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Abstract A series of novel long-chain alkyltriazoles were

prepared from commercial diols in a rapid process with

good yields. The compounds were evaluated in vitro for

their anticancer potential against two human cancer cell

lines: colon carcinoma (RKO) and uterine carcinoma

(HeLa). The results of colorimetric MTT assays showed

that six of fourteen compounds tested decreased cell via-

bility in these cell lines. Compounds 5e and 6a were the

most active against RKO cells, with IC50 values of 16.70

and 14.57 lM, respectively. The same compounds, 5e and

6a, were the most active in HeLa cells as well, with IC50

values of 11.05 and 12.77 lM, respectively. In addition,

compound 5e was found to induce apoptosis in RKO cells,

as assessed by TUNEL assay. The results suggest that

compound 5e may be a promising prototype anticancer

agent.

Keywords Alkyltriazoles � Antitumoral �
Click chemistry � Heterocycles

Introduction

Cancer is the second leading cause of death in the world. Most

of the anticancer drugs currently available for cancer treat-

ment have well-established shortcomings, such as poor effi-

ciency and selectivity, and high toxicity. Therefore, the

identification of potent, selective, and less toxic anticancer

agents remains an important and challenging goal of medici-

nal chemistry (Hilário et al., 2011; Correale et al., 2011).

Single long-chain alkylphospholipids (APLs) are a rela-

tively new class of structurally related antitumor agents that,

unlike conventional chemotherapeutic drugs, induce apop-

tosis in tumor cells by acting on cell membranes rather than

on DNA. APLs accumulate in the cell and interfere with

lipid-dependent survival signaling pathways, notably the

PI3K-Akt and Raf-Erk1/2 pathways, and de novo

phospholipid biosynthesis (Blitterswijk and Verheij, 2012).

Alkyllysophospholipids and alkylphosphocholines (APCs)

are two classes of APL ether lipids that could be potential

anticancer agents. Miltefosine, perifosine, erucylphosph-

ocholine, and erufosine (Fig. 1) are APCs, which are derived

from alkyllysophospholipids by the removal of the glycerol

group. In the APC edelfosine, however, the glycerol back-

bone is maintained. Hexadecylphosphocholine (1) is a lipid

analog that exerts antiproliferative activity against a broad

spectrum of established tumor cell lines (Blitterswijk and

Verheij, 2012; Wieder et al., 1998). Studies on cytotoxic

APLs revealed that a long alkyl chain and a polar group are

essential for antitumor activity (Rakotomanga et al., 2007).

In the last decade, a large number of studies have

reported the synthesis and biological screening of several
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APC compounds (Ungera and Eibl, 1991; Van der Luit

et al., 2007; Vink et al., 2007). Although they are struc-

turally simple, the purification of these highly polar com-

pounds is very difficult, time-consuming, expensive, and

frequently results in low yields.

1,2,3-Triazoles are a very important class of synthetic

heterocycles that have received widespread attention in

recent years because of their broad range of pharmaco-

logical properties and easy synthetic accessibility by click

chemistry. They are found in various bioactive molecules,

including antifungal (Aher et al., 2009), antibacterial

(Demaray et al., 2008; Wang et al., 2010), antiallergic

(Buckle et al., 1983), anti-HIV (Whiting et al., 2006; Giffin

et al., 2008), antitubercular (Costa et al., 2006; Patpi et al.,

2012), and anti-inflammatory agents (Simone et al., 2011).

In addition, the synthesis of different 1,2,3-triazoles with

anticancer activity has also been increasingly noted (Alam

et al., 2013; Praveena et al., 2014; Kurumurthy et al.,

2014). Triazoles are often considered bioisosteres of amide

functionalities in bioactive compounds due to similarities

in spatial structure and electronic effect. Furthermore, these

heterocycles are resistant to metabolic degradation and can

interact with biological structures in several noncovalent

ways (Deiters et al., 2003; Wang et al., 2003; Dirks et al.,

2005; Kosiova et al., 2007; Santos et al., 2008). Finally,

they have a large dipole moment and are capable of

hydrogen bonding, which could allow them to act as a

polar head group.

Considering the potential anticancer activity of APCs

and the speculation that their activity is linked to the pre-

sence of a hydrophobic tail attached to a hydrophilic polar

head group, we focused our attention on synthesizing

simpler potentially antitumoral compounds containing a

1,2,3-triazole ring and alkyl chains with different lengths

and functionalizations. These compounds can be prepared

using a 1,3-dipolar cycloaddition reaction between an

alkyne and an azide (Struthers et al., 2010). This cycliza-

tion reaction, developed in the early 1960s by Huisgen

(1961), became highly popular when Sharpless (Rostovtesv

et al., 2002) and Meldal (Tornøe et al., 2002) separately

reported its Cu(I)-catalyzed version (Scheme 1). The

reaction is now known as the Cu-catalyzed azide–alkine
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Fig. 1 Structures of natural lysophosphatidylcholine and some synthetic alkyl-phospholipid (APL) analogs. (Adapted of Blitterswijk and

Verheij, 2012)
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cycloaddition (CuAAC) (Amblard et al., 2009; Meldal and

Tornoe, 2008) or click reaction. Sharpless strongly defen-

ded its use in drug discovery, reasoning that, in this field,

all searches must be restricted to molecules that are easy to

make (Kolb et al., 2001). In addition to synthesizing al-

kyltriazoles, we also evaluated the antitumoral activity

in vitro of the new compounds against two human cancer

cell lines: colon carcinoma (RKO-AS451) cells and uterine

carcinoma (HeLa).

Methods and materials

General

Reagents and solvents were purchased as reagent grade and

used without further purification. All melting points were

measured on Fisher–Jonhs and are uncorrected. IR spectra

were recorded on Perkin-Elmer Spectrum One SP-IR

Spectrometer. 1H and 13C NMR spectra were recorded on a

Bruker AVANCE DRX 200 MHz spectrometer using TMS

as an internal standard. The results are presented as

chemical shift d in ppm, number of protons, multiplicity,

J values in Hertz (Hz), proton position, and carbon posi-

tion. Multiplicities are abbreviated as follows: s (singlet), d

(doublet), t (triplet), m (multiplet), and qn (quintet). High

resolution mass spectra were recorded on ESI-MS—Bruker

Daltonics Micro TOF mass spectrometer with electrospray

ionization coupled to time-of-flight (Solvent: MeOH). The

progress of the reactions was monitored by TLC on Merck

silica plates (GF254). Column chromatography was per-

formed over silica gel 60, 70–230 mesh (Merck).

Synthesis

General procedure for the synthesis of methanesulfonate

alkylazides (4a, 4b, and 4d)

To a stirred solution of 1,6-hexanodiol 1a (1.00 equiv.), 1,9-

nonanediol 1b (1.00 equiv.), or 1,12-dodecanediol 1c (1.00

equiv.), in 30 mL of toluene was added HBr 48 % (2.00

equiv.). The reaction was stirred at 110 �C for 24 h. The

solvent was removed under reduced pressure, and the residue

was purified by column chromatography over silica gel,

eluting with hexane/EtOAc 9:1, to yield pure haloalcohol

2a–c. These compounds were transformed into their corre-

sponding azidoalcohols 3a–c by SN2 substitution (Scheme 1).

A stock solution of 0.5 M NaN3 in DMSO was prepared by

stirring the solution for 24 h at room temperature. To a

100-mL round-bottom flask equipped with a magnetic stir bar

was added a 0.5 M solution of NaN3 in DMSO at room tem-

perature. To this solution was added the bromoalcohol 2a

(1.00 equiv.), 2b (1.00 equiv.), or 2c (1.00 equiv.), and the

mixture was stirred for 24 h at room temperature. The reaction

was quenched with H2O (50 mL) and stirred until it cooled to

room temperature. The mixture was extracted with Et2O

HO OH
n HO N3

n
(   ) (   )

N3X n
(   )

1a, n=6
1b, n=9
1c, n=12

2a, n=6, 87%
2b, n=9, 87%
2c, n=12, 65%

3a, n=6, 48%
3b, n=9, 85%
3c, n=12, 80%

HO Brn
(   )

4a, X= OMs, n=6, 37%
4b, X= OMs, n=9, 90%
4c, X= F, n= 9, 47%
4d, X= OMs, n=12, 84%
4e, X= F, n=12, 49%

i ii

iii

iv

N

N

N

R

n

(   )

X

5a, X=OMs, n=1, R=-(CH2)3OH (46%)
5b, X=OMs, n=1, R=-COOCH2CH3 (60%)
5c, X=OMs, n=4, R=-(CH2)3OH (92%)
5d, X=OMs, n=4, R=-COOCH2CH3 (92%)
5e, X=OMs, n=7, R=-(CH2)3OH (52%)
5f, X=OMs, n=7, R=-(CH2)2COOH (81%)
5g, X=OMs, n=7, R=-COOCH2CH3 (93%)
5h, X=OMs, n=7, R=-CH2OH (56%)
5i, X=F, n=4, R=-(CH2)3OH (48%)
5j, X=F, n=7, R=-(CH2)3OH (46%)

v

iv

Scheme 1 Reagents and conditions: (i) HBr (48 %), toluene, 110 �C,

24 h, 65–87 %; (ii) NaN3, DMSO, rt, 24 h, 48–85 %; (iii) CH2Cl2,

mesyl chloride, triethylamine, rt, 24 h, 37–90 %; (iv) KF/18-crown-6,

DMSO, 110 �C, 24 h, 47–49 %; (v) NaAsc (20 mol%), CuSO4�5H2O

(8 mol%), alkyne: pent-4-yn-1-ol, ethyl propiolate, 4-pentynoic acid,

or propargyl alcohol, CH2Cl2:H2O (1:1), rt., 24 h, 46–93 %
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(3 9 30 mL), and the resulting extracts were washed with

H2O (3 9 50 mL) and brine (50 mL). The organic layer was

dried (Na2SO4) and filtered, and the residue obtained was

purified by column chromatography over silica gel, eluting

with hexane/EtOAc 9:1, to yield pure alkyl azidoalcohols 3a–

c. A solution of the azidoalcohol 3a (1.00 equiv.), 3b (1.00

equiv.), or 3c (1.00 equiv.) in CH2Cl2 (50 mL) was cooled to

0 �C. Et3N (2.00 equiv.) and methanesulfonyl chloride (2.00

equiv.) was added. The reaction mixture was stirred for 24 h

and then allowed to reach room temperature. The reaction

mixture was poured into crushed ice (70 mL) and was then

extracted with methylene chloride (3 9 30 mL). The organic

layer was dried (Na2SO4), filtered, and evaporated under

reduced pressure. The residue obtained was purified by col-

umn chromatography over silica gel, eluting with hexane/

EtOAc 9:1, to yield highly purified halo alcohol pure meth-

anesulfonate alkylazides compounds 4a, 4b, and 4d.

General procedure for the synthesis of alkylfluoro (4c

and 4e)

To a stirred solution of 9-azidononyl methanesulfonate 4b

(1.00 equiv.) or 12-azidododecyl methanesulfonate 4d (1.00

equiv.) in 4 mL of anhydrous DMSO was added KF (2.00

equiv.) and 18-crown-6 (2.00 equiv.). The reaction was

mainteined at 110 �C for 24 h. The solvent was removed

under reduced pressure, and the residue was purified by

column chromatography over silica gel, eluting with hexane/

EtOAc 9:1, to yield pure alkylfluoro 4c and 4e.

1-Azido-9-fluorononane (4c) Yellow oil, 49 %; IR (neat)

mmax 2929, 2857, 2091 cm-1; 1H NMR (CDCl3, 200 MHz):

d = 1.20–1.49 (12H, m, 69 CH2), 1.52–1.81 (2H, m,

–CH2CH2F), 3.26 (2H, t, J = 6.0 Hz, –CH2N3), 4.43 (2H, td,

J = 6.0, 48.0 Hz, –CH2F). 13C NMR (CDCl3, 50 MHz):

d = 25.2 (–CH2CH2N3), 26.8 (–CH2CH2F), 29.0, 29.2, 29.

3, 29.5 (49 CH2), 30.6 (d, J = 19.0, –CH2CH2F), 51.6

(–CH2N3), 84.3 (d, J = 163.0, –CH2F).

1-Azido-12-fluorododecane (4e) Yellow oil, 47 %; IR

(neat) mmax 2929, 2857, 2091 cm-1; 1H NMR (CDCl3,

200 MHz): d = 1.19–1.44 (18H, m, 99 CH2), 1.52–1.80

(2H, m, –CH2CH2F), 3.26 (2H, t, J = 6.0 Hz, –CH2N3,).

4.44 (2H, t, J = 6.0 Hz, –CH2F); 13C NMR (CDCl3,

50 MHz): d = 25.3 (–CH2CH2N3), 26.9 (–CH2CH2F),

29.0, 29.3, 29.4, 29.7 (79 –CH2), 30.6 (d, J = 19.5 Hz,

–CH2CH2F), 51.7 (–CH2N3), 84.5 (d, J = 156.5 Hz, –CH2F).

General procedure for the synthesis of alkyltriazoles (5a–j)

The azide compound (4a–e) (1.00 equiv.) was added to a

10-mL round-bottom flask containing 1 mL of dichloro-

methane, 1 mL of water, CuSO4�5H2O (0.08 equiv.), sodium

ascorbate (0.20 equiv.), and alkyne (pent-4-yn-1-ol, propargyl

alcohol, 4-pentynoic acid, or ethyl propiolate (1.00 equiv.).

The reaction mixture was vigorously stirred at room temper-

ature for 24 h. After completion of the reaction, 5 mL of water

were added, followed by extraction with dichloromethane

(3 9 8 mL). The resulting organic layer was washed three

times with a 25 % EDTA solution buffered with NH4Cl at pH

9.5. The organic layer was dried with Na2SO4 and the solvent

was removed under reduced pressure. The crude product was

purified by column chromatography over silica gel, eluting

with dichloromethane, dichloromethane:EtOAc (8:2 v/v; 5:5

v/v; 2:8 v/v), EtOAC and EtOAc/MeOH (8:2 v/v; 5:5 v/v; 2:8

v/v), to give pure compounds 5a–j.

6-(4-(3-Hydroxypropyl)-1H-1,2,3-triazol-1-yl)hexyl meth-

anesulfonate (5a) Yellow oil, 46 %; IR (neat) mmax 3276,

2916, 2850, 1331, 1162, 1052–848 cm-1; 1H NMR (CDCl3,

200 MHz): d = 1.24–1.96 (10H, m, 59 CH2), 2.79 (2H, t,

J = 6.0 Hz, –CH2–Ctriazole), 2.98 (3H, s, –CH3SO2), 3.66

(2H, t, J = 6.0 Hz, –CH2–Ntriazole), 4.18 (2H, t, J = 6.0 Hz,

–CH2OH), 4.30 (2H, t, J = 6.0 Hz, –CH2OMs), 7.33 (1H, s,

–C=CHtriazole);
13C NMR (CDCl3, 50 MHz): d = 21.5, 24.4,

25.4, 28.4, 29.6 and 31.8 (69 CH2), 36.9 (–CH3SO2), 49.6

(–CH2–Ntriazole), 60.8(–CH2OH), 69.9 (–CH2OMs), 121.1

(–C=CHtriazole), 147.2 (–C=Ctriazole); HRESIMS m/z

[M?H]?: 306.1350 C12H24N3O4S (calcd. 306.1487).

6-(4-(Ethoxycarbonyl)-1H-1,2,3-triazol-1-yl)hexyl methane-

sulfonate (5b) Yellow–white solid, 60 %; m.p. =

70–72 �C; IR (neat) mmax 2945, 2915, 2869, 1728, 1344,

1197, 1097–957, 1166, 1156, 1097, 915 cm-1; 1H NMR

(CDCl3, 200 MHz): d = 1.30–1.38 (7H, m, –OCH2CH3 and

29 CH2), 1.68 (2H, qn, J = 6.0 Hz, –CH2CH2Ntriazole), 1.90

(2H, qn, J = 6.0 Hz, –CH2CH2OMs), 2.95 (3H, s,

–CH3SO2), 4.15 (2H, t, J = 6.0 Hz, –CH2OMs), 4.26–4.42

(4H, m, –CH2–Ntriazole and –OCH2CH3), 8.08 (1H, s, –C=

CHtriazole);
13C NMR (CDCl3, 50 MHz): d = 14.2

(–OCH2CH3), 24.7, 25.6, 28.7 and 29.8 (49 CH2), 37.2

(–CH3SO2), 50.3 (–CH2–Ntriazole), 61.1 (–OCH2CH3), 69.7

(–CH2OMs), 127.3 (–C = CHtriazole), 140.1 (–C=Ctriazole),

160.6 (–CO); HRESIMS m/z [M?H]?: 320.1138

C12H22N3O5S (calcd. 320.1280).

9-(4-3-Hydroxypropyl)-1H-1,2,3-triazol-1-yl)nonyl methane-

sulfonate (5c) White solid, 39 %; m.p. = 64–66 �C; IR

(neat) mmax 3276, 2919, 2851, 1332, 1164, 1059–848 cm-1;
1H NMR (CDCl3, 200 MHz): d = 1.02–1.45 (10H, m, 59

CH2), 1.57–1.71 (m, –CH2CH2Ntriazole), 1.70–1.99 (4H, m,

–CH2CH2OMs and –CH2CH2OH), 2.76 (2H, t, J = 6.0

Hz, –CH2–Ctriazole), 2.94 (3H, s, –CH3SO2), 3.63 (2H, t,

J = 6.0 Hz, –CH2OH), 4.15 (2H, t, J = 6.0 Hz,

–CH2OMs), 4.24 (2H, t, J = 6.0 Hz, –CH2–Ntriazole), 7.24

(1H, s, –C=CHtriazole);
13C NMR (CDCl3, 50 MHz): d =
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21.8, 24.9, 25.9, 28.5, 28.9, 29.8 and 31.9 (99 CH2), 36.9

(–CH3SO2), 49.5 (–CH2–Ntriazole), 61.4 (–CH2OH), 70.1

(–CH2OMs), 120.7 (–C=Ctriazole), 147.4 (–C=Ctriazole);

HRESIMS m/z [M?H]?: 348.1834 C15H30N3O4S (calcd.

348.1957).

9-(4-(Ethoxycarbonyl)-1H-1,2,3-triazol-1-yl)nonyl methane-

sulfonate (5d) Yellow solid, 92 %; m.p. = 72–74 �C; IR

(neat) mmax 2936, 2912, 2852, 1713, 1352, 1215, 1168,

1051–979 cm-1; 1H NMR (CDCl3, 200 MHz): d = 1.14–1.

33 (10H, m, 59 CH2), 1.39 (2H, t, J = 6.0 Hz, –OCH2CH3),

1.71 (2H, qn, J = 6.0, –CH2CH2OMs,), 1.81–1.99 (2H, m,

–CH2CH2Ntriazole), 2.90 (3H, s, –CH3SO2), 4.19 (2H, t, J =

6.0 Hz, –CH2OMs), 4.30–4.50 (2H, m, –CH2–Ntriazole), 8.08

(1H, s, –C=CHtriazole);
13C NMR (CDCl3, 50 MHz): d =

13.7 (–OCH2CH3), 24.9, 26.3, 28.6, 29.0 and 29.8 (59 CH2),

37.4 (–CH3OMs), 49.9 (–CH2–Ntriazole), 60.9 (–OCH2CH3),

69.7 (–CH2OMs), 127.3 (–C=CHtriazole), 140.2 (–C=Ctriazole),

160.6 (–CO); HRESIMS m/z [M?H]?: 362.1861 C15H28

N3O5S (calcd. 362.1749).

12-(4-(3-Hydroxypropyl)-1H-1,2,3-triazol-1-yl)dodecyl

methanesulfonate (5e) White solid, 52 %; m.p. =

80–82 �C; IR (neat) mmax 3389, 2916, 2850, 1332, 1163,

1045, 956 cm-1; 1H NMR (CDCl3, 200 MHz): d =

1.25–1.44 (16H, m, 29 CH2), 1.75 (2H, qn, J = 6.0 Hz,

–CH2CH2OMs), 1.84–1.99 (4H, –CH2CH2Ntriazole and

–CH2CH2OH), 2.84 (2H, t, J = 6.0 Hz, –CH2–Ctriazole),

3.01 (3H, s, –CH3OMs,), 3.71 (2H, t, J = 6.0 Hz,

–CH2OH), 4.22 (2H, t, J = 6.0 Hz, –CH2–Ntriazole), 4.31

(2H, t, J = 6.0 Hz, –CH2OMs), 7.74 (1H, s, –C=CHtriazole);
13C NMR (CDCl3, 50 MHz): d = 21.2 (–CH2(CH2)2OMs),

24.8, 25.9, 28.5, 28.6, 28.8, 29.0, 29.8 and 31.9 (119 CH2),

35.5 (–CH3OMs), 49.8 (–CH2–Ntriazole), 60.5(–CH2OH), 70.

2 (–CH2OMs), 121.7 (–C=CHtriazole), 150.1 (–C=Ctriazole);

HRESIMS m/z [M?H]?: 390.2572 C18H34N3O5S (calcd.

390.2426).

3-(1-(12-Methanesulfonoyldodecyl)-1H-1,2,3-triazol-1-yl)

propanoic acid (5f) Yellow solid, 81 %; IR (neat) mmax

2916, 2850, 1729, 1331, 1163, 1052–952, 850 cm-1; 1H

(CDCl3, 200 MHz): d = 1.18–1.26 (16H, m, 89 CH2),

1.50–1.69 (4H, m, –CH2CH2Ntriazole and –CH2CH2OMs),

2.19–2.50 (4H, m, CH2CH2COOH), 3.19 (2H, t, J =

6.0 Hz, –CH2–Ntriazole), 4.15 (2H, t, J = 6.0 Hz, –CH2OMs),

7.98 (1H, s, –C=CHtriazole);
13C NMR (CDCl3, 50 MHz):

d = 25.3 (–CH2(CH2)2OMs), 26.6, 28.5, 28.7, 28.9, 29.0 and

29.4 (119 CH2), 33.2 (–CH2COOH), 37.1 (–CH3OMs), 51.0

(–CH2–Ntriazole), 70.3 (–CH2OMs), 115.6 (–C=CHtriazole),

136.3 (–C=Ctriazole), 178.9 (–CO); HRESIMS m/z [M?H]?:

404.2464 C18H34N3O5S (calcd. 404.2219).

12-(4-(Ethoxycarbonyl)-1H-1,2,3-triazol-1-yl)dodecyl

methanesulfonate (5g) White solid, 93 %; m.p. =

78–80 �C; IR (neat) mmax 2916, 2850, 1717, 1341, 1226,

1207, 1168, 1046–943, 848 cm-1; 1H NMR (CDCl3,

200 MHz): d = 1.20–1.30 (16H, m, 89 CH2), 1.41 (2H, t,

J = 6.0 Hz, –OCH2CH3), 1.74 (2H, qn, J = 6.0 Hz,

–CH2CH2OMs), 1.87–1.98 (2H, m, –CH2CH2Ntriazole),

2.97 (3H, s, –CH3OMs), 4.18 (2H, t, J = 6.0 Hz,

–CH2–Ntriazole), 4.39–4.45 (4H, m, –CH2OMs and

–OCH2CH3), 8.05 (1H, s, –C=CHtriazole);
13C NMR (CDCl3,

50 MHz): d = 14.2 (–OCH2CH3), 25.2, 26.2, 29.0, 29.2,

29.5, 29.8 and 30.3 (89 CH2), 37.0 (–CH3OMs), 50.8

(–CH2–Ntriazole), 61.5 (–OCH2CH3), 70.4 (–CH2OMs),

127.2 (–C=CHtriazole), 140.1 (–C=Ctriazole), 160.7 (–CO);

HRESIMS m/z [M?H]?: 404.2464 C18H34N3O5S (calcd.

404.2219).

12-(4-(Hydroxymethyl)-1H-1,2,3-triazol-1-yl)dodecyl meth-

anesulfonate (5h) Yellow solid, 56 %; m.p. = 86–88 �C;

IR (neat) mmax 3117, 3023, 2916, 2850, 1331, 1162, 1120,

1052–951 cm-1; 1H NMR (CDCl3, 200 MHz): d = 1.16–1.

38 (16H, m, 89 CH2), 1.62–1.88 (4H, m, CH2CH2OMs and

CH2CH2Ntriazole), 2.95 (3H, s, –CH3OMs), 4.16 (2H, t, J =

6.0 Hz, –CH2OMs), 4.27 (2H, t, J = 6.0 Hz, –CH2–Ntriazole),

4.70 (2H, s, –CH2OH), 7.54 (1H, s, –C=CHtriazole);
13C NMR

(CDCl3, 50 MHz): d = 25.4, 26.3, 28.8, 28.9, 29.2, 30.1 and

31.2 (109 CH2), 37.2 (–CH3OMs), 50.3 (–CH2–Ntriazole), 55.9

(–CH2OH), 70.3 (–CH2OMs), 121.8 (–C=CHtriazole), 147.8

(–C=Ctriazole); HRESIMS m/z [M?H]?: 362.2047 C16H32

N3O4S (calcd. 362.2113).

3-(1-(9-Fluorononyl)-1H-1,2,3-triazol-1-yl)propan-1-ol (5i)

White solid, 48 %; m.p. = 62–64 �C; IR (neat) mmax 3312,

2913, 2848, 1050 cm-1;1H NMR (CDCl3, 200 MHz): d =

1.29–1.40 (10H, m, 59 CH2), 1.68 (2H, qnd, J = 2.0 Hz,

J = 24.0 Hz, –CH2CH2F,), 1.83–1.98 (4H, m, –CH2

CH2OH and CH2CH2Ntriazole), 2.83 (2H, t, J = 8.0 Hz,

–CH2–Ctriazole), 3.66–3.74 (2H, m, –CH2OH), 4.31 (2H, t,

J = 8.0 Hz, –CH2–Ntriazole), 4.43 (2H, td, J = 8.0 Hz,

J = 48.0 Hz, –CH2F), 7.54 (1H, s, –C=CHtriazole);
13C

NMR (CDCl3, 50 MHz): d = 21.85 (–CH2(CH2)2F), 24.9,

26.3, 28.7, 28.9, 29.0 and 30.1 (69 CH2), 30.22 (d, J =

13.5 Hz, –CH2F), 33.3 (HOCH2CH2–Ctriazole), 51.5

(–CH2–Ntriazole), 62.8 (–CH2OH), 85.4 (d, J = 163.0 Hz,

–CH2F),122.0(–C=CHtriazole),148.0 (–C=Ctriazole);HRESIMS

m/z [M?H]?: 272.1973 C14H27FN3O (calcd. 272.2138).

3-(1-(12-Fluorododecyl)-1H-1,2,3-triazol-1-yl)propano-1-

ol (5j) White solid, 46 %; m.p. = 88–90 �C; IR (neat)

mmax 3321, 2917, 2846, 1006 cm-1;1H NMR (CDCl3,

200 MHz): d = 1.21–1.44 (16H, m, 29 CH2), 1.56–2.05

(6H, 39 CH2), 2.86 (2H, t, J = 6.0 Hz, –CH2–Ctriazole),

3.70 (2H, t, J = 6.0 Hz, –CH2OH), 4.32 (2H, t, J =
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6.0 Hz, –CH2–Ntriazole), 4.55 (2H, td, J = 6.0 Hz, J =

46.0 Hz, –CH2F), 7.34 (1H, s, –C=CHtriazole);
13C NMR

(CDCl3, 50 MHz): d = 21.7 (–CH2(CH2)2F), 25.2, 26.6,

29.6, 29.0 and 30.4 (99 CH2), 30.5 (d, J = 19.0 Hz,

–CH2F), 32.2 (HOCH2CH2CH2triazole), 49.8 (–CH2–Ntriazole),

61.1 (–CH2OH), 84.2 (d, J = 179.5 Hz, –CH2F), 121.0 (–C=

CHtriazole), 147.3 (–C=Ctriazole); HRESIMS m/z [M?H]?:

314.2458 C17H33FN3O (calcd. 314.2608).

General procedure for the synthesis of 6a–d

To a solution of compounds 5c, 5d, 5e, or 5g (1.00 equiv.)

in acetone (5 mL), was added sodium iodide (2.00 equiv.).

The mixture was heated at reflux for 24 h. Afterward the

reaction mixture was diluted with water and extracted with

dichloromethane (3 9 15 mL). The organic extracts were

combined and dried (Na2SO4), and the solvent was

removed under reduced pressure. The residue obtained was

purified by column chromatography over silica gel, eluting

with mixtures of EtOAc/MeOH (100:0; 80:20, and 0:100),

to give pure compounds 6a–d.

3-(1-(9-Iodononyl)-1H-1,2,3-triazol-4-yl)propan-1-ol

(6a) Yellow solid, 84 %; m.p. = 88–90 �C; IR (neat)

mmax 3350, 2924, 2851 cm-1;1H NMR (CDCl3, 200 MHz):

d = 1.24–1.34 (10H, m, 59 CH2), 1.74–1.94 (6H, m,

–CH2CH2Ntriazole, –CH2CH2OH and –CH2CH2I), 2.80 (2H,

t, J = 6.0 Hz, –CH2Ctriazole), 3.17 (2H, t, J = 6.0 Hz,

–CH2I), 3.67 (2H, t, J = 6.0 Hz, –CH2OH), 4.29 (2H, t,

J = 6.0 Hz, –CH2Ntriazole), 7.31 (1H, s, –C=CHtriazole);
13C

NMR (CDCl3, 50 MHz): d = 7.5 (–CH2I), 22.0 (–CH2

(CH2)3I), 26.6, 28.5, 29.00, 29.3, 30.4, 32.2, 33.6 (89

CH2), 50.7 (–CH2–Ntriazole), 61.6 (–CH2OH), 121.0 (–C=

CHtriazole), 147.6 (–C=Ctriazole); HRESIMS m/z [M?H]?:

380.1170 C14H27IN3O (calcd. 380.1199).

3-(1-(12-Iodododecyl)-1H-1,2,3-triazol-4-yl)propan-1-ol

(6b) Yellow solid, 73 %; m.p. = 84–86 �C; IR (neat)

mmax 3308, 2917, 2848 cm-1; 1H NMR (CDCl3, 200 MHz):

d = 1.12–1.46 (16H, m, 89 CH2), 1.62–2.04 (6H, m,

–CH2CH2Ntriazole, –CH2CH2OH and –CH2CH2I), 2.83 (2H,

t, J = 6.0 Hz, –CH2–Ctriazole), 3.18 (2H, t, J = 6.0 Hz,

–CH2I), 3.70 (2H, t, J = 6.0 Hz, –CH2OH), 4.30 (2H, t,

J = 6.0 Hz, –CH2–Ntriazole), 7.31 (1H, s, –C=CHtriazole);
13C NMR (CDCl3, 50 MHz): d = 7.34 (–CH2I), 21.91

(–CH2(CH2)3I), 26.3, 28.3, 28.8, 29.2, 29.3, 30.2, 30.3,

31.9 and 34.0 (99 CH2), 49.9 (–CH2–Ntriazole), 61.3

(–CH2OH), 120.8 (–C=CHtriazole), 147.4 (–C=Ctriazole);

HRESIMS m/z [M?H]?: 422.1637 C17H33IN3O (calcd.

422.1668).

Ethyl-1-(9-iodononyl)-1H-1,2,3-triazole-4-carboxylate

(6c) White solid, 97 %; m.p. = 90–92 �C; IR (neat) mmax

2919, 2848, 1723, 1216, 1197, 1164 cm-1;1H NMR

(CDCl3, 200 MHz): d = 1.22–1.28 (10H, m, 59 CH2),

1.41 (3H, t, J = 6.0 Hz, –OCH2CH3), 1.71–1.96 (4H, m,

–CH2CH2Ntriazole and –CH2CH2I), 3.18 (2H, t, J = 6.0 Hz,

–CH2I), 4.30–4.51 (4H, m, –CH2–Ntriazole and –OCH2

CH3), 8.07 (1H, s, –C=CHtriazole);
13C NMR (CDCl3,

50 MHz): d = 7.37 (–CH2I), 14.5 (–OCH2CH3), 26.5,

28.7, 29.1, 29.6, 30.3, 30.6 and 33.3 (79 CH2), 50.6

(–CH2–Ntriazole), 61.8 (–CH2OH), 127.4 (–C=CHtriazole),

140.5 (–C=Ctriazole), 160.8 (–CO); HRESIMS m/z

[M?H]?: 394.1123 C14H25IN3O2 (calcd. 394.0991).

Ethyl-1-(12-iodododecyl)-1H-1,2,3-triazole-4-carboxylate

(6d) Yellow solid, 90 %; m.p. = 80–82 �C. IR (neat)

mmax 2919, 2848, 1723, 1224, 1207, 1164, 777 cm-1; 1H

NMR (CDCl3, 200 MHz): d = 1.15–1.39 (16H, m, 89

CH2), 1.41 (3H, t, J = 6.0 Hz, –OCH2CH3), 1.81 (2H, t,

J = 6.0 Hz, –CH2CH2I), 1.95 (2H, qn, J = 6.0 Hz,

–CH2CH2Ntriazole), 3.18 (2H, t, J = 6.0 Hz, –CH2I), 4.47

(4H, m, –CH2–Ntriazole and –OCH2CH3), 8.06 (1H, s, –C=

CHtriazole);
13C–NMR (50 MHz, CDCl3): 6.9 (–CH2I), 14.3

(–OCH2CH3), 26.3, 28.3, 28.8, 29.1, 30.1, 30.4 and 33.4

(69 CH2), 50.9 (–CH2–Ntriazole), 61.1 (–CH2OH), 127.2

(–C=CHtriazole), 140.09 (–C=Ctriazole), 160.8 (CO);

HRESIMS m/z [M?H]?: 436.1419 C17H31IN3O2 (calcd.

436.1461).

Biological assays

Cytotoxicity assay

The cytotoxicity of the compounds was assessed with the

human cell lines RKO (colon carcinoma ATCC# CRL-2577),

uterine carcinoma (HeLa), and lung fibroblast (WI-26VA4)

cells, using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-

nyltetrazolium bromide) (Sigma, St. Louis, MO, USA) color-

imetric method. Briefly, the cells were plated in 96-well plates

(1 9 105 cells/well) and incubated for 24 h at 37 Æ C in a humid

atmosphere with 5 % CO2 to adhesion. After this period, the

wells were washed with culture medium (EMEM ? 10 %

inactivated fetal calf serum ? 2 mM L-glutamine) and incu-

bated with the compounds at different concentrations

(0.01–500 lM). Control with etoposide (Sigma-Aldrich, St.

Louis, MO) used as reference anticancer drug, was performed

in parallel. After the incubation, the plates were treated with

MTT. The reading was performed using a SpectraMax M5e

microplate reader (Molecular Devices, Sunnyvale, CA, USA)

at 550 nm. Cytotoxicity was scored as the percentage reduction

in absorbance versus untreated control cultures (Hilário et al.,

2011). All experiments were performed in triplicate. The
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results were expressed as the mean of the IC50 (the lethal drug

concentration that reduced cell viability by 50 %).

DNA Nick-End labeling by the TUNEL method

and immunofluorescence

Apoptotic cell death was measured using the APO-BrdU

TUNEL assay kit (Invitrogen, CA, USA). Briefly, the

effect of the compound 5e and etoposide on DNA frag-

mentation was determined using RKO cells. The cells were

incubated with the compounds during 48 h as described

above, and fixed using a solution of ice-cold 70 % ethanol.

The cells were then counterstained with 5-Bromo-20-
deoxyuridine 50-triphosphate (BrdUTP) in the presence of

the terminal deoxynucleotidyl transferase (TdT) and

stained with Anti-BrdU monoclonal antibody PRB-1 Alexa

Fluor 488 conjugate, as previous described (Pereira et al.,

2012). The loaded cells were visualized by fluorescence

microscopy using a Zeiss Axiovert 200.

Virtual screening

All ligands were built and optimized using GaussView

(Frisch et al., 2009) and Parametric Method 6 (PM6)

(Stewart, 2007) implemented in Gaussian 09W (Carregal

et al., 2012), respectively. Next, the inverse virtual

screening approach was used to identify the molecular

target of each ligand present in Our Own Molecular Tar-

gets Data Bank (OOMT) (Carregal et al., 2013), OOMT is

a data bank with 34 molecular targets from Protein Data

Bank (PDB) (Berman et al., 2013), and built by compar-

ative homology modeling, which was parameterized for

screening studies by redocked of respective crystallo-

graphic ligand (Nunes et al., 2013). The parameterization

of OOMT includes the construction of grid box, which was

defined as a cube with the geometric center in the crys-

tallographic ligand sufficiently to accommodate the whole

binding site and with spaced points of 1 Å. Hence, all

ligands were docked against molecular target using Auto-

Dock Vina 1.1.2. The search algorithm used was Iterated

Local Search Global Optimizer for global optimization. In

this process, a succession of steps with a mutation and local

optimization (the method of Broyden–Fletcher–Goldfarb–

Shanno [BFGS]) were conducted, and each step followed

the Metropolis criterion (Trott and Olson, 2010).

Statistical analysis

The average of IC50 was compared using Tukey’s test.

Differences between the values were evaluated with Origin

6.0. A p value of 0.05 was considered to be statistically

significant.

Results and discussion

The synthesis of new long-chain alkyltriazole compounds is

depicted in Scheme 1. The mesylate compounds (4a–e) were

prepared using 1,6-hexanodiol (1a), 1,9-nonanediol (1b), or

1,12-dodecanediol (1c) as starting materials (Hilário et al.,

2011; Chong et al., 2000). These diols were converted in

their monobrominated derivatives by treatment with hydro-

bromic acid. The haloalcohols obtained were transformed

into azido alcohols by SN2 substitution. The azide com-

pounds were transformed in their corresponding mesylates

by reaction with mesyl chloride in alkaline conditions.

Compounds 4b and 4d were treated with KF/18-crown-6 in

dimethylsulfoxide to yield 4c and 4e. To obtain the alkyl-

triazoles 5a–j, a solution of commercially available alkynes

(pent-4-yn-1-ol, propargyl alcohol, 4-pentynoic acid, or

N
N

N

R

MsO n
(   ) i

5c, n=9, R=-(CH2)3OH
5d, n=9, R=-COOCH2CH3
5e, n=12, R=-(CH2)3OH
5g, n=12, R=-COOCH2CH3 6a, n=4, R=-(CH2)3OH (90%)

6b, n=7, R=-(CH2)3OH (64%)
6c, n=4, R=-COOCH2CH3 (97%)
6d, n=7, R=-COOCH2CH3 (73%)

N

N

N

R

n

(   )

I

Scheme 2 Reagents and conditions: (i) NaI, acetone, reflux, 24 h
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ethyl propiolate) and alkylazides (4a–e) in dichloromethane

was treated with a solution of copper sulfate pentahydrate

(8 mol%) and sodium ascorbate (20 mol%) in water. The

reaction mixture was stirred for 24 h at room temperature,

exclusively producing high yields of the 1,4-disubstituted

1,2,3-triazoles (5a–j).

We synthesized four additional novel long-chain alkyl-

triazoles that contained an iodine atom (Scheme 2).

All synthesized compounds were evaluated in vitro for

their anticancer potential against two human cancer cell

lines (colon carcinoma RKO and uterine carcinoma HeLa).

The compounds were also tested on a non-cancerous

human cell line (lung fibroblast WI-26VA4) to determine

the selectivity index. Colorimetric MTT assays determined

that compounds 5e and 6a presented potent antitumor

activity in vitro (Table 1). Against RKO cells, compounds

5e and 6a showed IC50 values of 16.70 and 14.57 lM,

respectively. These same compounds presented similar

IC50 values (11.05 and 12.77 lM, respectively) against the

HeLa cell line. The cytotoxicity of compounds 5e and 6a

was comparable to that of etoposide, an anticancer agent

(Correale et al., 2011).

The physicochemical properties of miltefosine and all the

alkyltriazole compounds synthesized in this study are shown

in Table 2. All new alkyltriazoles showed a desirable profile

for an oral drug (Leeson and Springthorpe, 2007). Based on

IC50 values and physicochemical properties, one of the most

active compounds, i.e., 5e, was selected for further investi-

gation of its cytotoxic mode of action.

Apoptosis via cytotoxicity is considered an efficient

strategy for the identification of potential antitumor drugs

Table 1 In vitro cytotoxic activity of the alkyltriazole compounds against human colon carcinoma (RKO) cells, uterine carcinoma (HeLa) cells,

and lung fibroblast (WI-26VA4) cells

Compounds IC50 (lM) ± SDa SI

HeLa RKO WI WI/HeLa WI/RKO

Miltefosine 13.80 ± 4.2 [100 ND ND ND

5a 210.10 ± 5.18 397.90 ± 6.54 489.15 ± 4.02 2.33 1.23

5b 202.18 ± 0.31 198.23 ± 18.02 339.34 ± 27.86 1.67 1.71

5c 24.48 ± 5.20 182.03 ± 28.4 ND ND ND

5d 37.10 ± 3.90 20.49 ± 5.80 ND ND ND

5e 11.05 ± 3.70 16.70 ± 3.40 ND ND ND

5f 35.95 ± 7.38 99.94 ± 0.89 39.45 ± 10.42 1.09 0.39

5g 208.17 ± 25.12 180.16 ± 5.92 490.41 ± 4.03 2.35 2.72

5h 21.87 ± 0.78 19.87 ± 4.22 36.54 ± 3.21 1.67 1.84

5i 84.25 ± 9.92 307.21 ± 8.77 184.43 ± 1.51 2.19 0.60

5j 25.82 ± 9.19 90.82 ± 0.83 80.48 ± 12.66 3.11 1.13

6a 12.77 ± 1.16 14.57 ± 2.18 21.40 ± 3.36 1.67 1.47

6b 145.33 ± 13.22 138.16 ± 10.10 27.68 ± 4.08 0.19 0.20

6c 52.22 ± 12.74 199.01 ± 26.30 253.82 ± 59.95 4.87 2.27

6d 26.61 ± 2.20 62.23 ± 2.55 71.84 ± 14.10 2.70 1.15

Etoposide 11.35 ± 2.73 10.66 ± 2.23 4.30 ± 1.34 0.39 0.40

ND not determined, SI selectivity index
a Values are average ± Standard Deviation

Table 2 Physicochemical properties of miltefosine and the alkyl-

triazole compounds 5a–j and 6a–d

Compounds cLog P MW HBD HBA

Miltefosine 6.0 407.56 0 4

5a 0.59 305.39 1 4

5b 1.24 319.37 0 5

5c 1.67 347.47 1 4

5d 2.32 361.45 0 5

5e 2.74 389.55 1 4

5f 2.36 403.53 1 5

5g 3.57 403.53 0 5

5h 2.12 361.5 1 4

5i 2.70 271.37 1 2

5j 3.77 313.45 1 2

6a 3.37 379.28 1 1

6b 4.45 421.36 1 1

6c 3.86 393.26 0 2

6d 4.93 435.34 0 2

MW molecular weight, HDB hydrogen-bond donors, HBA hydrogen-

bond acceptors
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(Essack et al., 2011). To investigate the possible apoptosis-

inducing action of these compounds, specific DNA frag-

ments on RKO cells were detected by a TUNEL assay

using compound 5e and etoposide, an apoptosis-inducing

drug (Liu et al., 2011). The results presented here indicate

that compound 5e promoted apoptosis in RKO cells

(Fig. 2), reducing the number of viable cells in a concen-

tration-dependent manner (Fig. 2a–e). The mechanism by

which long-chain APLs trigger apoptosis is, as yet, unclear.

APLs interact with signaling proteins, membrane lipids,

or lipid microdomains (Strassheim et al., 2000; Samadder

et al., 2003; Kondapaka et al., 2003). The ability of cells to

proliferate or initiate apoptosis relies on signaling path-

ways that produce anti- or pro-apoptotic signals (Ruiter

et al., 1999; Dineva et al., 2012). Anti-apoptotic pathways

can comprise the Ras–Raf–MAPK/ERK proliferative

pathway (Ruiter et al., 2002). Other targets, such as

transmembrane proteins, are also involved in the apoptosis

process. In this context, galectins (galactoside-binding

glycoproteins) were shown to modulate many functions in

cell survival, including proliferation and metastasis (Vla-

doiu et al., 2014). In an attempt to understand the mode of

action of the compounds synthesized in this work, we

performed a virtual screening against 34 potential antitu-

mor targets. All synthesized compounds exhibited the best

docking scores against galectin-1 (PDB: 1W6M) and

ERK1 (PDB: 2ZOQ) (Table 3). The compound 5e, an

apoptosis inducer, showed a better binding energy for

galectin-1 (-4.4 kcal mol-1) and ERK-1 (-6.2 kcal -

mol-1) than miltefosine, used as reference compound.

Figure 3 shows 3D and 2D diagrams of the intermolecular

interactions between 5e and galectin-1 and ERK1.

Conclusions

In conclusion, this preliminary investigation demonstrates

that very simple long-chain alkyltriazoles may be a

promising class of substances with cytotoxic activity, and

that this activity can be modified significantly by classical

chemical modifications. Among the synthesized com-

pounds, 5e was the most active, could represent a prom-

ising template for developing a new class of antitumor

Fig. 2 Apoptosis in human colon carcinoma (RKO) cells. Cells were

incubated (48 h) with compound 5e in different concentrations.

(a) control of life, (b) etoposide at 1 lM, and 5e (c) 1 lM, (d) 10 lM,

and (e) 100 lM. The arrow indicates cell death by apoptosis (green).

Viable cells are stained red. Scale bar: 20 lm (Color figure online)

Table 3 Docking results between miltefosine and alkyltriazoles al-

kyltriazole compounds 5a–j and 6a–d against the molecular targets

Galectin-1 and ERK1 carried out by Autodock Vina

Compounds Binding Energy (kcal mol-1)

Galectin-1 (PDB: 1W6M) ERK1 (PDB: 2ZOQ)

Miltefosine -3.3 -5.7

5a -4.3 -5.7

5b -4.4 -6.0

5c -4.4 -6.2

5d -4.5 -6.0

5e -4.1 -5.7

5f -3.7 -5.6

5g -3.8 -5.7

5h -4.0 -6.2

5i -4.7 -6.4

5j -4.5 -6.3

6a -4.7 -5.9

6b -4.5 -6.3

6c -4.0 -6.1

6d -4.7 -5.9
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agents, and deserves further investigation of derived

scaffolds.
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