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Conversion into 2,6-Diazaspiro[3.3]heptanes
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Abstract: A concise synthesis, amenable to library production of
2,6-diazaspiro[3.3]heptan-1-ones and their subsequent conversion
into 2,6-diazaspiro[3.3]heptanes is reported.
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The design and synthesis of novel, readily functionalised
low-molecular-weight fragments is of fundamental im-
portance in modern drug-discovery programs employing
rapid parallel-synthesis techniques.1

The spirocyclic 2,6-diazaspiro[3.3]heptan-1-one ring sys-
tem 1 is an example of such a novel2 system and we report
here a practical synthesis of this chemically interesting
ring system amenable to either large-scale or plate-based
library chemistries. We also report on their subsequent
conversion into 2,6-diazaspiro[3.3]heptanes 2
(Scheme 1).

Scheme 1 2,6-Diazaspiro[3.3]heptan-1-ones and their conversion
into 2,6-diazaspiro[3.3]heptanes

In 1991, Bartholomew and Stocks3 reported the synthesis
of 1-benzyl-3-chloromethyl-azetidine-3-carboxylic acid
ethyl ester 4 from the alkoxide-induced rearrangement of
a substituted azetidinone 3 (Scheme 2).

Hydrolysis of 4 occurs readily through treatment with one
equivalent of lithium hydroxide in ethanol–water to afford
the stable crystalline substituted carboxylic acid 5 [n.b.
hydrolysis with 2 equivalents of lithium hydroxide at
60 °C affords the corresponding hydroxy-substituted
carboxylic acid 6 (Scheme 3)].4

The acid 5 will react with a series of amines or anilines in
the presence of a suitable coupling agent, such as HATU,
to generate the corresponding amides 8a–g in reasonable
yield. However, the optimal reaction conditions for this

conversion were obtained by treating 5 with oxalyl chlo-
ride in dichloromethane to afford the acid chloride 7
isolated as the stable crystalline hydrochloride salt.5 Pre-
mixing a suspension of 7 and the corresponding amine
(R1NH2) in dichloromethane at 5 °C, followed by the ad-
dition of triethylamine, afforded amides 8a–g in high
yield (Table 1).

Pleasingly, the conversion of amides 8a–g into their cor-
responding spirocyclic 2,6-diazaspiro[3.3]heptan-1-ones
1a–g occurred readily, optimum conditions being sodium
hydride in THF at room temperature (Scheme 4).6
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carboxylic acid ethyl ester

Cl

Cl

O

N
H

Cl

N

Cl
Cl

ON

Cl

O

OEt

Cl

ClCl

HO

O

40% NaOH
CH2Cl2, r.t.

1. NaOEt
2. K2CO3,
    toluene

1. SOCl2, 80 °C

2. BnNH2, 
    CHCl3,
    Et3N

4 3

Scheme 3 Hydrolysis of ester 4 and preparation of acid chloride 7
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The following compounds 1a–g have been prepared as
representative examples to illustrate the applicability of
the reaction sequence through reaction with primary alkyl
amines as well as electron-rich, electron-poor, and steri-
cally hindered anilines (Table 1).

To enable further elaboration,7 the benzyl group can be
readily removed. For example, 1a can be converted into 9
in 74% yield using transfer hydrogenation conditions
(Scheme 5).8

In order to convert 1a into the corresponding 2,6-diaza-
spiro[3.3]heptane 2a,9 a series of reducing agents was
tested and the results are summarised in Table 2.

Surprisingly, 1a proved resistant to reduction with lithium
aluminium hydride and only unreacted starting material
was recovered after heating at 40 °C for 2 hours. Borane
in THF produced a highly crystalline and insoluble borane
complex10 and no evidence of reduction was observed.
The unreactive complex could be converted back into 1a
by heating in methanolic ammonia solution. Clean con-
version of 1a into 2a was observed by the reduction with
the LiAlH4/AlCl3 complex,11 although 5 equivalents of
the reagent were required for satisfactory conversion.12,13

In summary, a concise synthesis of the chemically novel,
readily functionalised 2,6-diazaspiro[3.3]heptan-1-one
ring system has been reported as well as its conversion
into the substituted 2,6-diazaspiro[3.3]heptane ring sys-
tem. Work is continuing within our laboratory in this area
and we will report on further studies in the future.

Table 1 Generation of Amides 8a–g and 2,6-Diazaspiro[3.3]hep-
tan-1-ones 1a–g

Entry Amine R1NH2 Step 1
8a–g (yield, %a)

Step 2
1a–g (yield, %a)

1 8a (91) 1a (97)

2 b 1b (76)

3 8c (96) 1c (82)

4 8d (48) 1d (66)

5 8e (50) 1e (67)

6 8b 1f (46)c

7 8g (58) 1g (68)

a Yields refer to fully characterised and pure compounds.
b Combined yield, compounds 8b and 8d were used crude in subse-
quent cyclisation step.
c Heating required at 70 °C for 3 h to effect cyclisation.
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Table 2 Reduction of 2,6-Diazaspiro[3.3]heptan-1-one 1a

Entry Reagent 
conditions

Conversion 
(%)a

Comment

1 LiAlH4, THF, 
40 °C

0 1 equiv

2 BH3·THF, 
40 °C

0 Reversible complexation to 
borane observed

3 LiAlH4, AlCl3, 
Et2O, 40 °C

38 1.5 equiv 55% recovered 1a

4 LiAlH4, AlCl3, 
Et2O, 40 °C

58 3 equiv 32% recovered 1a

5 LiAlH4, AlCl3, 
Et2O, 40 °C

78 5 equiv 15% recovered 1a

a Yields refer to fully characterised and pure compounds.
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