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A convenient synthetic pathway to triazole-functionalized oxazolone peptidomimetics by click fragment assembly is
described. The target molecules were obtained by the ligation of oxazolone-based peptides with azidopeptides via Cu(I)-
catalyzed Huisgen cycloaddition reaction (“Click Chemistry”).

One of the most exciting and potentially rewarding chal-
lenges in modern drug discovery is the design of chemical
reaction sequences that can provide maximum structural
complexity, diversity, and drug-like properties in a minimum
number of synthetic steps.1 Fragment-based assembly has
emerged as an efficient strategy to generate structural diversity
and complexity in drug leads for the development of small
molecule inhibitors, with multiple binding pockets in their
active sites.2a There are two major issues in fragment-based
drug discovery. One is the selection and availability of a robust,
high yielding, and low cost chemical reaction that can pro-
vide functionally diverse and structurally complex fragments.
The second one is the availability of a modular reaction that
can mimic the “nature’s creation strategy” for the assembly of
fragments. These two issues stimulated the effort toward the
search for new green chemical methods for fragment generation
and fragment assembly.2b,2c

In recent years, many new reaction methodologies have
been developed for the generation of scaffolds that can fit in
drug leads.3 Among such methods, multicomponent reactions
(MCRs) are particularly useful to produce smart molecular
fragments preferably in a one-pot and one-step manner with
high atom economy and less resource consumption.3 Among
the various MCRs, isocyanide-based MCRs like Ugi and
Passerini reactions are well known for creating small peptide
like molecules, with high degree of structural complexity and
for the incorporation of stereogenic centers in scaffolds, which
is often positively related with bioactivity.4

Among the various ligation techniques, the Cu(I)-catalyzed
Huisgen cycloaddition between two structural fragments, suit-
ably functionalized with pairing handles such as an alkyne in
one fragment and azide in the second one has greatly advanced
in the last decade.5 This cycloaddition provides a 1,2,3-triazole
linker between two scaffolds, which will ultimately change
a non-peptidic molecule to a peptide like one with enhanced
physicochemical properties such as proteolytic stability, selec-
tivity, bioavailability, etc.6­8

Oxazolones, also known as azalactones, are internal anhy-
drides of acylamino acids and can be easily prepared from N-
acylamino acids via. cyclodehydration.9 They possess important
biological activities such as antimicrobial,10 anti-inflamma-

tory,11 anticancer,12a,12b anti-HIV,13 antiangiogenic,14 antitumor,
antagonistic, and sedative properties.15 Interesting examples
include spirocyclopropyl oxazolone (a)13 and pancratistatin (b)
(Figure 1).12c The former represents a new class of herpes
protease inhibitor13 and the later is a phenanthrene alkaloid-
based anticancer drug16 obtained from the intramolecular Diels­
Alder reaction of phenacycloxazolone.

Moreover, the oxazolone ring resembles a cyclic ester and,
its amide like geometric parameters make it a peptide bond
isoster.17 In recent years, peptide-based drugs have emerged
as a new class of therapeutic agents and more than 60 FDA-
approved peptide based drugs are available on the market.
Most of these peptide drugs contain β-amino acids, nonnatural
amino acids or peptidomimetics as a core structural scaf-
fold.18,19 Such complex molecules are prepared by adopting
a tailoring pharmacology approach based on the combination
of heterocyclic functional parts and small peptide-like back-
bones.20 The final molecule may exert multiple agonistic func-
tions. These relatively high molecular weight peptidomimetics
can easily link with intercellular targets, a task that cannot be
addressed by small molecule approaches.

In continuation of our ongoing research for the development
of heterogenized peptidomimetics, herein we report our recent
results in the synthesis of a new series of small β-peptide-
functionalized oxazolonic acid mimics with general structure A
or B (Figure 2) based on MCR and click strategy. The overall
reaction in most cases involves two multicomponent reactions
and a “click” cycloaddition.
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Figure 1. Classical examples of oxazolone-derived drugs.
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Results and Discussion

Our primary targets were tripeptidomimetics like structure
B (Schemes 1 and 2 and Figure 3) which were obtained from
Ugi reactions of oxazolonic acid 1, propargylated aldehydes
and amines with isocyanides. Oxazolonic acid 1 with Z
configuration (confirmed from 1HNMR)9b was prepared in
good to excellent yield by following the classical Erlenmeyer­
Polchi reaction of formyl benzoic acid and hippuric acid with
sodium acetate and acetic anhydride9 (Scheme 1).

Having synthesized the oxazolonic acid 1, we next pre-
ceded to the synthesis of oxazolonic acid-based tripeptides
2a­2c. The reaction was initiated by stirring o-propargylated
benzaldehyde with butylamine in methanol for 30min. To
this, oxazolonic acid and tert-butylisocyanide were added and
the stirring was continued with TLC examinations at regular
intervals. After 46 h, the solvent was removed and crude mix-
ture was repeatedly washed with petroleum ether to obtain the
desired product 2a (60%).

The process was repeated with benzylamine in two different
combinations and the small peptide-like scaffolds 2b and 2c
were also isolated in good yield (Figure 3).

In the next step, syntheses of specially designed azido
peptides required for the ligations were undertaken. β-
Acetamido ketone or amino ketone residues were selected as
the backbone structure of azides because of their known
biological and pharmacological properties.21 These compounds
were prepared by an alternate Mannich-type reaction which
involves the one-pot condensation of a non-enolizable aldehyde
with an enolizable ketone in the presence of a bromonitrile

and acetyl chloride.22 We have screened various catalysts
like BF3¢Et2O, Mont.K10, selectfluor, phthalocyanin, CuSO4,
etc.22,23 and found that copper sulfate was very efficient for
promoting this reaction to form bromo derivative of the β-
amido ketone. The copper sulfate-assisted process was adopted
as the chosen methodology23c and the bromo functionalized β-
amido ketones 3a and 3b thus prepared were then converted
to the corresponding azides 4a and 4b in appreciable yield
(Scheme 3).23e

Having synthesized the alkynes and azides, we then turned
our attention toward the final assembly of substrates by
copper(I)-catalyzed alkyne-azide click chemistry (CuAAC). As
shown in Scheme 4, the coupling was done using modified
Sharpless conditions.24a The alkynes and azides were mixed
with 0.2 equiv of CuSO4 and 0.4 equiv of sodium ascorbate in
a solvent mixture contain t-BuOH, water and DMSO (4:2:1) at
room temperature. The progress of the reaction was monitored
by TLC. After completion of the reaction (10 h), the aqueous
workup of the mixture afforded the desired peptidomimetic.
The process was repeated in various combinations and the
peptidomimetics 5a­5f were isolated in 65­75% with sufficient
purity (Figure 4). The molecules were then characterized using
1HNMR and EI-MS spectroscopy.

In order to suggest the regio- and stereoselectivity in tri-
azole formation, we have compared the spectral data of the
peptidomimetics with literature values.24 The 1HNMR spectra
showed a downfield signal around 7.8 ppm in most cases,
corresponding to the ethylenic proton of an anti-1,4-substituted
1,2,3-triazole. This value is well in agreement with the reported
spectral values.24 It should be noted that the cycloaddition
reactions of tripeptides 2a­2c with the azide 4b took more
reaction time (15 h) compared to the 4a analogues (10 h) and,
afforded products 5c, 5d, and 5f respectively. This may be due
to the presence of the electron-withdrawing bromine atom at
the para position of the aromatic rings.25

The purity of the samples were again confirmed by per-
forming HPLC analysis. As shown in Figure 5, all the click
products gave only one peak corresponds to the molecular ion
in the HPLC profile. This again confirmed that, the molecules
were formed as a single isomer (For HPLC profiles of all the
click products, see Supporting Information).
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Figure 2. Triazole-linked peptidomimetics connecting oxazolone-based tripeptides with carboxamide residues.
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Scheme 1. Synthesis of oxazolone 1 via. Erlenmeyer­Polchi
reaction.
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Figure 3. Structures of alkyne fragments 2a­2c obtained from U-4CR.
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Scheme 3. β-Amido ketone azides 4a and 4b obtained from alternative Mannich type MCR.22a­22c
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Scheme 2. Synthesis of oxazolonic acid-functionalized α-acylamino carboxamide alkynes 2a­2c by U-4CR.
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5a R1= n-Butyl, R2=Cl, R3=R4=H Log P= 7.453
5b R1= Benzyl, R2=Cl, R3=R4=H Log P= 7.414
5c R1=n-Butyl, R2=H, R3=R4=Br Log P=8.366
5d R1=Benzyl, R2=H,  R3=R4=Br Log P=8.388
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Figure 4. List of peptidomimetics obtained from Cu(I)-catalyzed alkyne­azide cycloaddition between alkynes 2a­2c and azides
4a and 4b.
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As an extension, the ligation studies were conducted with
a second set of azides 6a and 6b containing α-acylamino
carboxamide moieties. 6a and 6b were prepared by follow-
ing an Ugi reaction of chlorobenzaldehyde, chloroacetic acid,
and tert-butylisocyanide with an amine in dichloromethane
at room temperature.4 After 72 h of stirring, the reaction
afforded the chloro derivative of the α-acylamino carbox-
amides in high yield. The subsequent N3 substitution in the
Ugi reaction products by treating the chlorides with sodium
azide in the presence of potassium carbonate in dimethyl-
acetamide at room temperature resulted in the formation of
the α-acylamino carboxamide azides 6a and 6b in appreciable
yield (Scheme 5).

The cycloaddition reactions of alkynes 2a­2c with 6a and
6b were conducted in the same conditions mentioned for the
reactions between 2a­2c and 4a and 4b, and took place with
the formation of the anti-1,4-substituted 1,2,3-triazoles 7a­7f
in 80­88% yield (Scheme 6). The results are presented in
Figure 6.

The log P values of compounds 5a­5f and 7a­7f were
also calculated using an online calculation service (www.
molinspiration.com) and are presented in Figures 4 and 6. The

Figure 5. Representative HPLC profiles. Analytical HPLC profiles of compounds 5c and 7c and the MS of the same samples.
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peptidomimetics 5a­5f and 7a­7f are made up with function-
alities like amide bonds and its isosteres such as 1,2,3-triazole,
oxazolone, keto-methylene (CH2­CO), alkyl ether (O­CH2),
etc.17 Thus, it can be envisioned that employment of these
peptide bond isosteres can impart a significant amount of
proteolytic stability in the final molecule. Compounds 5a­5f
contain three amide bonds and four of its isosteres and 7a­7f
contain four amide bonds and three of its isosteres. Hence,
these compounds can be considered as heptapeptides (or
peptidomimetics) with three points where scaffold diversity
can be introduced (see positions marked as R1, R2, and R3 in
structures A and B of Figure 2).

Conclusion

In summary, we have prepared a small library of peptido-
mimetics comprised of triazole­oxazolone­amide functionality
by the click reactions between the two types of small peptide-
like scaffolds generated from multicomponent synthetic ap-
proach. The synthetic strategy involves the combination of
MCR chemistry with click chemistry and both reactions are
prototype models of green chemistry. Structural features of the
compounds indicates that these molecules are promising in the
lead discovery process.

Experimental

All chemicals, reagents, and solvents were purchased from
Sigma Aldrich and Merck Ltd., India. 1HNMR spectra were
recorded in CDCl3 on Bruker Avance 500MHz spectrometer
and the chemical shifts are reported as ¤ values in parts per
million (ppm) relative to tetramethylsilane, with J values in
Hertz. The splitting patterns in 1HNMR spectra are reported as
follows: s = singlet; d = doublet; m = multiplet. High-resolu-

tion mass spectra were recorded under electron impact condi-
tions using an AXMA CFR plus Kratos analytical Shimadzu.
HPLC analysis were done using a Shimadzu LC-2010-HT
system.

General Procedure for the Synthesis of 4-[(9Z)-5-Oxo-2-
phenyloxazol-4(5H)-ylidenemethyl]benzoic Acid (1). A
solution of formylbenzoic acid (0.3 g, 2mmol), hippuric acid
(0.378 g, 2mmol), acetic anhydride (0.567mL, 6mmol), and
anhydrous sodium acetate (0.162 g, 2mmol) were refluxed
under constant stirring for 3 h. After 3 h, the mixture was
cooled and 20mL of absolute ethanol was added slowly and
allowed to stand for overnight. The crystallized crude product
was filtered, washed with hot water and then with a small
volume of 1:1 ice cold water­methanol mixture. The crude
product obtained was dried and recrystallized in absolute
ethanol to afford 1.

General Procedure for the Synthesis of N-{(tert-Butyl-
carbamoyl)[2-(prop-2-ynyloxy)phenyl]methyl}-N-butyl-4-
[(7Z)-5-oxo-2-phenyloxazol-4(5H)-ylidenemethyl]benz-
amide (2a). An equimolar amount of propargylated benz-
aldehyde (0.1 g, 0. 01mol) and butyl amine (0.045 g, 0.01mol)
were taken in methanol (8mL) and stirred at room temperature
for 30min. To this, one equivalent of tert-butyl isocyanide
(0.051 g, 0.01mol) and oxazolonic acid (0.183 g, 0.01mol)
were added and stirred at room temperature. The reaction
was monitored by TLC and found to be complete after 46 h.
The solvent was evaporated under vacuum and the crude
product obtained upon repeated washings with petroleum ether
(5 © 15mL) afforded the pure 2a.

General Procedure for the Synthesis of β-Ketoamide
Azide (4a and 4b). A mixture of enolizable ketone (1mmol),
aldehydes (1mmol), and 3-bromopropionitrile (1mmol) in

7a R1=n -butyl, R2= benzyl Log P=8.471

7b R1= R2= benzyl Log P=8.446
7c R1= R2= n -butyl Log P= 8.495

7d R1= benzyl, R2= n -butyl Log P= 8.471
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Figure 6. List of peptidomimetics obtained from Cu(I)-catalyzed azide­alkyne cycloadditon of alkynes 2a­2c with azides 6a
and 6b.
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acetonitrile (3mL) was stirred in the presence of 5mol%
CuSO4 at room temperature for 8 h. After completion of the
reaction as indicated by TLC, the reaction mixture was poured
into ice cold water and extracted with dichloromethane (15
mL). Evaporation of the solvent followed by purification on
silica gel (100­200 mesh, ethyl acetate­hexane (3:1) afford
pure functionalized bromo β-acetamidoketones. The result-
ing bromides (1mmol), potassiumcarbonate (3mmol), sodium
azide (1mmol) were dissolved in DMA. The reaction mixture
was allowed to stir for 6­8 h and then poured into ice cold
water. The precipitate was filtered, washed and dried in vacuum
to afford 4a and 4b.

General Procedure for the Synthesis of Azides 6a and 6b.
An equimolar amount of Ugi chloride (Ugi reaction product,
0. 0025mol) and sodium azide (700mg) are taken in dimethyl-
acetamide (4mL). To this K2CO3 (1 g) was added and stirred
at room temperature for 4 h. The reaction mixture was then
diluted with water. The white precipitate obtained was filtered
and washed repeatedly with water to afford the pure azides 6a
and 6b.

General Procedure for the Cu(I)-Promoted 1,3-Dipolar
Cycloaddition Reactions. An equimolar amount of the azide
3a (60mg, 2mmol) and the alkyne 2a (83mg, 2mmol) are
dissolved in minimum amount of DMSO. To this, 2mL of
tert-BuOH, 1mL of water, CuSO4¢5H2O (70mg) and sodium
ascorbate (83mg) were added and stirred at room temper-
ature. After 24 h, the mixture was poured in to cold water. The
precipitated click product was filtered, washed with water and
dried under vacuum to afford 5a­5f and 7a­7f.

Supporting Information

Copies of FT-IR, 1HNMR and HRMS spectra of starting and
final compounds 1, 2a­2c, 4a, 4b, 5a­5f, 6a, 6b, 7a­7f and
HPLC profiles of 5a­5f and 7a­7f. This material is available
free of charge on the Web at: http://www.csj.jp/journals/bcsj/.
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