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Abstract

Nanoparticles may provide a viable way for neuroprotective drugs to cross the blood-brain barrier 

(BBB), which limits the passage of most drugs from the peripheral circulation to the brain. 

Heterotelechelic polymer prodrugs comprising a neuroprotective model drug (adenosine) and a 

maleimide functionality were synthesized by the “drug-initiated” approach and subsequent 

nitroxide exchange reaction. Nanoparticles were obtained by nanoprecipitation and exhibited high 

colloidal stability with diameters in the 162–185 nm range and narrow size distributions. 

Nanoparticles were then covalently surface-conjugated to different proteins (albumin, 2-

macroglobulin and fetuin A) to test their capability of enhancing BBB translocation.  Their 

performances in terms of endothelial permeability and cellular uptake in an in vitro BBB model 

were compared to that of similar nanoparticles with surface-adsorbed proteins, functionalized or not 

with the drug. It was shown that bare NPs (i.e., NPs not surface-functionalized with proteins) 

without the drug exhibited significant permeability and cellular uptake, which were further 

enhanced by NP surface functionalization with 2-macroglobulin. However, the presence of the 

drug at the polymer chain-end prevented efficient passage of all types of NPs through the BBB 

model, likely due to a decrease in the hydrophobicity of the nanoparticle surface and alteration of 

the protein binding/coupling, respectively. These results established a new and facile synthetic 

approach for the surface-functionalization of polymer nanoparticles for brain delivery purposes.
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1. Introduction

The blood-brain barrier (BBB) remains one of the major limiting obstacles preventing 

pharmacological advancement in the treatment of neurological, neurodegenerative, and psychiatric 

disorders [1]. Although nanoparticles (NP) offer a promising approach to cross this barrier, surface-

modification is necessary to increase drug delivery to the central nervous system (CNS). With this 

in mind, synthetic and physiological peptides and proteins have extensively been used to coat or 

functionalize NPs for BBB targeting [2-4]. Many techniques have been utilized to identify novel 

synthetic peptides or previously untested physiological proteins, including peptide phage display 

and computer-assisted design [5]. A wide array of these ligands has been successfully used to target 

receptor-mediated endocytosis and encourage passage of NPs through the BBB [6], commonly 

through transferrin receptor [7-9], lactoferrin receptor [10, 11], and low-density lipoprotein receptor 

(LDLr) [12, 13]. In particular, a modified fragment of apolipoprotein E, named mApoE, 

successfully enhanced brain delivery of liposomes designed for the treatment of Alzheimer’s 

disease via transcytosis targeting LDLr [12, 13]. 

We recently analyzed the protein composition of NP corona after passage through an in vitro 

BBB model and found that specific proteins were able to cross endothelial BBB cells in relatively 

high abundance [14]. Among these proteins, we have selected three to test their capability to 

improve brain targeting of polymeric NP: albumin, α2-macroglobulin (α2M) and Fetuin A (Fet A). 

Albumin, the most abundant serum protein, crosses the BBB in vivo in healthy conditions [15], and 

in higher quantities after traumatic brain injury [16], in Huntington disease [17], diabetes and 

dementia [18]. α2M is a broad spectrum anti-protease that also crosses the healthy BBB [19] and is 

a biomarker for multiple sclerosis [20]. It has anti-inflammatory effects which seem particularly 

promising in treating neurological conditions that are coupled with increased local or generalized 

inflammation [21]. Fet A, also known as α2-HS-glycoprotein, is predominantly found in fetal serum 

where it prevents tissue calcification [22]. It can cross the BBB during ischemic injury [23]. 
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Although albumin has previously been used to synthesize NPs that can cross the BBB [24], the use 

of α2M or Fet A for functionalizing NPs to specifically target the brain has never been investigated.

Among the different families of materials suitable for the design of targeted drug delivery 

systems, polymer NPs have attracted much attention because of their numerous benefits. Polymer 

synthesis methods indeed offer great flexibility in terms of control, macromolecular architecture, 

physico-chemical properties, and enable easy access to functional materials. For instance, different 

polymer NPs have been engineered to allow surface modification for CNS drug delivery with 

various ligands to enhance their permeability through the BBB [25-27]. NP coating by simple 

adsorption of targeting peptides has been extensively investigated [28-30], but surface 

functionalization via covalent linkage remains the method of choice as it prevents protein 

desorption and loss of targeting, though it requires more elaborate synthetic strategies. Developing 

polymer prodrug nanocarriers, where the drug is linked to the polymer, usually comes with 

important benefits compared to traditional drug-loaded systems [31], including: (i) absence of 

“burst release” (i.e., uncontrolled release of drugs post-administration); (ii) the possibility to obtain 

higher drug loading and (iii) enhancement of the drug compatibility with the polymer matrix/core, 

allowing a broader range of drugs to be transported.

Heterotelechelic polymers are gaining great interest in the biomedical field [32], as they 

offer an opportunity to embed two different biologically active moieties positioned at both 

extremities (e.g., drug, targeting ligands, imaging probes). In this context, we proposed the 

synthesis of heterotelechelic polymers bearing a drug of interest in the -position and a reactive 

group for further conjugation with BBB-crossing proteins in the -position.

As a proof of concept, adenosine (Ade) was chosen as a model drug for this drug delivery 

system. Its neuroprotective characteristics have already been demonstrated in vivo after stroke when 

delivered to BBB endothelial cells as a squalene-Ade molecular prodrug [33]. 

Here, we either adsorb or conjugate bovine serum albumin (BSA), α2M or Fet A at the 

surface of heterobifunctional polymer prodrug NPs (Figure 1) and report on the proteins effect on 
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NP ability to cross the in vitro BBB, possibly enhancing Ade transport and therefore its 

neuroprotective activity. Moreover, targeting is vital to avoid side reactions, given the widespread 

expression of Ade receptors throughout the body [34, 35], and peripheral degradation [36]. Though 

investigation of the pharmacological activity of the prodrug NPs is outside the scope of this article, 

we investigate here the possibility to embed a relevant drug for the treatment of CNS-related 

diseases and study its impact on the nanoparticle interaction/functionalization with proteins, and 

their subsequent cellular uptake and permeability through a well-established and widely used in 

vitro transwell BBB model [3].

Figure 1. General strategies for the preparation of (a) polymer nanoparticles and (b) polymer 
prodrug nanoparticles surface-adsorbed or surface-functionalized with proteins for the crossing of 
hCMEC/D3 human brain endothelial cells as a blood-brain barrier (BBB) model. BSA = albumin, 
2M = 2-macroglobulin and Fet A = fetuin A.

2. Materials and Methods

2.1 Materials
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Adenosine, tert-Butyldimethylsilyl chloride (TBDMSCl), imidazole, N,N-diisopropylethylamine 

(DIPEA), isoprene, 4-(dimethylamino)pyridine (DMAP), succinic anhydride, 4-hydroxy-TEMPO, 

1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate 

(HATU), rhodamine B base (Rho), N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide 

hydrochloride (EDC•HCl), exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic anhydride, 2-(2-

aminoethoxy)-ethanol as well as dry solvents, corning transwells (polystyrene membrane, 12 well 

plates, 0.4 µm pores), bovine α2M, bovine fetuin (Fet A), bovine serum albumin (BSA) and cell 

medium components were purchased from Sigma-Aldrich (Lyon, France) and used as received. 

Tetrabutylammonium fluoride (TBAF) was purchased from Alfa Aesar (Kandel, Germany). N-tert-

butyl-N-(1-diethylphosphono-2,2-dimethylpropyl) nitroxide (SG1, 85%) was kindly supplied by 

Arkema. AMA-SG1 alkoxyamine [37], Rho-TEMPO [38] and tris-O-silylated adenosine [39] were 

prepared as reported previously. All other reactants were purchased from Sigma-Aldrich (Lyon, 

France) at the highest available purity and used as received. Deuterated chloroform (CDCl3) was 

obtained from Eurisotop (France). All other solvents were purchased from Carlo-Erba (France) at 

the highest grade. EBM-2 basal medium was from Lonza (Switzerland). Nanosep centrifugal 

devices (Omega membrane, 300K) were from VWR International (Fontenay-sous-Bois, France). 

BCA assay kit was from Thermo Fisher Scientific (Illkirch, France). hCMEC/D3 cells were 

provided by Pierre-Olivier Couraud (Université Paris Descartes (Paris, France). FITC-dextran 40 

kDa was purchased from Sigma-Aldrich (Milan, Italy).

2.2 Analytical methods

Nuclear Magnetic Resonance Spectroscopy (NMR). NMR spectroscopy was performed in 5 mm 

diameter tubes in CDCl3 at 25 °C. 1H and 13C NMR spectroscopy was performed on a Bruker 

Avance 300 spectrometer at 300 MHz (1H) or 75 MHz (13C). The chemical shift scale was 

calibrated based on the internal solvent signals. To characterize nitroxide derivatives, 

pentafluorophenylhydrazine was added in situ and allowed to react before the analysis [40, 41].
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Mass spectrometry. Mass spectra were recorded with a Bruker Esquire-LC instrument. High-

resolution mass spectra (ESI) were recorded on an ESI/TOF (LCT, Waters) LC-spectrometer. 

Size Exclusion Chromatography (SEC). SEC was performed at 30 °C with two columns from 

Polymer Laboratories (PL-gel MIXED-D; 300 × 7.5 mm; bead diameter 5 mm; linear part 400 to 4 

× 105 g.mol-1), a differential refractive index detector (Spectra System RI-150 from Thermo 

Electron Corp.) and a scanning fluorescence detector (Waters 474). The eluent was chloroform at a 

flow rate of 1 mL.min-1 (Waters 515 pump) and toluene was used as a flow-rate marker. The 

calibration curve was based on polystyrene (PS) standards (peak molar masses, Mp = 162–523 000 

g.mol-1) from Polymer Laboratories. A polyisoprene (PI) calibration curve was constructed by 

converting the PS standard peak molecular weights (MPS) to PI molecular weights (MPI) using 

Mark-Houwink-Sakurada (MHS) constants determined for both polymers in CCl4 at 25 °C. For PI, 

the MHS constants used were KPI = 2.44 × 104 and αPI = 0.712. For PS, KPS = 7.1 × 104 and αPS = 

0.54 (Mw < 16 700 g.mol-1) or KPS = 1.44 × 104 and αPS = 0.713 (Mw > 16 700 g.mol-1) [42]. This 

technique allowed the number-average molar mass (Mn), the weight-average molar mass (Mw) and 

the dispersity (Mw/Mn, Ð) to be determined.

Dynamic Light Scattering (DLS) and zeta potential. Nanoparticle diameters (Dz) and zeta 

potentials (ζ) were measured by dynamic light scattering (DLS) with a Nano ZS from Malvern 

(173° scattering angle) at a temperature of 25 °C. The surface charge of the NPs was investigated 

by ζ-potential (mV) measurement at 25 °C after dilution with 1 mM NaCl, using the Smoluchowski 

equation.

2.3 Synthesis

Synthesis of PI. AMA-SG1 (120 mg, 0.327 mmol) was placed in a 15 mL-capacity pressure tube 

(Ace Glass 8648-164) fitted with a plunger valve and thermowell. After addition of isoprene (6.5 

mL, 6.53 mmol) and dry 1,4-dioxane (6.5 mL), the tube underwent three cycles of freeze-thaw 

degassing and was then backfilled with argon. The tube was placed in a preheated oil bath at 115 °C 

for 16 h (PI1) and then cooled to r.t. by placing it under cold water. The residue was concentrated 
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under reduced pressure and precipitated in cold methanol to give PI as a colorless viscous oil. Two 

other polymerizations were performed for 16 h with [isoprene]0/[AMA-SG1]0 = 500/1 (PI2) and 

400/1 (PI3). All polymers were characterized by SEC and 1H NMR. PI1: Mn,SEC = 2860 g.mol-1, Đ 

= 1.13. PI2: Mn,SEC = 4940 g.mol-1, Đ = 1.18. PI3: Mn,SEC = 4320 g.mol-1, Đ = 1.16. 

Synthesis of PI-Rho. Briefly, PI1 (300 mg, 0.105 mmol, 1 eq) and TEMPO-Rho (72 mg, 0.105 

mmol, 1 eq) were placed in a 7 mL-vial and dissolved in dry pyridine (1 mL). After 20 min of 

degassing under argon, the vial was placed in a preheated oil bath at 110 °C and stirred for 16 h. PI-

Rho was then precipitated two times in cold methanol and dried under reduced pressure until 

constant weight. Functionalization was confirmed by SEC equipped with a fluorescent detector (λex 

= 570 nm, λem = 595 nm). Mn,SEC = 2690 g.mol-1, Đ = 1.13.

Synthesis of PI-OH. Briefly, P2 (0.500 g, 0.101 mmol, 1 eq) and 4-hydroxy-TEMPO (0.017 g, 

0.101 mmol, 1 eq) were placed in a 7 mL-vial and dissolved in 1 mL of dry pyridine. After 20 min 

of degassing under argon, the vial was placed in a preheated oil bath at 110 °C and stirred for 16 h. 

PI-OH was then precipitated two times in cold methanol and dried under reduced pressure until 

constant weight. The polymer was characterized by SEC and 1H NMR. Mn,SEC = 5030 g.mol-1, Đ = 

1.15.

Synthesis of N-[2-(2-hydroxyethoxy)ethyl]-exo-3,6-epoxy-1,2,3,6-tetrahydrophthalimide. N-[2-

(2-Hydroxyethoxy)ethyl]-exo-3,6-epoxy-1,2,3,6-tetrahydrophthalimide was prepared according to a 

modified published procedure [43]. Exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic anhydride (0.50 g, 

3.01 mmol) was dissolved in 2-(2-aminoethoxy)-ethanol (1.58 g, 15.0 mmol) and stirred at 80 °C 

for 7 h. The reaction mixture was cooled to r.t. before addition of DCM. The solution was washed 

with brine, dried over MgSO4 and concentrated to give a colorless oil. Yield: 39 % (0.318 g.). 1H 

NMR (300 MHz, CDCl3) δ 6.51 (s, 2H), 5.29 (s, 2H), 3.76-3.50 (m, 8H), 2.87 (s, 2H), 2.59 (b, 1H) 

ppm. 13C NMR (75 MHz, CDCl3) δ 176.38, 136.30, 81.02, 72.25, 67.06, 61.63, 47.40, 38.58. 

Synthesis of succinic-mal-furan (N-[2-(2-hydroxyethoxy)ethyl]-exo-3,6-epoxy-1,2,3,6-

tetrahydrophthalimide-4-oxobutanoic acid). Succinic-mal-furan was prepared according to a 



  

9

modified published procedure [44]. Briefly, a solution of DMAP (0.290 g, 2.37 mmol) and succinic 

anhydride (0.237 g, 2.37 mmol) in dry DCM (10 mL) was added dropwise at 0 °C and under an 

argon atmosphere, to a solution of N-[2-(2-hydroxyethoxy)ethyl]-exo-3,6-epoxy-1,2,3,6-

tetrahydrophthalimide (0.200 g, 0.833 mmol) in dry DCM (2 mL). After stirring overnight at r.t., 

the solution was quenched with 1 M HCl. The product was extracted three times with DCM. The 

combined organic layers were washed with brine and dried over MgSO4. After evaporation of the 

solvent, succinic-mal-furan was obtained as a white solid. Yield: 96%. 1H NMR (CDCl3, 300 

MHz): δ 6.53 (s, 2H), 5.30 (d, 2H), 4.27 – 4.15 (m, 2H), 3.66 (dq, 6H), 2.90 (s, 2H), 2.68 (s, 4H). 

13C NMR (75 MHz, CDCl3) δ 176.39, 171.95, 136.54, 80.77, 68.50, 67.05, 63.81, 47.49, 38.24, 

29.05, 28.88. MS (ESI-): m/z = 352.2 (M)-. Calc. for C16H19NO8: 353.1. 

Synthesis of PI-mal-furan. A solution of succinic-mal-furan (0.043 g, 0,121 mmol, 2 eq), 

EDC·HCl (0.023 g, 0.121 mmol, 2 eq) and DMAP (cat) in dry DCM (1 mL) was stirred for 15 min 

and added dropwise to a solution of PI-OH (0. 300 g, 0.061 mmol, 1 eq) in DCM (1 mL). The 

mixture was stirred overnight under argon at r.t., before being quenched with water and extracted 

with DCM. The organic phases were then washed with brine and dried with MgSO4. After 

evaporation of the solvent, two precipitation in cold methanol were performed to obtain PI-mal-

furan as a colorless oil. The polymer was characterized by SEC and 1H NMR. Mn,SEC = 5200 g.mol-

1, Đ = 1.15.

Synthesis of PI-mal. PI-mal-furan (0.200 g, 0.038 mmol) was dissolved in dry toluene (1 mL). 

After 20 min of degassing under argon, the vial was placed in a preheated oil bath at 100 °C and 

stirred for 16 h. PI-mal was then precipitated two times in cold methanol and dried under reduced 

pressure until constant weight. The polymer was characterized by SEC and 1H NMR, which also 

confirmed the disappearance of the maleimide protecting group. Mn,SEC = 5650 g.mol-1, Đ = 1.17.

Synthesis of Ade-PI. The TBDMS-protected TBDMS-Ade-PI2 (0.300 g, 0.050 mmol) was 

dissolved in 1.5 mL THF and TBAF (1 M in THF, 150 μL) was added. The solution was stirred for 

30 min and then purified by two consecutive precipitation in cold methanol to give Ade-PI as a 
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colorless viscous oil. The polymer was characterized by SEC and 1H NMR, which confirmed also 

the disappearance of TBDMS protecting groups. Mn,NMR was calculated according to Mn,NMR = 

(DPn,NMR x MWisoprene) + MWTBDMS-Ade-AMA-SG1 – MWTBDMS with DPn,NMR calculated from ratio of 

areas under the peak at 8.69, 8.31 and 5.98 ppm (aromatic and anomeric proton of Ade) and 5.0-5.5 

ppm (vinylic H in isoprene repeat unit (1,4-addition), corresponding to ~81% of total isoprene units 

[37]). Mn,SEC = 6260 g.mol-1, Mn,NMR = 6280 g.mol-1, Đ = 1.15.

Synthesis of tris-O-silylated adenosine-AMA-SG1 (TBDMS-Ade-AMA-SG1). Tris-O-silylated 

adenosine (TBDMS-Ade, 2.0 g, 3.28 mmol) was dissolved in 10 mL of dry DMF. HATU (2.49 g, 

6.56 mmol) and AMA-SG1 (2.37 g, 6.56 mmol) were dissolved in 10 mL of dry DMF in another 

round-bottomed flask, DIPEA (2.12 g, 16.4 mmol) was added dropwise by syringe. The mixture 

was stirred for 1 h and added by syringe to the first solution. The solution was stirred under argon 

atmosphere for 96 h at room temperature (r.t.), then diluted with 100 mL EtOAc.The organic phase 

was washed with 1 M HCl, sat. NaHCO3 aqueous solution, and brine before being dried over 

MgSO4. The residue was concentrated under reduced pressure and purified by flash 

chromatography (SiO2, gradient from PetrolEther/EtOAc 9/1 v/v to PetrolEther/EtOAc 5/5 as 

eluent) to give 1.95 g of TBDMS-Ade-AMA-SG1 as a white-yellow solid. Yield: 62%. 1H NMR 

(CDCl3, 300 MHz): δ 11.01 (d, 1H), 8.76 (s, 1H), 8.31 (d, 1H), 6.09 (m, 1H), 4.93-4.82 (d, 1H), 

4.69 (dt, 1H), 4.37-4.29 (m, 2H), 4.23-3.98 (m, 5H), 3.81 (dt, 1H), 3.49 (d, 1H), 1.62 (d, 3H), 1.32 

(t, 6H), 1.22-1.20 (m, 18H), 0.95 (d, 18H), 0.81 (d, 9H), 0.12 (d, 12H), -0.03 (d, 3H),  -0.24 (d, 3H) 

ppm. 13C NMR (75 MHz, CDCl3): δ 169.75, 152.42, 152.06, 149.66, 141.76, 88.39, 85.51, 85.19, 

78.82, 78.69, 75.58, 72.02, 71.72, 70.04, 68.21, 62.63, 62.44, 61.82, 60.65, 35.41, 30.54, 28.24, 

26.08, 25.85, 25.68, 18.50, 18.08, 17.83, 16.50, 16.23, -4.40, -4.71, -5.05, -5.39 ppm. MS (ESI+): 

m/z = 981.6 (M+Na)+. Calc. for C29H48N3O7P: 958.6.

Synthesis of TBDMS-Ade-PI. TBDMS-Ade-AMA-SG1 (110 mg, 0.115 mmol) was placed in a 15 

mL-capacity pressure tube (Ace Glass 8648-164) fitted with plunger valves and thermowells. After 

addition of isoprene (5.7 mL, 57.2 mmol) and dry 1,4-dioxane (5.7 mL), the tube underwent three 
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cycles of freeze-thaw degassing and was then backfilled with argon. The tube was then placed in a 

preheated oil bath at 115 °C for 16 h (TBDMS-Ade-PI1) and cooled to r.t. by placing under cold 

water. The residue was concentrated under reduced pressure and precipitated in cold methanol to 

give TBDMS-Ade-PI as a colorless viscous oil. Another polymerization was performed for 16 h 

with [isoprene]0/[TBDMS-Ade-AMA-SG1]0 = 780/1 (TBDMS-Ade-PI2). All polymers were 

characterized by SEC and 1H NMR. Mn,NMR was calculated according to Mn,NMR = (DPn,NMR x 

MWisoprene) + MWTBDMS-Ade-AMA-SG1 with DPn,NMR calculated from the ratio of areas under the peak 

at 8.69, 8.31 and 5.98 ppm (aromatic and anomeric proton of Ade) and 5.0-5.5 ppm (vinylic H in 

isoprene repeat unit (1,4-addition), corresponding to ~81% of total isoprene units [37]). TBDMS-

Ade-PI1: Mn,SEC = 6000 g.mol-1, Mn,NMR = 6450 g.mol-1 and Đ = 1.16. TBDMS-Ade-PI2: Mn,SEC = 

5100 g.mol-1, Mn,NMR = 5050 g.mol-1, and Đ = 1.16.

Synthesis of TBDMS-Ade-PI-OH. Briefly, TBDMS-Ade-PI1 (0.500 g, 0.098 mmol, 1 eq) and 4-

hydroxy-TEMPO (0.017 g, 0.098 mmol, 1 eq) were placed in a 7 mL-vial and dissolved in 1 mL of 

dry pyridine. After 20 min of degassing under argon, the vial was placed in a preheated oil bath at 

110 °C and stirred for 16 h. TBDMS-Ade-PI-OH was then precipitated two times in cold methanol 

and dried under reduced pressure until constant weight. The polymer was characterized by SEC and 

1H NMR. Mn,NMR was calculated according to Mn,NMR = (DPn,NMR x MWisoprene) + MWTBDMS-Ade-AMA-

SG1 – MWSG1 + MWTEMPO-OH with DPn,NMR calculated from ratio of areas under the peak at 8.69, 

8.31 and 5.98 ppm (aromatic and anomeric proton of Ade) and 5.0-5.5 ppm (vinylic H in isoprene 

repeat unit (1,4-addition), corresponding to ~81% of total isoprene units [37]). Mn,SEC = 5330 g.mol-

1, Mn,NMR = 7590 g.mol-1, Đ = 1.15.

Synthesis of TBDMS-Ade-PI-mal-furan. A solution of succinic-mal-furan (0.041 g, 0.117 mmol, 

2 eq), EDC·HCl (0.022 g, 0.117 mol, 2 eq) and DMAP (cat) in dry DCM (1 mL) was stirred for 15 

min and added dropwise to a solution of TBDMS-Ade-PI-OH (0.300 g, 0.059 mmol, 1 eq) in dry 

DCM (1 ml). The mixture was stirred overnight under argon at r.t., before being quenched with 

water and extracted with DCM. The organic phases were then washed with brine and dried with 
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MgSO4. After evaporation of the solvent, two precipitations in cold methanol were performed to 

obtain TBDMS-Ade-PI-mal-furan as a colorless oil. The polymer was characterized by SEC and 1H 

NMR. The post-functionalization yield was calculated by 1H NMR using the chemical shifts of 

protons of mal ( = 6.53, 4.22, 2.90 and 2.68 ppm) and the chemical shifts of aromatic protons and 

anomeric proton of Ade ( = 8.69, 8.31 and 5.98 ppm). Mn,NMR was calculated according to Mn,NMR 

= (DPn,NMR x MWisoprene) + MWTBDMS-Ade-AMA-SG1 – MWSG1 + MWTEMPO-mal-furan with DPn,NMR 

calculated from ratio of areas under the peak at 8.69, 8.31 and 5.98 ppm (aromatic and anomeric 

proton of Ade) and 5.0-5.5 ppm (vinylic H in isoprene repeat unit (1,4-addition), corresponding to 

~81% of total isoprene units [37]). Mn,SEC = 5370 g.mol-1, Mn,NMR = 9120 g.mol-1, Đ = 1.15.

Synthesis of Ade-PI-mal-furan. The TBDMS-protected TBDMS-Ade-PI-mal-furan (0.300 g, 

0.056 mmol) was dissolved in 1.5 mL THF and TBAF (1 M in THF, 150 μL) was added. The 

solution was stirred for 30 min and then purified by two consecutive precipitations in cold methanol 

to give Ade-PI-mal-furan as a colorless viscous oil. It was then directly used for the next reaction.

Synthesis of Ade-PI-mal. Ade-PI-mal-furan (0.200 g, 0.036 mmol) was dissolved in dry toluene (1 

mL). After 20 min of degassing under argon, the vial was placed in a preheated oil bath at 100 °C 

and stirred for 16 h. Ade-PI-mal was then precipitated two times in cold methanol and dried under 

reduced pressure until constant weight. The polymer was characterized by SEC and 1H NMR, 

which also confirmed the disappearance of maleimide protecting group. The post-functionalization 

yield was calculated by 1H NMR from ratio of areas under the peak of protons of mal at 6.53, 4.22, 

2.90 and 2.68 ppm and aromatic and anomeric protons of Ade at 8.69, 8.31 and 5.98 ppm. Mn,NMR 

was calculated according to Mn,NMR = (DPn,NMR x MWisoprene) + MWTBDMS-Ade-AMA-SG1 – MWSG1 – 

MWTBDMS + MWTEMPO-mal with DPn,NMR calculated from ratio of areas under the peak at 8.69, 8.31 

and 5.98 ppm (aromatic and anomeric proton of Ade) and 5.0-5.5 ppm (vinylic H in isoprene repeat 

unit (1,4-addition), corresponding to ~81% of total isoprene units [37]). Mn,SEC = 5390 g.mol-1, 

Mn,NMR = 7230 g.mol-1, Đ = 1.37. mal/Ade = 0.63
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Synthesis of Ade-PI-Rho. Briefly, Ade-PI (0.300 g, 0.048 mmol, 1 eq) and TEMPO-Rho (0.038 g, 

0.048 mmol, 1 eq) were placed in a 7 mL-vial and dissolved in 1 mL of dry pyridine. After 20 min 

of degassing under argon, the vial was placed in a preheated oil bath at 110 °C and stirred for 16 h. 

Ade-PI-Rho was then precipitated two times in cold methanol and dried under reduced pressure 

until constant weight. The post-functionalization yield was calculated by 1H NMR using the 

chemical shifts of aromatic protons of Rho ( = 7.70, 7.55, 7.08 and 6.93-6.67 ppm) and the 

chemical shifts of aromatic protons and anomeric proton of Ade ( = 8.69, 8.31 and 5.98 ppm). 

Functionalization was confirmed by SEC equipped with a fluorescent detector (λex = 570 nm, λem = 

595 nm). Mn,NMR was calculated according to Mn,NMR = (DPn,NMR x MWisoprene) + MWTBDMS-Ade-AMA-

SG1 – MWSG1 – MWTBDMS + MWTEMPO-Rho with DPn,NMR calculated from ratio of areas under the 

peak at 8.69, 8.31 and 5.98 ppm (aromatic and anomeric proton of Ade) and 5.0-5.5 ppm (vinylic H 

in isoprene repeat unit (1,4-addition), corresponding to ~81% of total isoprene units [37]). Mn,SEC = 

7540 g.mol-1, Mn,NMR = 6120 g.mol-1, Đ = 1.32. Rho/Ade = 0.94

2.4 Nanoparticle preparation 

PI (PI3), Ade-PI, PI-mal and Ade-PI-mal NPs were prepared by the nanoprecipitation technique 

[45]. All NPs were obtained by co-nanoprecipitation of the desired polymer with a Rho-containing 

PI to reach 5 wt.% of Rho moieties with respect to the overall weight of NPs, as follows: Ade-PI-

Rho/Ade-PI, Ade-PI-Rho/Ade-PI-mal, PI-Rho/PI and PI-Rho/PI-mal. This percentage gave the 

best compromise in terms of fluorescence signal and NP colloidal characteristics (e.g., average size, 

stability). Briefly, 2.5 mg of the corresponding polymers were dissolved in 0.5 mL of THF and the 

solution was quickly added to 1 mL MilliQ water. THF was evaporated at r.t. using a Rotavapor. 

Intensity-averaged diameter (Dz) in MilliQ water and zeta potential measurements in 1 mM NaCl 

were carried out in triplicate by DLS. Their colloidal stability was assessed in water for 14 days. 

NPs were stored at 4 °C and allowed to reach r.t. before each measurement. To establish the best 

conditions for protein functionalization, PI and Ade-PI NP colloidal stability was tested following 
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incubation at r.t. overnight and at 37 °C for 30 min, in either PBS or hCMEC/D3 cell medium 

without serum (which is important to avoid coating with serum proteins). 

2.5 hCMEC/D3 cell culture

Immortalized human cerebral microvascular endothelial cells (hCMEC/D3) cells were used as a 

well-established model of the BBB that forms tight junctions (TJs), the major mechanism that 

prevents passage of most biomolecules and pharmacological agents from the blood to the brain [3, 

48-50]. Briefly, hCMEC/D3 cells were seeded (60.000 cells.cm-2) between passages 25 and 35 on 

the apical side of transwell filters coated with rat-tail collagen type I (4 µg.cm-2). Cells were grown 

for 14 days in EBM-2 medium supplemented with fetal bovine serum (5%), hydrocortisone (1.4 

µM), HEPES (10 mM), penicillin-streptomycin (1%), basic fibroblast growth factor (1 ng.mL-1), 

ascorbic acid (5 µg.mL-1), and lipid concentrate (1/100). Medium was changed every 2-3 days (500 

µl in the apical compartment, 1 ml in the basolateral compartment). Trans-endothelial electrical 

resistance (TEER) was measured every day to monitor the formation of tight junctions (EVOM2, 

World Precision Instruments), and was also measured in the presence of NPs (0.1 mg.mL-1 added to 

the apical compartment for 3 h at 37 °C) and medium with no serum. Integrity of tight junctions 

was assessed by measuring the paracellular permeability of lucifer yellow (LY) across hCMEC/D3 

monolayer. Briefly, LY (50 µM in PBS) was added to the apical compartment of the transwell 

system for 60 min. Every 30 min, samples were collected from the basolateral compartment. 

Quantification of fluorescence (λex = 425 nm, λem = 530 nm) was carried out using a 

spectrofluorimeter (Perkin Elmer, LS50 B). The apparent permeability coefficient (Papp) for LY 

was calculated as previously described [51]. Permeability of FITC-dextran (40 kDa) was assessed 

after incubating cells in transwells with medium supplemented with either 0 % or 5 % serum for 24 

h. All medium was removed, and FITC-dextran was added to the apical compartment (1 mg.mL-1 in 
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PBS), with 1 mL serum-depleted medium in the basolateral compartment. After 3 h incubation, 

fluorescence spectroscopy was used to quantify FITC-dextran in both compartments, and 

endothelial permeability was calculated [51].

2.6 Cell viability in the presence of polymer NPs

The viability of hCMEC/D3 cells after exposure to medium with no serum or NPs for 3 h at 37 °C 

was assessed using the MTT assay, as previously described [52]. Four types of bare NPs were used, 

each labelled with 5% wt. Rho: PI (PI), Ade-PI (Ade-PI), PI-mal (PI-mal) and Ade-PI-mal (Ade-

PI-mal). 

2.7 NP functionalization with physiological proteins and protein corona formation

Protein functionalization. 100 L of PI and Ade-PI NPs (for adsorption) or PI-mal and Ade-PI-

mal NPs (for covalent conjugation) at 2.5 mg.mL-1 were incubated with 400 L of one of the 

proteins (MWFet A = 49 kDa, MWα2M = 725 kDa and MWBSA = 66 kDa; 1.25 mg.mL-1) in 

hCMEC/D3 serum-free cell medium overnight at r.t., under which conditions the NPs were stable, 

as determined by previous stability tests. Free proteins were separated from NP-protein complexes 

by ultrafiltration (MWCO 300 kDA) at r.t. for 3 min at 14,000 g. NPs were resuspended in serum-

free medium, and BCA assay (Thermo Fischer Scientific) was used to determine protein binding. 

Protein corona formation. To test potential size changes upon protein corona formation, 25 L 

bare, protein-adsorbed or protein-conjugated NPs (62.5 g) were incubated in 200 L cell medium 

containing 5% FBS for 30 min at 37 C. Unbound proteins were removed by ultrafiltration (MWCO 

300 kDA) for 6 min at 14,000 g. NPs were resuspended in MilliQ water and size was measured by 

DLS.
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Assessment of protein covalent binding. To establish whether proteins can covalently bind to the 

maleimide moieties present on the polymeric NPs, Ellman’s protocol was used to determine free 

thiol groups [53, 54]. PI, Ade-PI, PI-mal and Ade-PI-mal NPs (50 g) were incubated with each 

protein (150 g) in 500 l serum-free medium overnight at r.t., and free protein was removed by 

ultrafiltration as before. 5 L of Ellman’s reagent (2 mM DTNB in 50 mM sodium acetate) was 

added to NP-protein samples diluted 1:15 in PBS (final volume 150 L) in 96 well plates. Plate was 

shaken and incubated at r.t. for 5 min. Optical absorbance was measured at 412 nm. A standard 

curve was created using known amounts of N-acetyl-L-cysteine, and nmol of free cysteine per mg 

protein was calculated. All samples were measured in triplicate and experiments were repeated 

three times.

2.8 Endothelial permeability and cellular uptake of NPs in an in vitro model of the healthy 

BBB

On the 14th day after cell seeding in the transwell system, 0.1 mg.mL-1 of bare, protein-adsorbed or 

protein-conjugated NPs (determined to be non-toxic by MTT assay) suspended in 500 µL serum-

free medium were added to the apical “blood” compartment of the transwell for 3 h at 37 °C. Note 

that the use of serum-free cell medium has already been utilized for similar NP permeability studies 

using this cell model [46, 47]. Also, cell viability (MTT), permeability (TEER and EP after 

incubation with FITC-dextran, MW = 40 kDa) were tested using serum-free medium and there was 

no effect on hCMEC/D3 permeability and viability after 3 h incubation. The basolateral “brain” 

compartment contained 1 mL of serum-free medium. At different time points for up to 3 h, an 

aliquot from the basolateral compartment was collected and fluorescence of Rho was measured 

using a spectrofluorimeter (Perkin Elmer, LS50 B). Excitation was set at 555 nm, and emission at 

578 nm for PI and PI-mal NPs or 587 nm for Ade-PI and Ade-PI-mal NPs. For each experiment, a 

standard curve was established using bare NPs of a known concentration that were not subjected to 

ultrafiltration. Each experiment used triplicate wells and was repeated at least three times. 
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Transwell filters without cells were used as a control to calculate the endothelial permeability (EP) 

of NPs across the filter. EP takes into account passage of NPs through the transwell filter alone to 

give a value representative of the rate of passage through the cell monolayer, and was calculated as 

previously described [51].

To measure cellular uptake of NPs after 3 h incubation, cells were washed twice with 

Dulbeccos’s PBS (DPBS) and incubated with 0.25% trypsin-EDTA for 5 min at 37 °C. Control 

wells without cells were used to rule out NPs adherence to the filter. Trypsinized cells were 

collected and centrifuged at 2,000 rpm (1500 g) for 5 min. Supernatant was discarded and the pellet 

of cells was resuspended in 750 µL cold lysis buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 2 

mM EDTA, 1% v/v Triton X-100, 0.1% SDS, 1 mM DTT). Cells were incubated for 30 min at r.t. 

while rotating in the dark and then centrifuged at 10,000 rpm (7500 g) for 5 min. The supernatant 

was collected and fluorescence was measured as above described. Cellular uptake was expressed as 

a percentage of the initial amount of NPs added to the apical compartment, subtracting the 

fluorescence measurements obtained from wells without cells. 

2.9 Visualization of cellular uptake of NPs by hCMEC/D3 cells using fluorescence microscopy

hCMEC/D3 cells were seeded on rat collagen type I-coated Cell Carrier Ultra 96 well plates 

(10,000 cells/well) and grown for two days. When cells were confluent, they were incubated with 

100 µL bare PI, Ade-PI, PI-mal and Ade-PI-mal NPs in serum-free cell medium (0.1 mg.mL-1) for 

3 h at 37 °C. NPs were then removed from the wells and cells were washed twice with DPBS. Cells 

were fixed with 10% formalin solution (100 µL) at r.t. for 20 min, followed by three 10 min washes 

with DPBS. Cells were permeabilized with 100 µL Triton (0.2 % v/v) for 15 min at r.t. and washed 

once with DPBS. The actin cytoskeleton was stained with Phalloidin Alexafluor 633 (1:100 in 

DPBS) for 1 h at r.t., and then washed 3 times with DPBS. Hoescht (1:5,000 in DPBS) was 

incubated for 15 min at r.t. to stain nuclei. Cells were washed three times in DPBS and all wells 

were filled with MilliQ water (100 µL). Plates were stored in the dark at 4 °C until visualization. 
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Fluorescent microscopy images were acquired using the Operetta CLS High-Content Analysis 

System (PerkinElmer) equipped with 40x water objective. Excitation of NPs was set to 530-560 

nm, emission at 570-650 nm.

3. Results and Discussion

3.1 Overall synthetic strategy

Heterotelechelic polymers were synthesized by the “drug-initiated” method [55]. It relies on the 

controlled growth of a polymer chain from a drug covalently linked to an “initiator” using 

reversible-deactivation radical polymerization (RDRP) techniques, especially nitroxide-mediated 

polymerization (NMP) [42, 56-59] and reversible addition-fragmentation chain transfer 

polymerization (RAFT) [59-64]. This synthetic approach has key advantages: (i) purification of the 

drug-polymer prodrug is simplified as only unreacted monomer has to be removed; (ii) the 

conjugation of the drug is quantitative, leading to well-defined conjugates with one drug molecule 

attached to each polymer chain and (iii) the drug loading (DL) can be fine-tuned by varying the 

polymer chain length; the lower the chain-length, the higher the DL. Polyisoprene (PI) was selected 

as the polymer for its biocompatibility [65] and structural similarity to natural terpenoids, hence 

representing a potential material for drug delivery applications [38, 42, 57, 59].

To functionalize the other polymer chain-end and obtain heterotelechelic polymer prodrugs, 

we recently developed a general and robust methodology consisting of applying a nitroxide-

exchange reaction to “drug-initiated” synthesized polymers obtained by NMP [38, 66]. The 

terminal SG1 nitroxide was quantitatively replaced by a functional TEMPO nitroxide bearing the 

molecule of interest, which was either a fluorescent probe for imaging applications or a second drug 

for combination therapy. This methodology has important benefits such as nearly quantitative post-

functionalization yields and easy purification given the absence of any catalyst or reactant other 

than the free nitroxide and the polymer. Also, TEMPO can be functionalized by a variety of 

different moieties at the 4-position. 
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To allow NP surface functionalization with cysteine-containing proteins, the TEMPO 

nitroxide was derivatized by a protected maleimide group [67-69]. TEMPO was also functionalized 

with a Rho moiety to endow NPs with fluorescence properties by a simple co-nanoprecipitation 

approach. Rho was chosen as a fluorescent probe because of its favorable characteristics such as 

good photostability, high quantum yield, high extinction coefficient and higher emission 

wavelengths than those coming from cell autofluorescence [70]. Rho was also previously modified 

with a piperazine ring to avoid intramolecular cyclization and allow good stability with pH 

modifications [71]. The covalent linkage of Rho to the polymer, as opposed to simple 

encapsulation, is intended to avoid potential leakage of the dye, which could result in the detection 

of artifact coming from the free dye by fluorescence spectroscopy [38, 58].

3.2 Synthesis of heterotelechelic polymer prodrug 

PI was synthesized from AMA-SG1 alkoxyamine initiator (Scheme 1a) with Mn ranging from 2860 

to 4940 g.mol-1 and low dispersity (1.13–1.18, Table 1). PI-Rho was obtained by nitroxide 

exchange reaction from PI and TEMPO-Rho (Scheme 1b and Table 1). Unfortunately, it was not 

possible to calculate the post-functionalization yield by 1H NMR because of the lack of a suitable 

proton in α position to be compared with those of Rho, but previous demonstration by electron spin 

resonance [38] and characterization of heterotelechelic polymers showed below, led us to assume it 

was quasi-quantitative. 
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Scheme 1. (a) Synthesis of polyisoprene (PI) by nitroxide-mediated polymerization (NMP) initiated 
by the AMA-SG1 alkoxyamine. (b) Synthesis of PI-rhodamine (PI-Rho) by the nitroxide exchange 
reaction with TEMPO-rhodamine (TEMPO-Rho) on PI. (c) Synthesis of adenosine-polyisoprene 
(Ade-PI) by NMP of isoprene from tris-O-silylated-adenosine-AMA-SG1 alkoxyamine (TBDMS-
Ade-AMA-SG1), followed by deprotection of Ade. (d) Synthesis of adenosine-polyisoprene-
rhodamine (Ade-PI-Rho) by the nitroxide exchange reaction with TEMPO-rhodamine (TEMPO-
Rho) on Ade-PI.
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Table 1. Characterization of Polyisoprene (PI), Polyisoprene-Rhodamine (PI-Rho), Adenosine-
Polyisoprene (Ade-PI), Adenosine-Polyisoprene-Rhodamine (Ade-PI-Rho), Adenosine-
Polyisoprene-Maleimide (Ade-PI-mal) and Polyisoprene-Maleimide (PI-mal).

Prodrug Mn,SEC
a

(g.mol-1)

Ða Mn,NMR

(g.mol-1)

DPn,NMR
e Rho or mal 

/Adef

Drug loading

(wt.%) g

PI 2860 1.13 - - - -

PI-Rho 2690 1.13 - - - -

Ade-PI 6260 1.15 6280b 83 - 4.3 

Ade-PI-Rho 7540 1.32 6120c 74 0.94 3.5

Ade-PI-mal 5390 1.37 7230d 95 0.63 5.0

PI-mal 5650 1.17 - - - -
a Determined by SEC, calibrated with PS standards and converted into PI by using Mark-Houwink-Sakurada 
parameters.  b Calculated according to Mn,NMR = (DPn,NMR x MWisoprene) + MWTBDMS-Ade-AMA-SG1 – MWTBDMS . c Calculated 
according to Mn,NMR = (DPn,NMR x MWisoprene) + MWTBDMS-Ade-AMA-SG1 – MWSG1 – MWTBDMS + MWTEMPO-Rho. d Calculated 
according to Mn,NMR = (DPn,NMR x MWisoprene) + MWTBDMS-Ade-AMA-SG1 - MWSG1 – MWTBDMS + MWTEMPO-mal. e Calculated 
from ratio of areas under the peak at 8.69, 8.31 and 5.98 ppm (aromatic and anomeric proton of Ade) and 5.0-5.5 ppm 
(vinylic H in isoprene repeat unit (1,4-addition), corresponding to ~81% of total isoprene units [37]). f Calculated from 
ratio of areas under the peak of aromatic protons of Rho at 7.70, 7.55, 7.08 (or of mal at 6.53, 4.22, 2.90 and 2.68 ppm) 
and 6.93-6.67 ppm and aromatic and anomeric protons of Ade at 8.69, 8.31 and 5.98 ppm.  g Calculated according to 
MWAde/Mn,SEC. 

As for Ade-PI (Scheme 1c), Ade hydroxyl groups were first protected by TBDMS and the resulting 

TBDMS-Ade was covalently linked to AMA-SG1 alkoxyamine initiator by HATU coupling to give 

TBDMS-Ade-AMA-SG1 (62% overall yield). By varying the experimental conditions, it then 

served as an initiator for the NMP of isoprene to yield well-defined TBDMS-Ade-PI (see 

experimental part) with Mn,SEC ~5500 g.mol-1 and Đ = 1.16. After deprotection in the presence of 

TBAF, Ade-PI was obtained. The effectiveness of the reaction was confirmed by 1H NMR, which 

showed the disappearance of the silylated protecting groups (Figure S1) and a slight decrease of the 

Mn,NMR because of TBDMS group removal (see experimental part and Table 1). 

Post-functionalization by nitroxide exchange reaction was performed on Ade-PI in presence 

of 1 eq. of TEMPO-Rho to yield Ade-PI-Rho as a fluorescent heterotelechelic polymer prodrug 

(Scheme 1d and Table 1). Ade-PI-Rho was characterized by 1H NMR spectroscopy and gave the 

expected structure. Rho aromatic protons were detected in the 6.5–8 ppm region, together with 

those from the piperazine ring in the 4-4.5 ppm region (Figure S2). Complete disappearance of SG1 
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protons in the 3.2-3.4 ppm region was also observed. Integration of aromatic proton signals of Ade 

and Rho gave a nearly quantitative post-functionalization yield as the Rho/Ade molar ratio was as 

high as 94 mol.% (Table 1). SEC equipped with a fluorescent detector revealed comparable molar 

mass distribution profiles for both RI and fluorescence traces, supporting a uniform end-capping 

process by TEMPO-Rho (Figure S3a). Moreover, RI traces between Ade-PI and Ade-PI-Rho were 

almost perfectly overlaid, indicating negligible irreversible termination by recombination (Figure 

S3b). 

To allow NP surface functionalization with BBB-targeting proteins by covalent linkage, a 

maleimide moiety was installed at the -chain end of PI and Ade-PI through the nitroxide 

exchange reaction. However, direct nitroxide exchange from a TEMPO bearing a furan-protected 

maleimide group led to extensive occurrence of termination reactions and doubling of the starting 

Mn (Figure S4), likely because of in situ deprotection of the maleimide group at elevated 

temperature and radical addition onto it. The furan-protected maleimide was therefore introduced in 

a two-step process, by first performing the nitroxide exchange reaction with 4-hydroxy-TEMPO, 

followed by coupling with a succinate furan-protected maleimide (succinic-mal-furan, Scheme 2a). 

PI-mal was also prepared by subjecting PI to nitroxide exchange in the presence of 4-hydroxyl-

TEMPO to give PI-OH. After coupling with succinic-mal-furan under EDC assistance to give PI-

mal-furan, PI-mal was recovered after maleimide deprotection (see experimental part, Scheme 2b 

and Table 1). SEC analysis did not show noticeable changes in molar mass distributions and 1H 

NMR confirmed the presence of maleimide and disappearance of SG1 protons. Even though 

absence of a suitable proton in α-position prevented determination of the coupling yield, it was 

expected to be very similar to Ade-PI-mal.  
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Scheme 2. (a) Synthesis of adenosine-polyisoprene-maleimide (Ade-PI-mal) by nitroxide-mediated 
polymerization (NMP) of isoprene from tris-O-silylated-adenosine-AMA-SG1 alkoxyamine 
(TBDMS-Ade-AMA-SG1), followed by the nitroxide exchange with 4-hydroxy-TEMPO on 
TBDMS-Ade-AMA-SG1, EDC-assisted functionalization by succinic-mal-furan and subsequent 
deprotections of Ade and maleimide. (b) Structure of PI-mal obtained by the nitroxide exchange 
with 4-hydroxy-TEMPO on PI, EDC-assisted functionalization by succinic-mal-furan and 
subsequent deprotection of maleimide.

A furan-protected maleimide derivative was reacted with succinic anhydride to give succinic-mal-

furan with a 96% yield (Scheme 2a), meanwhile the nitroxide exchange reaction was performed on 

TBDMS-Ade-PI with 4-hydroxy-TEMPO to give TBDMS-Ade-PI-OH (Scheme 2b and Figure 

S5). Even though absence of visible protons peaks on TEMPO prevented calculation of the 
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nitroxide exchange yield by 1H NMR, disappearance of SG1 protons (Figure S6) and the previous 

successful use of this reaction [38] indicates that it was quantitative. Subsequent coupling between 

TBDMS-Ade-PI-OH and a furan-protected maleimide assisted by EDC yielded the expected 

TBDMS-Ade-PI-mal-furan. The post-functionalization yield was calculated by comparing Ade 

aromatic and anomeric protons ( = 6.53, 4.22, 2.90 ppm) and the maleimide proton ( = 2.68 

ppm), and reached 60% (Figure S5, experimental part). Ade was then deprotected with TBAF 

followed by maleimide deprotection in toluene at 100 °C to give Ade-PI-mal (Table 1). Complete 

disappearance of both protecting groups, appearance of a signal corresponding to maleimide 

protons at 7.14 ppm, and shift of Ade anomeric proton from 6.10 to 6.24 ppm (likely due to a 

change of the chemical environment), confirmed the effectiveness of the deprotections (Figure S6). 

All polymers were also characterized by SEC and showed good conservation of the macromolecular 

characteristics throughout the different steps (Figure S7, experimental part). 

In summary, six different polymers were synthesized (Table 1): (i) two Ade prodrug 

polymers, bearing a maleimide group (Ade-PI-mal) or not (Ade-PI); (ii) two Ade-free polymers, 

bearing a maleimide group (PI-mal) or not (PI) and (iii) two fluorescent polymers, bearing Ade 

(Ade-PI-Rho) or not (PI-Rho). 

3.2 NP formulation and colloidal characteristics 

The previously synthesized polymers were formulated into NPs in order to compare bare (i.e., 

protein-free) NPs to NPs functionalized with BBB-targeting proteins, either by adsorption or 

conjugation, and to investigate the influence of the drug on NP colloidal properties. Drug loading of 

the different polymer prodrugs ranged from 3.5 to 5 wt.%, depending on the Mn of the polymer 

(Table 1). It is worth noting that higher drug loading values could be easily obtained by targeting 

lower molar mass polymers. Here, a relatively high Mn was targeted to increase NP surface 

hydrophobicity, which is known to increase protein affinity towards the NP surface [72, 73]. 
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Four different types of NPs were formulated by the nanoprecipitation technique at a 

concentration of 2.5 mg.mL-1: drug-free NPs (PI) and polymer prodrug NPs (Ade-PI) for protein 

adsorption or drug-free NPs containing maleimide groups (PI-mal) and polymer prodrug NPs 

containing maleimide groups (Ade-PI-mal) for protein conjugation (Table 2). All NPs were also 

fluorescently-tagged by co-nanoprecipitation with PI-Rho or Ade-PI-Rho (5 wt.% Rho) to confer 

fluorescent properties and allow tracing during biological evaluations.

Table 2. Colloidal Characteristics of NPs Prepared by Co-nanoprecipitation of PI, Ade-PI, PI-mal 
or Ade-PI-mal with PI-Rho or Ade-PI-Rho (5 wt.% Rho). 

Sample
Dz 

a

(nm)
PSD a

 a

(mV)

PIb 185 ± 1 0.13 ± 0.001 49 ± 2

Ade-PIc 179 ± 3 0.11 ± 0.03 45 ± 1

PI-malb 164 ± 14 0.21 ± 0.01 41 ± 15

Ade-PI-malc 162 ± 3 0.10 ± 0.02 50 ± 4
a Measured by dynamic light scattering (DLS) as an average of three different measures. b Co-nanoprecipitated with PI-
Rho (5 wt.% Rho). c Co-nanoprecipitated with Ade-PI-Rho (5 wt.% Rho).

NPs were very similar in terms of average size (Dz = 162–185 nm) and had low particle size 

distribution (PSD) values varying from 0.10 to 0.21. Whereas zeta potential of PI-based prodrug 

NPs is usually strongly negative [42, 57], all NPs here had a strong positive zeta potential value, 

between +40 and +50 mV. This is due to the presence of positive charges on the Rho molecule, as 

already observed for other PI NPs labeled with this fluorophore [38]. In addition to the nanoparticle 

surface hydrophobicity provided by the polymer, the positive charge from Rho could also increase 

the NP affinity towards the proteins used for functionalization [74-78]. Note that Rho has been 

extensively used for NP and peptide labelling in cell uptake/permeability studies, but the positive 

charge of the Rho alone has not been enough to dictate the cell-NP interactions [79].

NP colloidal stability was assessed in water and they were all stable for at least 14 days 

(Figure 2a). To optimize protein functionalization conditions, PI and Ade-PI colloidal stability was 
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also tested in PBS and hCMEC/D3 cell culture medium without serum at r.t., at 4 °C overnight, or 

at 37 °C for 30 min (Figure 2b and 2c). The hCMEC/D3 immortalized human brain endothelial cell 

line is a widely used model of the BBB, forming the characteristic tight junctions, architectural 

structure, and protein expression found in the human barrier [80]. NPs were stable in cell medium 

but aggregated in PBS, therefore the former was used in further experiments.

Figure 2. (a) Evolution of the intensity-averaged diameters (Dz) and particle size distributions 
(PSD) in water of Ade-PI, PI, Ade-PI-mal and PI-mal NPs blended with PI-Rho or Ade-PI-Rho (5 
wt.%. Rho) measured by DLS over 14 days. Stability in milliQ water, PBS and cell culture medium 
without serum incubated overnight (O.N.) at room temperature (r.t.), O.N. at 4 °C, or for 30 min at 
37 °C of (b) PI or (c) Ade-PI. NPs at 0.1 mg.mL-1 in order to determine the best conditions for 
protein functionalization (n = 3, error bars represent SEM).

3.3 Coating and functionalization of NPs with BBB crossing proteins

We recently found that specific proteins are enriched in the protein corona of gold NPs following 

passage through a transwell model of the BBB [48], emphasizing their potential ability to reach the  

brain after in vivo administration. It was postulated that the formation of an artificial corona 

consisting of one of these specific proteins could enhance the passage of NPs through the BBB. 

The presence of maleimide on the polymer should allow covalent binding of NPs with 

proteins that have a free cysteine residue. BSA [81], α2M [82] and Fet A [83] have cysteine 
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residues at different oxidation states that could be theoretically available for covalent binding to PI-

mal and Ade-PI-mal NPs. Moreover, given the strongly positive NP surface charge (Table 2), 

simple adsorption of the proteins was also investigated, as it has been extensively shown that a wide 

array of proteins are easily adsorbed via strong electrostatic interactions with the surface of NPs 

[84]. However, there are several advantages of choosing covalent binding over the simple 

adsorption of proteins on the surface of NPs, including improved selectivity of protein binding. 

Furthermore, as covalent bonds are stronger than electrostatic forces, this may possibly prevent the 

displacement of functionalized proteins by serum proteins upon in vivo administration, or their 

removal in the purification process [85]. 

NPs were incubated overnight at r.t. with each protein suspended in hCMEC/D3 cell 

medium without serum, to avoid serum protein interferences, then ultrafiltrated to remove unbound 

protein. BCA quantification indicated that the highest amount of protein binding occurred with α2M 

on all NPs (1.8-2.4 µg protein/µg NP) and the lowest with Fet A (0.5-1.1 µg protein/µg NP), 

possibly due to differences in MW as MWα2M = 725 kDa and MWFet A = 49 kDa (Figure 3). The 

presence of Ade significantly increased BSA binding in the presence of mal (1.4 µg protein/µg NPs 

on Ade-PI-mal vs 0.9 µg protein/µg NPs on PI-mal) but did not significantly affect α2M or Fet A 

binding.
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Figure 3. Amount of protein bound to NPs (g protein/g NP), as measured by BCA assay after 
incubation of NPs with protein in serum-free cell medium overnight at r.t., followed by 
ultrafiltration to remove unbound protein (n = 3, error bars represent SEM. Student’s t test * p < 
0.05, ** p < 0.01).

To confirm that proteins could covalently bind to maleimide moieties present on the NPs and to 

discriminate between adsorbed and covalently linked proteins, Ellman’s protocol was used to 

determine free thiol groups [53, 54]. If a NP is covalently bound to a protein, the number of free 

thiols present on the protein should decrease, as the thiol groups are attached to the maleimide 

moiety. Ellman’s reagent was used to quantify free cysteine on BSA, α2M or Fet A following 

incubation with either PI, PI-mal, Ade-PI or Ade-PI-mal NPs (Figure S8). For all proteins, there 

was significantly less free cysteine following incubation with PI-mal and Ade-PI-mal NPs 

compared to incubation with PI and Ade-PI NPs respectively, indicating that covalent binding 

occurred in the presence of maleimide. Even though there is likely a mix of adsorbed/linked 

proteins at the surface of PI-mal and Ade-PI-mal NPs, their total amount was not significantly 

different to that of only adsorbed proteins at the surface of PI and Ade-PI NPs.

Further confirmation of successful protein functionalization was obtained by measuring the 

hydrodynamic diameter of NPs. It has been previously shown that NPs increase in size upon protein 

functionalization and protein corona formation [86]. Therefore, the size of NPs with or without 
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protein functionalization was also measured after incubation in serum to form a corona, and 

subsequent ultrafiltration to remove excess unbound serum proteins. For all NPs, both protein 

functionalization and protein corona formation resulted in a significant increase in size, with the 

latter causing a more dramatic increase (Figure 4). The size increase upon corona formation is likely 

due to the adherence of multiple protein layers, containing proteins of diverse size bound directly to 

the NP surface and to each other. In the case of almost every NP-protein combination, prior protein 

functionalization prevented corona-associated size increases, and the size was comparable or 

identical to protein-functionalized NPs not exposed to serum. This is indicative of functionalization 

stability. Notably the ultrafiltration process itself caused a slight increase in PI (+36 nm), PI-mal 

(+23 nm), and Ade-PI-mal (+9 nm) NPs without proteins, but PSD values remained comparable 

before and after ultrafiltration (Figure S9). Indeed, the PSD values for most nanoparticle-protein or 

nanoparticle-serum complexes did not significantly change compared to bare NPs. This indicated 

that size changes are not due to aggregation of NPs upon protein exposure, and is in agreement with 

studies showing increases in NP size upon protein binding [53, 87-89].
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Figure 4. Size of NPs upon protein functionalization and protein corona formation in serum, as 
measured by DLS after ultrafiltration to remove unbound proteins. Functionalization or coating of 
NPs with: (a) BSA, (b) α2M and (c) Fet A, with or without serum-derived protein corona (n = 3, 
error bars represent SEM. Statistical analysis (Student’s t test) to compare size with bare NPs: * p < 
0.05, ** p < 0.01, *** p < 0.001.
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3.4 Cellular uptake and permeability of functionalized NPs through a transwell BBB model

The next step was to evaluate the influence of the nanoparticle surface coating/functionalization on 

the cellular uptake and permeability using an in vitro BBB model. A simple but well characterized 

and widely used model of the BBB was established by seeding hCMEC/D3 cells on transwell 

inserts separating an apical “blood” side from a basolateral “brain” side [3, 48-50]. Average TEER 

values peaked at 149 ± 3 .cm-2 on the 14th day after seeding and the paracellular permeability of 

LY, a probe used to evaluate the integrity of in vitro tight junctions, was 1.51 ± 0.03 × 10-3 cm.min-

1, indicating the formation of tight junctions [48, 51]. MTT assay showed that none of the NPs 

affected hCMEC/D3 cell viability up to 0.1 mg.mL-1 after 3 h incubation (Figure S10). 

Furthermore, TEER values remained unchanged upon incubation of hCMEC/D3 cells with PI, PI-

mal, Ade-PI, or Ade-PI-mal NPs for at least 3 h (Figure S11) during which time the NPs were 

stable, despite an increase in diameter (Table S2).

All four bare PI-based NPs were internalized to some extent by hCMEC/D3 cells, as 

visualized by fluorescent microscopy (Figure 5a) and quantified in the transwell model (Figure 5b). 

Fluorescent microscopy showed that the NPs gathered in the perinuclear region of hCMEC/D3 cells 

after 3 h incubation, a pattern seen with other NPs and cell types [90, 91].
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Figure 5. Cellular uptake of PI, Ade-PI, PI-mal and Ade-PI-mal NPs in an in vitro BBB model. 
(a) Fluorescent microscopy images show localization of NPs in the perinuclear region of 
hCMEC/D3 endothelial cells after 3 h incubation at 37 °C. Orange staining is actin cytoskeleton, 
blue is cell nuclei, red is rhodamine labelled NPs; (b) Uptake of NPs by hCMEC/D3 cells, 
expressed as percentage of original NPs added to the apical side of the transwell (n = 3, error bars 
represent SEM, Student’s t test *p < 0.05).

Remarkably, bare PI NPs, whose safety has already been demonstrated in vivo [42, 57], had high 

cellular uptake (5.3 ± 0.8%) and endothelial permeability (EP) (9.5 x 10-4 cm.min-1) (Figure 5b and 

6). Compared to previously described bi-functionalized liposomes that can cross the BBB in vitro 

(EP = 2.5 x 10-5 cm.min-1) and in vivo [13], EP of PI NPs was ~4 times higher, which is likely due, 

at least partially, to the high PI hydrophobicity, known to increase cellular uptake [57, 92]. 
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Figure 6. Endothelial permeability (EP) of PI, Ade-PI, PI-mal and Ade-PI-mal NPs in an in vitro 
BBB model after 3 h at 37 °C (n ≥ 3, error bars represent SEM, Student’s t test *p < 0.05, **p < 
0.01). 

Importantly, the decrease in cell uptake observed upon protein functionalization of PI NPs (Figure 

5b) did not match with a decrease in permeability (Figure 6). This indicates that the presence of 

proteins prevents the sequestering of NPs in the cell but may allow them to pass through the in vitro 

BBB at a similar or higher rate than bare PI NPs. 

When considering PI and PI-mal NPs, the presence of maleimide moieties led to higher 

cellular uptake but a lower EP compared to PI NPs. However, covalently bound 2M at the surface 

of PI-mal NPs caused a significant increase in both cellular uptake and EP (Figure 5b and 6). 

Therefore, this protein may be promising as a functionalization tool to promote passage of certain 

NPs through the BBB. Conversely, BSA and Fet A did not significantly affect the cellular uptake 

neither the EP of any of the PI-based NPs. This observation may be explained by differences in the 

packing/orientation of the proteins or alterations in protein conformation on the surface of NPs that 

may change protein-receptor interactions and subsequent cellular uptake [85, 93, 94]. 

Interestingly, the presence of Ade significantly decreased the endothelial permeability (EP) 

of NPs by ~4-8 fold when comparing PI and Ade-PI NPs, regardless of protein functionalization (p 
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< 0.01) (Figure 6). Given the relatively high water-solubility of Ade, many Ade moieties may be 

displayed at the surface of NPs, decreasing the NP surface hydrophobicity and thus modifying their 

interaction with proteins compared to PI NPs. This hypothesis is supported by the increase of the 

predicted HLB numbers for Ade-containing model prodrugs compared to Ade-free counterparts 

(Table S1). Similarly, Ade-PI-mal NPs had a lower cellular uptake than PI-mal NPs (5.3 ± 2.0 % 

vs 9.5 ± 1.4 %, p < 0.05), potentially due to a lower surface amount of reactive maleimide moieties 

caused by competition with hydrophilic Ade groups (Figure 5b). This may explain why 2M did 

not significantly affect the EP of NPs with Ade. 

Conclusion

Here we described a robust procedure for engineering well-defined, PI-based heterotelechelic 

polymer prodrug NPs for drug delivery and brain targeting. Heterotelechelic polymer prodrugs were 

prepared by the “drug-initiated” strategy followed by their post-functionalization via the nitroxide 

exchange reaction to position maleimide groups for conjugation of BBB-crossing proteins (BSA, 

2M or Fet A) at the NP surface, as confirmed by Ellman’s test and DLS measurements. All NPs 

were stable, with average diameters in the 162–185 nm range, narrow particle size distributions, and 

long-term colloidal stability in water and cell culture medium. 

We showed that non-BBB-targeted PI-NPs already exhibit higher permeability and cellular 

uptake than targeted systems described in the literature, rendering this novel nanodevice highly 

attractive as a drug delivery system for brain-directed drugs or contrast agents. We also 

demonstrated that surface functionalization of these NPs with 2M enhanced their passage through 

an in vitro BBB model. This could be a promising BBB-targeting strategy in vivo that would 

warrant further investigation. Also, our results suggested that in case polymer-prodrugs are 

envisioned, the nature/solubility of the drug and/or its positioning within the NPs are crucial to 
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achieve efficient surface functionalization with BBB-targeting proteins to enhance passage through 

the BBB.
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