flash chromatography on silica gel. <sup>*c*</sup>11% of the carboamination product was also formed (see Supporting Information).

(eqs 2 and 3).<sup>10b</sup> By comparing the direction and degree of diastereoselectivity in the carboamination reaction to the preferences found in analogous reactions, we argued that a *syn*-aminocupration mechanism (analogous to transition state **21**) best accounted for the observed diastereoselectivity.

To probe the mechanism of the second C–N bond-forming step, we submitted the *trans*-deuteroalkene **25** to the diamination conditions (eq 4). Partial conversion to diamination adduct **26** allowed for the recovery and examination of the remaining starting material **25**. We found that adduct **26** is formed in a 1:1 ratio of diastereomers. This is in contrast to the analogous study by Muniz and co-workers, who found that this bond is formed stereospecifically in their palladium-catalyzed diamination reaction (eq 5).<sup>9c</sup>



The proposed reaction mechanism for the copper(II) carboxylate promoted intramolecular alkene diamination is illustrated in Scheme 1. The stereorandom formation of



deuterated diamination adducts **26** (eq 4) indicates the presence of an intermediate with an sp<sup>2</sup> hybridized deuteriumsubstituted carbon, possibly a primary radical (e.g., **29**, Scheme 1).<sup>11</sup> Thus, ligand exchange in the reaction of **9a** with Cu(ND)<sub>2</sub> would provide for N–Cu bond formation (cf. **9a**  $\rightarrow$  **27**, Scheme 1). Syn aminocupration would occur in stereoselective fashion via transition state **21**, forming the cis-pyrrolidine. The unstable organocopper(II) intermediate 28 would undergo C-Cu bond homolysis, generating primary radical 29. Organocopper(II) species are known to be unstable due to the paramagnetic nature of copper(II).<sup>12,13</sup> The primary radical does not revert back to the starting material, as indicated by the fact that the recovered deuterated alkene 25 can be isolated without olefin isomerization (vide supra, eq 4). Because another electron must be lost from the substrate in this net two-electron oxidation process, it seems necessary that copper be involved in the second C-N bondforming process. One likely scenario would involve combination of the primary radical with Cu(ND)<sub>2</sub>. The affinity of carbon radicals for Cu(II) has previously been studied.13 The resulting Cu(III) intermediate 30 could then undergo ligand exchange and reductive elimination or  $S_N2$ to provide the observed product. Prior coordination of Cu- $(ND)_2$  to the second sulfamide nitrogen and intramolecular delivery to the carbon radical may also be operative. Because copper carboxylate salts can easily disproportionate, an adequate amount of Cu(II) can be provided for the entire process.

An alternative mechanism would involve ligand exchange and reductive elimination or  $S_N 2$  of organocopper(II) intermediate **28**, but the stereorandom formation of the second C-N bond would still have to be accounted for. Although a mechanism involving a primary carbocation intermediate could also account for the stereorandom second C-N bond formation, such a species seems unlikely as no rearrangement or elimination products are observed. Also, Kochi has previously observed that copper(II) salts do not promote carbocation formation unless a stable carbocation can be formed.<sup>13b</sup>

In summary, we have identified milder reaction conditions that allow an expanded substrate scope in the copper(II) carboxylate promoted intramolecular diamination of terminal alkenes. Stereochemical probes have been used to identify a probable reaction mechanism. The copper(II) carboxylate promoted protocol has demonstrated the highest levels of diastereoselectivity among intramolecular alkene diaminations to date.

Acknowledgment. We thank Mr. Joseph King (from the University of West Alabama, NSF REU Fellowship at SUNY, Buffalo, CHE-0453206) for his contributions toward the synthesis of **25**. This work was supported by the National Institutes of Health (NIGMS RO1-GM07838301.)

**Supporting Information Available:** Procedures and characterization data and NMR spectra for all new products. This material is available free of charge via the Internet at http://pubs.acs.org.

## OL0706713

<sup>(11)</sup> Attempts to trap the radical intermediate with TEMPO have been frustrated by starting material decomposition. Reactions performed in the presence of  $O_2$  gave only diamination.

<sup>(12)</sup> Chmielewski, P. J.; Latos-Grazynski, L.; Schmidt, I. Inorg. Chem. 2000, 39, 5475.

<sup>(13) (</sup>a) Kochi, J. K. Acc. Chem. Res. **1974**, 7, 351. (b) Kochi, J. K.; Bacha, J. D. J. Org. Chem. **1968**, 33, 2746. (c) Mansano-Weiss, C.; Epstein, D. M.; Cohen, H.; Masarwa, A.; Meyerstein, D. Inorg. Chim. Acta **2002**, 339, 283. (d) Navon, N.; Golub, G.; Cohen, H.; Meyerstein, D. Organometallics **1995**, 14, 5670. (e) Goldstein, S.; Czapski, G.; Cohen, H.; Meyerstein, D. Inorg. Chem. **1992**, 31, 2439.