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ABSTRACT

Ni2þ-, Cu2þ-, and Zn2þ-exchanged faujasite (MY) zeolites efficiently

catalyze the Friedel–Crafts benzylation of arenes in a clean and
simpler method.
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Zeolites are inorganic solids which find extensive applications in
organic transformations[1] and photochemical reactions.[2] Intrazeolite
radical reactions,[3] electron-, energy-, and proton-transfer reactions[4]

are also extensively reported. In the area of production of fine chemicals,
the merits of zeolites, in addition to the usual requisites of mildness,
selectivity, and cleanliness, over soluble acidic catalysts are significant
and have appeared in several papers and reviews.[5–7] Reduction of salt
and waste production, replacement of hazardous acids, prevention
of corrosion, availability of variety of structures, and pore dimensions
leading to shape selectivity, tunable acidity, and easy regeneration are
some of the advantages, which accrue upon their usage as heterogeneous
solid acid-catalysts.

Aluminosilicates-mediated Friedel–Crafts alkylations have received
particular attention as the products serve as useful starting materials for
synthesis of pharmaceuticals and polymers. Montmorillonite-
supported transition metal salts are reported[8,9] as efficient solid
Friedel–Crafts alkylation catalysts, which reduce the problems associated
with the standard reactions using anhydrous AlCl3. Izumi et al.[10] have
shown that, smectites clays with simple exchange of metal ions, particu-
larly Zn2þ-exchanged nontronite and montmorillonite, exert much higher
catalytic activity for the alkylation than ZnCl2/K10-montmorillonite.
Preparation of diphenylmethane from benzyl chloride and benzene
using a simple mixture of ZnCl2 and K10/KSF-montmorillonite clays
(upon activation by ultrasonic waves) is reported.[11]

These observations, coupled with our interest in exploring alumino-
silicates[12,13] as versatile catalysts, have prompted us to study
the Friedel–Crafts benzylation of arenes with divalent cation-exchanged
zeolites as solid acid catalysts. It is relevant to note here that the H-form
zeolites[5–7] and CaY[14] (with an ability to generate Bronsted acidity) are
studied in detail in many systems. Friedel–Craft’s acylation of toluene
and p-xylene with carboxylic acid is found[15] to be catalyzed by CeY
zeolite and the para-isomer is the predominant product. In a recent
report,[16] benzyl chloride when included in NaY zeolite, is found
to undergo dimerization in a meta-selective Friedel–Crafts pathway
(in contrast to its reaction in AlCl3, wherein extensive polymerization
is observed). However, modulation of zeolite acidity by exchange with
transition metal ions, with a subsequent increase in Lewis acidity
and much milder reaction conditions has not been explored so far. The
present work is directed towards this goal in mind.

In a typical procedure, to a mixture of the arene (0.01mol) and the
substituted benzyl chloride (0.003mol) taken in a round bottomed flask
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equipped with magnetic bead, 500mg of the activated (preheated to
450�C for 6 h in a muffle furnace) zeolite is added and stirred for 4 h
at room temperature. After the addition of 15mL of dichloromethane,
the mixture is stirred again overnight, the solvent is removed and
evaporated. The reaction mixture is analyzed in a Shimadzu 17A GC
(SE-30 10% capillary column, FID detector), unless reported otherwise.
In all the cases, retention times of unconsumed benzyl chloride is
taken as the internal reference. 1H-NMR spectra of diphenylmethane,
isolated in the case of benzene, shows peaks at 6.78 � (s, 10H) and
3.6 � (s, 2H). With substituted benzenes and benzyl chlorides, isomeric
products are isolated (for Entries 1, 2, and 4 in Table 2) by column
chromatography (silica gel; 5% ethyl acetate–95% petroleum ether
mixture) and are identified by their 1H-NMR spectra (2H singlet for
the methylene group at 3.5–4.0 � and para-isomers by their characteristic
AB pattern).

The results indicate clearly that benzylation of arenes (Sch. 1) is
catalyzed very efficiently (Tables 1 and 2) by divalent cation-exchanged
zeolites (NiY, CuY, and ZnY) and there is no reaction with non-acidic
zeolites, namely NaY and KY. With CaY the yield has improved signifi-
cantly, but not as extensive as ZnY and NiY. The reaction is faster with
arenes having electron-releasing groups and becomes slower when the
arene and benzyl chloride[8] are substituted with electron-withdrawing
groups (Table 2). Compared to previous results, zeolites provide much
higher isolated yield and lower polyalkylation, which is attributed to their
well defined cages and consequent structural characterization.

The reaction is inefficient with benzyl alcohol as evident from the
following: treatment with PhCH2OH and NiY has resulted in only 21%
conversion (with 4% of PhCHO, 10% of Ph2CH2 and others 7%) and
with HY only 3% conversion is observed (1% of Ph2CH2 and others
2%). This also rules out the generation of a free benzylic carbonium
ion which is also confirmed by carrying out the reaction with NiY/CaY

Scheme 1.
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Table 1. Formation of (C6H5)2CH2 from C6H6 and C6H5CH2Cl catalyzed by

various cation-exchanged zeolites at room temperature.a

Entry Zeolite Time (h)

Conversion of

PhCH2Cl (%)

Yieldb (%) of

Ph2CH2 Others

1 NaY 4 4 4 —
2 KY 4 3 3 —

3 CaY 4 68 58 10
4 CuY 4 80 80 (75)c —
5 NiY 4 99 99 (85)c —

6 NiYd 4 96 96 (84)c —
7 ZnY 1 6 6 —
8 ZnY 2 22 22 —

9 ZnY 4 100 85 (80)c 15

a0.01mol of benzene and 0.003mol of benzyl chloride in 500mg of activated
zeolite.
bGC yield: Error limit � 5%.
cNumbers in parentheses refer to isolated yield (based on the amount of benzyl
chloride taken).
dNiY reused after three times of benzylation.

Table 2. Benzylation of substituted benzene (C6H5R
0) with RC6H4CH2Cl in the

presence of NiY zeolite at room temperature.a

Entry R R0 Time (h)

Conversion of

RC6H4CH2Cl (%)

Yieldb (%) of

Ortho Para Others

1 H CH3 4 100 44 44 12

2 H –OH 4 100 47 53 0
3 H –Cl 4 12 3 6 3
4 H –OCH3 4 100 43 57 —
5 H –NO2 12 9 — — 9

6 2-NO2 H 6 No reaction — — —
7 4-NO2 H 6 No reaction — — —

a0.01mol of substituted benzene and 0.003mol of substituted benzyl chloride in
500mg of activated zeolite.
bGC yield: Error limit� 5%.
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zeolite in the presence of styrene and benzene in hexane slurry. Only
styrene derived products are formed, and the coupled product is
absent. Similarly there is no reaction when benzylation is carried out
with unactivated NiY/ZnY zeolite, in which the cations of interest are
solvated and hence are less readily available. It is likely that the entry into
the cage is hindered by water molecules, and the reaction thus takes place
on the surface.

The observed results indicate clearly that the Lewis acidity of the
transition metal ions in zeolite is mainly responsible for the efficient
benzylation. Ni2þ, Zn2þ, and Cu2þ (with ionic radii of 0.72, 0.74, and
0.69 Å, respectively) are all borderline acids according to the HSAB
theory of acids and bases and by their ready binding to the covalently
linked chloride ion (a borderline base), polarize the carbon–chloride
bond in benzyl chloride more efficiently. This is followed by the facile
attack of the incipient carbonium ion on the aryl ring. It also explains
why the reaction is slow with metal ions as Naþ, Kþ (hard acids), and
with Ca2þ (though divalent, has a higher ionic radius of 0.98 Å, making it
a weaker Lewis acid, compared to NiY, CuY, and ZnY). Izumi et al. have
also proposed[10] that only Lewis acidity is responsible for the
efficient benzylation by Zn2þ-exchanged smectites. It is relevant to
note here that in a recent report,[17] zinc-exchanged zeolite BEA is
found to be an excellent catalyst for the intramolecular hydroamination
of 6-aminohex-1-yne.

Thus the observed results amply demonstrate the efficiency of
divalent transition metal cation-exchanged zeolites (NiY, ZnY, and
CuY) as versatile Friedel–Crafts alkylation catalysts. Lewis acidity
of the metal cations is primarily responsible for this industrially relevant
reaction. In addition to ensuring simpler work-up, cleaner, and efficient
conversions, the other advantages of employing these solid heterogeneous
acid catalysts, are their environmentally benign nature, well defined
structural characterization, reduced polyalkylation, much higher isolated
yield, presence of basic sites in the framework to trap HCl liberated in the
reaction, and reusability (after three times, efficiency of the NiY is
still above 95%).
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