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Rapid Trifluoromethylation and Perfluoroalkylation of
Five-Membered Heterocycles by Photoredox Catalysis in

Continuous Flow

Natan J. W. Straathof,”’ Hannes P. L. Gemoets,” Xiao Wang,"® Jaap C. Schouten,™

Volker Hessel,” and Timothy Nog&l*

Trifluoromethylated and perfluoroalkylated heterocycles are
important building blocks for the synthesis of numerous phar-
maceutical products, agrochemicals and are widely applied in
material sciences. To date, trifluoromethylated and perfluoroal-
kylated hetero-aromatic systems can be prepared utilizing visi-
ble light photoredox catalysis methodologies in batch. While
several limitations are associated with these batch protocols,
the application of microflow technology could greatly enhance
and intensify these reactions. A simple and straightforward
photocatalytic trifluoromethylation and perfluoroalkylation
method has been developed in continuous microflow, using
commercially available photocatalysts and microflow compo-
nents. A selection of five-membered hetero-aromatics were
successfully trifluoromethylated (12 examples) and perfluoroal-
kylated (5 examples) within several minutes (8-20 min).

The incorporation of fluorinated functional groups, such as the
trifluoromethyl (CF;) group, into chemical compounds has nu-
merous advantages, including improved chemical stability, ele-
vated lipophilicity, and increased binding selectivity."? The
presence of CF; in a drug structure has a diminishing effect on
the metabolic oxidation by cytochrome P450 oxidase and in-
creases the bioactivity by affecting the compound’s distribu-
tion and absorption. In particular, the establishment of meth-
odologies for the incorporation of trifluoromethyl or perfluor-
oalkyl moieties to five-membered heterocycles is of great
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Figure 1. Perfluoroalkylation of five-membered hetereocycles as an impor-
tant strategy for the preparation of drug candidates and advanced materi-
als.

value in pharmaceutical manufacturing, as well as agrochemis-
try and material science (Figure 1).2* This has stimulated the
development and improvement of novel trifluoromethylation
methodologies, which are of great importance for the produc-
tion of compounds with trifluoromethyl groups.®™

Historically, the construction of the Ar—CF; bond was per-
formed by means of metal-catalyzed cross-coupling meth-
ods,®*? using different CF, sources such as Ruppert-Prakash re-
agents or the more recent Umemoto’s reagents'®" and
Togni's reagents."? However, these methods often involve stoi-
chiometric amounts of metal salts and/or require the presence
of functional groups,'® such as boronic acids, amides, or hal-
ides and pseudohalides, to establish the CF; linkage. Moreover,
several synthetic methodologies have been reported which
employ radical trifluoromethylation ([CF;]’) to functionalize un-
activated C—H bonds."” One of the most potent strategies in-
volves the use of photoredox catalysis to generate electrophilic
radicals.”*?” Hereby, polypyridyl organometallic complexes,
such as [Ru(bpy);Cl,], are activated by visible light and have
proven to be mild and more sustainable alternatives for tradi-
tional photochemistry utilizing UV energy.”®>" Recently, the
MacMillan group reported a photocatalytic trifluoromethyla-
tion of heterocycles using triflyl chloride (CF;SO.Cl, 1b) as
a [CF;]" source (Scheme 1a).?"?? Later, another approach based
on inexpensive gaseous trifluoroiodomethane (CF;l, 1a) was
developed by Cho and co-workers.”>?Y However, decisive limi-
tations are associated with these batch protocols, such as:
i) limited scale-up potential; ii) inefficient light transmission in
the batch reactor according to the Lambert-Beer law, especial-
ly when there is significant scattering of the incident light in
a heterogeneous mixture; iii) prolonged reaction times; and
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Scheme 1. a) Reported trifluoromethylation batch protocols [Refs. [21,23]]. b) Accelerated trifluoromethylation

and perfluoroalkylation, enabled by continuous-flow.

iv) the complicated handling of gaseous reagents and insuffi-
cient interfacial contact area which leads to limited gas-liquid
mass transfer rate.

To overcome these limitations, we reasoned that the use of
continuous-flow processing would significantly enhance the
utility for the trifluoromethylation and perfluoroalkylation of
five-membered heterocycles. Due to their high surface-to-
volume ratios, microreactors offer the advantage of an in-
creased control over different process parameters (e.g., heat-
and mass-transfer, gas-liquid characteristics, residence time
control), which leads to a safer handling of hazardous com-
pounds.®?3 |n addition, the small dimensions in microreactor
technology allow for homogeneous irradiation of the entire re-
action mixture.””® As a consequence of the relatively high ex-
tinction coefficient of photoredox catalysts, a considerable
amount of light is absorbed within the first few hundreds of
micrometers of the light path, which makes the use of micro-
reactor technology vital for successful scale-up by a number-
ing-up strategy.’**¥ Moreover, owing to the improved irradia-
tion of the reaction mixture, microflow chemistry also allows
to decrease the amount of photocatalyst without significant
loss of efficiency.®*” Herein, we report the first photocatalytic
trifluoromethylation and perfluoroalkylation of five-membered
heteroarenes in continuous microflow, which renders an extra
rapid and up-scalable, industrially relevant method to con-
struct the Ar—CF; bond.

Based on our experience with continuous-flow chemis-
try, " we also felt that the presence of a gaseous reagent
(such as CF;l) would not obstruct our investigations and could
be perfectly dosed to the reaction mixture by means of a mass
flow controller. Furthermore, the presence of a gas phase leads
to segmented flow which in fact provides fast mixing (internal
circulation in the liquid phase), a large and well-defined inter-
facial area, intensified mass- and heat-transfer, and a reduced
axial dispersion.*®*¥ Notwithstanding, a continuous-flow pro-
tocol also allowed for an accelerated reaction protocol, ena-
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constructed by using transparent
PFA capillary tubing (500 um ID,
1/16" OD, 200 puL V,.) coiled
around a large transparent dis-
posable syringe. Next, the capil-
lary microreactor assembly was
placed inside a beaker in which
an array of blue light-emitting
diodes (LEDs) (3.12 W blue LED
stripe, 78Lm, 39 LED, 97 cm
length, A,.,,=450-460 nm) was
coiled in a spiral fashion. The CF;l gas flow rate was monitored
and controlled utilizing a mass flow controller (MFC)
(mLmin™"). The liquid flow rate was regulated by a syringe
pump, which introduces the liquid reagents (photocatalyst,
substrate, base and solvent) (mLmin™"). A T-shaped micromixer
was used to combine the gas and liquid phase prior to irradia-
tion inside the photomicroreactor (see the Supporting Informa-
tion for more detailed information regarding the microfluidic
setup).

We began our studies with the trifluoromethylation of N-
methylpyrrole 2 utilizing gaseous CF;l in the presence of
a base and [Ru(bpy);Cl,] (1 mol%).5” Initially, a residence time
of approximately 4 min was applied by combining a liquid
flow rate of 100 uLmin™' and a gas flow rate of 2 mLmin™".
Various organic nitrogen bases (2 equiv) were investigated,
such as DBU, TEA, DIPEA, and TMEDA (respectively 1,8-
diazabicyclo[5.4.0lundec-7-en, triethylamine, diisopropylethyla-
mine, and N,N,N',N'-tetramethyl-1,2-diaminoethylene) (Fig-
ure 2b, entries 1-4). TMEDA proved to be the most effective
for this trifluoromethylation protocol, providing 81% conver-
sion within 4 min residence time (Figure 2b, entry 4). Next, the
flow rate of the liquid phase or the reactor length were adjust-
ed until a satisfactory residence time (t;) was obtained to ach-
ieve full conversion of the starting material (Figure 2b, en-
tries 5 and 6). With a residence time of 8 min, we were able to
achieve up to 99% conversion and the corresponding product
was obtained in 95% vyield as judged by 'F NMR (Figure 2b,
entry 6). Subsequently, we also investigated different CF;l gas
flow rates (Figure 2b, entries 7 and 8). The optimal gas flow
rate was found to be 2mLmin™' (4 equiv CF;l) (Figure2b,
entry 6), as decreasing the CF;l flow gave lower conversions
(44-62 %).

With the optimal conditions in hand, we conducted a series
of experiments to evaluate the scope of our continuous-micro-
flow trifluoromethylation method (Scheme 2). N-methylpyrrole
2a and a selection of indole derivatives 2b-2 f were efficiently

[Ru(bpy)3Cl,]
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Entry 1 2 3 a4 5 6 7 8

Base DBU TEA DIPEA TMEDA TMEDA TMEDA TMEDA TMEDA
Distribution 100:2 100:2 100:2 100:2 150:2 100:2 100:1 100:0.5
Residence 4 min 4 min 4min 4 min 3min 8min 8min 8min

time

Figure 2. a) Schematic representation of the continuous-flow setup for tri-
fluoromethylation of hetero-arenes. b) Optimization of the continuous-flow
reaction conditions. [a] Reactions were carried out using [Ru(bpy);Cl,]

(1.0 mol %), base (2.0 equiv) in MeCN (0.2 m), and irradiated by blue LEDs.
[b] Distribution; liquid flow rate, and gas flow rate are given in uLmin~" and
mLmin~', respectively. Residence time of 4 min and 3 min are performed in
a 200 pL Vmax microreactor, 8 min residence time was performed in

a 400 pL Vmax microreactor. (blue bars) Conversion, analyzed by GC with
a,0,0-trifluorotoluene as internal standard. (red bars) '°F NMR yield of the
product.

trifluoromethylated within a residence time of 8 min and were
obtained in sufficiently pure form to allow for a simple purifi-
cation (65-95%). A slightly lower yield was obtained for 2-
methylindole 2e (65 %), while 1,2-dimethylindole 2 f could be
smoothly trifluoromethylated in 79% yield. Trifluoromethyla-
tion of 1H-pyrrole-2-carboaldehyde 2g and methyl-1H-pyrrole-
2-carboxylate 2h resulted in the formation of a small amount
of precipitation, clogging the microreactor. This could be effi-
ciently prevented by using a slightly different solvent mixture
of DMSO/MeCN (1:9), which increased the solubility of the pre-
cipitate. However, an increased catalyst loading (4 mol%) was
required to compensate the lower rate of the photocatalytic
transformation in DMSO. The same method was applied to 2-
methylfuran and 2-methylthiophene, which were both success-
fully trifluoromethylated within 16 min of residence time (2i
and 2j). Likewise, 3-methylbenzofuran and 3-methylbenzothio-
phene were also trifluoromethylated and isolated in good yield
(73% and 55%, 2k and 21).

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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Scheme 2. Trifluoromethylation of five-membered hetero-arenes. [a] Reac-
tions were carried out using [Ru(bpy);Cl,] (1.0 mol %), TMEDA (2.0 equiv),
CF;l (4.0 equiv) in MeCN (0.2 m), and irradiated with blue LED, [b] Yield deter-
mined with ’F NMR with o,a,a-trifluorotoluene as an internal standard,

[c] An increased catalyst loading (4 mol %) was used. [d] MeCN:DMSO (9:1)
was used as solvent system.

Next, we extended our focus by developing a continuous-
flow method for the photocatalytic perfluoroalkylation of
hetero-arenes using iodoperfluoroalkyl 1c (RCF,l). Perfluoroal-
kylation offers, besides the profound effects of the presence of
fluorine substituents for pharmaceuticals and materials,
a straightforward pathway to introduce other functional
groups such as esters, ethers or other halogens. The continu-
ous-flow setup for the perfluoroalkylation was a simplified ver-
sion of the one used for the trifluoromethylation (Figure 3a).
Instead of a biphasic gas-liquid phase reaction, homogeneous
reaction conditions were used for perfluoroalkylation. More de-
tailed explanation regarding the micro flow setup construction
can be found in the Supporting Information.

Preliminary optimization studies were carried out to acquire
the optimal perfluoroalkylation conditions. A number of solu-
ble organic bases were tested (Figure 3). In contrast with the
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Figure 3. a) Schematic representation of the continuous-flow setup for the
perfluoroalkylation of hetero-arenes. b) Optimization of the reaction condi-
tions. [a] Reactions were carried out using [Ru(bpy);Cl,] (0.5 mol %), base

(3 equiv) nonafluoro-1-iodobutane (2 equiv) in MeCN, and irradiated by blue
LEDs. [b] Distribution; liquid/liquid flow rate are given in uLmin" and
uLmin~", respectively. (blue bars) Conversion, analyzed by GC with o,a,0-tri-
fluorotoluene as internal standard. (red bar) '*F NMR yield of the product.

trifluoromethylation experiments, DBU gave a good yield for
the desired product (Figure 3b, entry 1). However, TMEDA pro-
vided the best results for the perfluoroalkylation in continuous
flow (Figure 3b, entry 4). DBU gave a dark solution upon irradi-
ation, leading to a less-efficient photon flux through the reac-
tion mixture. On the contrary, TMEDA remained a clear and
transparent solution even after prolonged irradiation times. To
further optimize the reaction conditions, a variety of solvents
were screened (see Supporting Information). The best results
were obtained in acetonitrile. Other polar solvents were less ef-
ficient, while the use of nonpolar solvents resulted in an in-
complete dissolution of the photoredox catalyst. With the opti-
mal conditions in hand, we evaluated the method by perfluor-
oalkylating a selection of five-membered hetero-arenes with
different perfluoro-1-iodoalkanes (Scheme 3). The construction
of perfluoroalkylated N-methylpyrrole 3a and a number of
indole analogues 3b and 3 e was easily achieved within several
minutes (tz=10 min) and delivered the target compound in
good yields (53-88%). In addition, 3-methylindole was also re-
acted with perfluoro-2-iodopropane and ethyl 2-bromo-difluor-
oacetate, providing products 3c and 3d in good yield (99%
and 72 %).

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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Scheme 3. Perfluoroalkylation of hetero-arenes. [a] Reactions were carried
out using Ru(bpy);Cl, (0.5 mol %), base (3.0 equiv) in MeCN, and irradiated
with blue LED. [b] '°F NMR yield of the product. [c] Ethyl 2-bromo-difluoroa-
cetate was used as the alkyl halide source.
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Scheme 4. Large scale trifluoromethylation and the reaction with low cata-
lyst loading. [a] Reactions were carried out using Ru(bpy);Cl, (1 or

0.05 mol %), TMEDA (2 equiv), 1 (2 mLmin™") in MeCN (100 pLmin™"), micro-
reactor (Vmax: 250 uL or 1000 uL), and irradiated with Blue LED.

To exploit the advantages of our continuous-flow protocol,
we also performed a long durational reaction to demonstrate
its scalability and stability (Scheme 4). As such, we were able
to produce a substantial amount of trifluoromethylated 3-
methylindole 4a in less than 9 h (1.98 g, 9.5 mmol). Additional-
ly, we investigated whether it was feasible to decrease the cat-
alyst system in flow (Scheme 4). The catalyst loading could be
decreased (down to 0.05 mol %) without significant loss of effi-
ciency (75%). Such low catalyst loadings are of great interest
to the pharmaceutical industry and clearly show the process
intensification in microflow reactors.

The pharmaceutical industry is always looking for more effi-
cient strategies to introduce functional groups into drug candi-
dates. The functionalization of hetero-aromatics with perfluor-
oalkyl moieties is one of the important strategies to enhance
its biological, chemical and physical properties. Many, if not all,

ChemSusChem 0000, 00, 1-6
These are not the final page numbers! 27


www.chemsuschem.org

SUS

of the current batch strategies are suffering from long reaction
times, high catalyst loadings, limited scalability, and operation-
al flexibility. We have successfully realized for the first time
a continuous-flow method for the fast radical trifluoromethyla-
tion and perfluoroalkylation of five-membered hetero-arenes
using inexpensive perfluoroalkyl sources (e.g., CF;l and
CF;(CF,)5l). The trifluoromethylation of five-membered hetero-
arenes (Scheme 2) was achieved within several minutes (8-
16 min) in continuous-flow due to the excellent light irradia-
tion of the reaction mixture, the increased gas-liquid mass
transfer of CF,l, and the excellent mixing achieved in liquid
slugs as a consequence of the Taylor flow regime.*” In com-
parison, similar reactions required many hours (12-24 h) in
batch to achieve full conversion. Next, the continuous-flow
photocatalytic protocol was extended for homogeneous liquid
perfluoroalkylation reactions and we were able to perfluoroal-
kylate a number of five-membered hetero-aromatics in less
than 1 h of reaction time (10-20 min). The potential to use
lower catalyst loadings (as low as 0.05 mol% photoredox cata-
lyst) and to scale-up the photocatalytic process are additional
features of our continuous-flow protocol that are not easy to
achieve in a batch mode.

In conclusion, the continuous-flow perfluoroalkylation pro-
cess could be significantly accelerated (from hours in batch to
minutes in flow) making this methodology suitable for the pro-
duction and scale-up of pharmaceutical compounds and agro-
chemicals agents. The mild reaction conditions (room tempera-
ture, visible light activation, atmospheric pressure) should
allow easy implementation of this methodology into both aca-
demia and industry. Further investigations regarding accelerat-
ed incorporation of fluorine-containing functional groups are
under development in our laboratory.

Experimental Section

General trifluoromethylation continuous-flow procedure: An
oven-dried volumetric flask (5 mL) was loaded with heterocycle
(1 mmol), [Ru(bpy);Cl,] (1 mol%), and TMEDA (2 mmol). The flask
was sealed with a septum and degassed by alternating vacuum
and argon cycles (three times). Anhydrous MeCN (5 mL) was added
and the mixture was loaded in a 5 mL syringe and mounted on
a syringe pump. The gaseous CF;l flow rate (2 mLmin™") was estab-
lished by means of a mass flow controller (MFC) and stabilized
prior to the start-up of the syringe pump, which applied a liquid
flow rate of 100 uLmin~'. After operation the reaction mixture was
quenched and collected, concentrated in vacuo and purified by
silica column chromatography (5% EtOAc in petroleum ether) to
afford the desired product.

General perfluoroalkylation continuous-flow procedure: An
oven-dried volumetric flask (10 mL) was loaded with heterocycle
(2.8 mmol), [Ru(bpy);Cl,] (0.5 mol%), and perfluorobuthyliodide
(5.6 mmol), fitted with a septum and degassed by alternating
vacuum and argon backfill, and filled with MeCN. A second volu-
metric flask (10 mL) was loaded with TMEDA (8.4 mmol) degassed
and filled with MeCN. Both mixtures were transferred to corre-
sponding syringes and loaded in the setup. The reaction mixtures
were introduced into the microreactor with a flow rate of
50 uLmin~". The reaction mixture was collected, quenched, con-

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

centrated in vacuo and purified by flask chromatography over
silica (5% EtOAc in petroleum ether) to yield the desired product.
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COMMUNICATIONS
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- o G L/)_ 3 8- 16 mi L X. Wang, J. C. Schouten, V. Hessel,
X Continuous microflow ¥ [ min] N
¢ D T. Noél*
N W CF3l or RCF,l, [Ru(bpy)sCly] R
Blue LED, TMEDA, MeCN o7 X S examples EE-EE
v E/)—CFZR 53% - 9% Yield
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[ rin] Rapid Trifluoromethylation and
Photo workflow: A simple and straight-  photocatalyst under irradiation by blue Perfluoroalkylation of Five-Membered
forward photocatalytic method for per- LED light. A series of electron-rich Heterocycles by Photoredox Catalysis
fluoroalkylation in continuous flow is hetero-aromatics is successfully trifluor- in Continuous Flow
developed. A photo-microreactor, con- omethylated within 8-16 min. Also, a se-
structed from commercially available lection of hetero-aromatics is perfluor-
components, enables accelerated pho- oalkylated within 10-20 min.
tocatalysis employing [Ru(bpy);Cl,] as
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