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ABSTRACT: The first example of a carbodiimide-mediated P−C bond-
forming reaction is described. The reaction involves activation of β-
carboxyethylphosphinic acids and subsequent reaction with Boc-aminals
using acid-catalysis. Mechanistic experiments using 31P NMR spectroscopy
and DFT calculations support the contribution of unusually reactive cyclic
phosphinic/carboxylic mixed anhydrides in a reaction pathway involving ion-
pair “swapping”. The utility of this protocol is highlighted by the direct
synthesis of Boc-protected phosphinic dipeptides, as precursors to potent Zn-
aminopeptidase inhibitors.

Phosphinic peptides constitute a class of bioactive
compounds that exhibit remarkable inhibitory properties

against Zn-metallopeptidases.1 Proper tuning of their structural
features has successfully led to highly potent and selective
inhibitors of medicinally relevant carboxypeptidases,2 amino-
peptidases,3 and endopeptidases.4 Synthetic approaches toward
these structures fall into two main categories: the NP + C
approach which allows diversification of the C-terminus (P1

́
position) and the less common N + PC approach which offers
the possibility to assemble the N-terminus (P1 position) at a
late stage of the synthesis.1c,5 For the latter case, the main tool
to achieve such a transformation is the Birum−Οleksyszyn
reaction,6 as it was modified by the research groups of Yuan,
Coward, Yiotakis, and Ragulin (Scheme 1), which involves a

condensation between H-phosphinic acids, aldehydes, and
carbamates.7 The main drawback of these protocols is the
harsh conditions employed that are incompatible with acid-
sensitive substrates.7e Aiming to address this issue, in this
report we present a general, mild methodology which is based
on the f irst use of carbodiimides for the formation of a P−C bond.
During the course of our studies on aminopeptidase

inhibitors,3a,c we became interested in a synthetic protocol
that would offer possibilities for the late-stage P1-diversification
of Boc-protected building blocks. Our initial efforts were
focused on the amidoalkylation of phosphinic acid 2a (Table
1) by using Boc-NH2 and various aldehydes. However,
application of existing protocols using different combinations
of AcCl, Ac2O, and acidic catalysts led consistently to low
yields and byproducts related to Boc-cleavage and subsequent
N-acetylation. In 2012, Ragulin et al. reported that milder
conditions can be achieved by replacing the carbamate/
aldehyde dyad with the respective aminals (Scheme 1).8

Inspired by the work of Maruoka who introduced Boc-aminals
as imine equivalents in acid-catalyzed Mannich reactions,9,10

we envisioned that Boc-aminals could tolerate Ragulin’s
conditions. Indeed, by using TFAA the yields were significantly
improved, however side-acylation was not completely sup-
pressed (Table 1, entries 1,2). These observations prompted us
to explore nonacylating conditions for the reaction, based on
the absence of any acylated P(III)-species in the 31P NMR
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Scheme 1. Amidoalkylation of Phosphinic Acids
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spectra of reaction mixtures with 1 or 2 equiv of TFAA. We
assumed that TFAA may act as a dehydrating agent, rather
than an acylating one, and therefore, we reasoned that N,N-
carbodiimides may be suitable to mediate such trans-
formations. To our delight, with 1a and 1 equiv of DCC,
phosphinic acid 2a furnished 41% of 3a after 24 h (Table 1,
entry 3). Moreover, aminal 1b furnished 10% of product 3b in
3.5 h, reaching an 87% conversion after 3 days (Table 1,
entries 4,5). This unique reactivity was further enhanced by the
addition of an acid catalyst, with BF3·OEt2 rendering the most
efficient choice (Table 1, entries 6−8). In addition, an
impressive improvement was observed when DCC was
replaced by DIC, leading to 92% conversion of 1b in only
1.3 h (Table 1, entry 11). Interestingly, when phosphinic acid
2a′ was subjected at the same reaction conditions, only a 10%
formation of product 3b′ was observed after 24 h (Table 1,
entry 12), implying that the C-terminal of phosphinic
substrates contributes to the reactivity of P-nucleophiles.11

In 1993, Campagne and co-workers proposed that
phosphinic diacids may cyclize by a coupling reagent (BOP)
toward mixed anhydride species.12,13 By monitoring the
reaction of diacid 2a with 1.0 equiv DCC by 31P NMR
spectroscopy, we observed rapid formation of two signals,
which was attributed to the two diastereoisomeric forms of
proposed intermediate 4a (Scheme 2). Interestingly, in a
separate experiment the same intermediate was observed when
2 equiv of TFAA were employed. This was unambiguously
confirmed by the formation of only one set of two signals when
a mixture of DCC (0.5 equiv) and TFAA (1.0 equiv) was used,
leading to the conclusion that the activated intermediate of the
reaction is irrelevant of the condensating agent. With
phosphinic acid 2a′, TFAA (1.0 equiv) and DIC (1.0 equiv)
generated a very similar 31P NMR profile; only this time a
multiplet was observed rather than two signals. We suggest that
this multiplet corresponds to symmetric anhydride 4a′, also a
dehydration product, albeit much less reactive.14

Aiming to rationalize the difference in observed reactivity
between proposed intermediate anhydrides, we performed

DFT calculations to estimate the Gibbs free energies (ΔG) of
the prototropic P(V)/P(III) tautomerism for model com-
pounds 5a−c (Scheme 3). Strikingly, the tautomerism of cyclic

anhydride 5a is 5.8 and 6.3 kcal/mol less endothermic than the
tautomerism of its symmetric (5b) and asymmetric (5c)
acyclic anhydride counterparts, respectively. This observation
justifies the experimentally observed increased reactivity of 4a,
as compared to 4a′.15 Interestingly, apart from the ability of 4a
to react even in the absence of an acid catalyst, additional

Table 1. Optimization Experimentsa

entry 1 2 DA (equiv) LA (equiv) time (h) NMR yieldb,c (%)

1 1a 2a TFAA (1) - 24 32 (24)
2 1a 2a TFAA (2) - 4 48 (35)
3 1a 2a DCC (1) - 24 41d,e

4 1b 2a DCC (1) - 3.5 10
5 1b 2a DCC (1) - 72 87
6 1a 2a DCC (1) Cu(OTf)2 (0.1) 24 12f

7 1a 2a DCC (1) TMSOTf (0.5) 1 67g

8 1a 2a DCC (1) BF3·OEt2 (0.8) 4 65
9 1a 2a DIC (1) BF3·OEt2 (0.8) 4 71
10 1b 2a DIC (1) BF3·OEt2 (0.1) 4 84
11 1b 2a DIC (1) BF3·OEt2 (0.2) 1.3 92
12 1b 2a ́ DIC (1) BF3·OEt2 (0.2) 24 10

aSubstrates 1 and 2 (0.2−0.4 mmol, 0.3 M), CDCl3, inert atmosphere. bConversion to side-acylation byproducts in parentheses. cDetermined by
31P NMR of the reaction mixture. dSolvent: CH2Cl2.

eDetermined by 31P NMR after aqueous workup. f13% Boc-cleavage, g33% silylation
byproducts.

Scheme 2. Formation of Reactive Intermediates 4a and 4a′
Monitored by 31P-NMRa

a31P NMR signals are shifted downfield when TFAA is used due to
released TFA that interacts with PO. All 31P NMR spectra are
proton decoupled.

Scheme 3. Gibbs Free Energies (ΔG) for the Tautomerism
of Model Compounds 5a−c Computed at the B3LYP-
D3(BJ)/def2-TZVPP Level of Theory
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evidence of its high reactivity is its tendency to rapidly oxidize
upon contact with air.
In order to explore the scope of this new P−C bond-forming

reaction, we synthesized a series of derivatives (3b−3k) by
using the corresponding Boc-aminals (1b−1k) that incorpo-
rate diverse aryl, alkenyl, alkynyl, as well as cyclic or acyclic
alkyl substituents (Scheme 4). In all cases, the reaction

performed well affording compounds of type 3 in good to high
yields after chromatographic purification. A noteworthy
observation is that alkynyl derivative 1h was found to be the
least reactive among tested aminals, contrary to reactivity
patterns reported by Maruoka et al. in Mannich-type reactions
involving Boc-aminals.9b Presumably, mechanistic differences
between these reactions may underlie the observed deviations.
Finally, Gly (3l), Leu (3m), Asp (3n), and Orn (3o) amino
acid surrogates were efficiently prepared, emphasizing the
compatibility of the reaction with different side-chains and
acid-sensitive protecting groups.
Concerning the reaction mechanism and in accordance with

previous observations by Maruoka et al.,9 we were also unable
to identify accumulation of imine or iminium ions by
monitoring the reaction by NMR spectroscopy. We envisioned
that the unfavorable BF3-catalyzed dissociation of Boc-aminal
1b would form ion pair A that could participate in a second
equilibrium with ion pair B (Scheme 5). The latter would
involve the release of Boc-NH2 through a hydrogen transfer
process which allows an overall “swapping” between the

anionic parts of ion pairs A and B. By performing DFT
calculations, we computed the Gibbs free energy of this
exchange, and we found that the process was highly exothermic
(ΔG = −29.2 kcal/mol). This stabilization may be partially
attributed to the lower acidity of Boc-NH2 as compared to
phosphinic intermediate 5a′. Upon removal of Boc-NH2 from
the equilibrium, the P-nucleophile is positioned in close
proximity to the iminium ion, an arrangement that can be
further stabilized by a bridging effect of BF3 (see Supporting
Information). Ion pair B is expected to collapse rapidly to
intermediate 6, allowing the formation of a stable P−C bond
which cannot further dissociate. Further theoretical and
experimental confirmation of proposed mechanistic hypothesis
is currently underway.
Apart from its simplicity and efficiency, the proposed

protocol may provide facile access to P1-diversified Zn-
aminopeptidase inhibitors after standard TFA-deprotection.
To this regard, samples of 3b,c, and i were deprotected and
tested for their inhibitory potency against M1 aminopeptidase
IRAP,16 leading to IC50 values of 0.16, 4.17, and >10 μΜ,
respectively (see Supporting Information). By this technique,
SAR data can be rapidly collected: for example, by comparing
inhibitors derived from 3b and 3i it is concluded that IRAP
may easily accommodate aromatic rings (phenylglycine
surrogates) but not aliphatic rings in its P1 position. Taken
together, the expansion of structural variety that can be
achieved by the proposed protocol and the direct access to P1-
diversified candidate inhibitors, this approach is expected to
facilitate drug discovery efforts involving medicinally important
Zn-peptidases.
In summary, we have developed a carbodiimide-mediated

P−C bond-forming reaction between Boc-aminals and
phosphinic diacids of type 2, based on the observation that
amidoalkylation is driven by condensing rather than acylating
conditions. Moreover, to the best of our knowledge this is the
first example of a carbodiimide-mediated reaction where the
reagent activates the nucleophile and not the electrophile, as it
is usually the case. Based on our mechanistic experiments, the
unique reactivity of cyclic mixed anhydride intermediates of
type 2a is attributed to their highest propensity to tautomerize,
as compared to symmetric anhydrides that are proposed to
mediate amidoalkylation of esters of type 2a′. The reaction is
operationally simple, compatible with acid-labile groups and
applicable to a wide range of substrates, facilitating the late-
stage P1-diversification of phosphinic peptides. Finally, a
mechanistic hypothesis is formulated which involves a
thermodynamically favorable ion pair “swapping” process.
Further mechanistic studies and application of the proposed
protocol to the discovery of Zn-aminopeptidase inhibitors are
currently in progress.

Scheme 4. Substrate Scope for the DIC-Mediated
Amidoalkylation Reactiona,c

aDIC was added at 0 °C in a mixture of 1 and 2a in CH2Cl2, followed
by the addition of the catalyst, and then the mixture was stirred at rt.
All reactions were performed under Ar atmosphere. Isolated yields are
shown. b0.5 equiv of BF3·Et2O was used. cIn all cases, except 3l, the
final products were obtained as a ∼1:1 mixture of diastereoisomers.

Scheme 5. Ion Pair “Swapping” Mechanistic Hypothesis
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