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Abstract: The rhodium-catalyzed addition of indole
C—H bonds to a range of aryl- and alkyl-N-sulfonyl-
aldimines is reported. The reaction proceeds with
high functional group compatibility and provides
easy and rapid access to a wide variety of 2-indolyl-
methanamine derivatives under mild reaction con-
ditions.
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Transition metal-catalyzed direct transformations of
aromatic C—H bonds have emerged as powerful alter-
natives to traditional reactions that rely heavily on te-
dious, stoichiometric, and costly substrate preactiva-
tion.'! While the transition metal-catalyzed addition
of C—H bonds to alkene and alkyne derivatives has
been extensively investigated,”) analogous additions
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across polar C/N multiple bonds, such as imines,” iso-
cyanates,'! and isocyanides,"! have seen considerably
less progress.” Given the prevalence of amines in bio-
active molecules and drugs, the direct addition of C—
H bonds to C—N bonds to selectively install nitrogen-
based functional groups represents a powerful
method for rapid and efficient amine synthesis.

The indole nucleus is a ubiquitous structural motif
in a number of biologically active natural products
and pharmaceutical compounds.” In particular, the 2-
indolylmethanamine moiety is a popular structure
core in many bioactive natural and unnatural prod-
ucts.® Despite its importance, methods for the synthe-
sis of the 2-indolylmethanamine skeleton remain
rare,”) and the most typically used are Friedel-Crafts
reactions of indoles with imines at the C-3 position
[Eq, (1), Scheme 1].'! Recently, You et al. have de-
veloped an efficient Friedel-Crafts reaction of 4,7-di-
hydroindoles with imines followed by oxidation with
p-benzoquinone to produce the 2-indolylmethan-
amine derivatives [Eq. (2), Scheme 1].”) Given the
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Scheme 1. Routes to 3- and 2-indolylmethanamine derivatives.
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Table 1. Optimization of reaction conditions.

m NTs
H | catalyst (5 mol%)
D) e O
R
la-1e 2a 3a-3e

1a:R = (CH3);NCO  1d: R =Boc

1b: R=Ac 1R < R

1c: R=CHjs e —o)\NQ
Entry 1-Substituted Indole Catalyst Solvent Yield® [%]
1 1a [Cp*RhCl,], CH,Cl, 0
2 1a [Cp*RhCl,],, AgSbF CH,Cl, 71
3 1a [Cp*Rh(CH,CN);](SbFy), CH,Cl, 57 (66)
4 1a [Cp*RhCl,],, AgSbF, DCE 70
5 1a [Cp*RhCl,],, AgSbF, +-BuOH 32
6 1a [Cp*RhCl,],, AgSbF; THF 34
7 1a [Cp*RhCl,],, AgSbF PhMe 15 (50)
8 1a [Cp*IrCl,],, AgSbF, DCE <5
9 1a [Cp*RhCl,],, AgOTE DCE 30 (40)
10 1a [Cp*RhClL,],, AgBF, DCE 40 (48)
11 1a [Cp*RhCl,],, AgClO, DCE 28
12 1a [Cp*RhCl,],, AgB(CFs), DCE 56 (67)
130 1a [Cp*RhCl,],, AgSbF DCE 40 (60)
141 1a [Cp*RhCl,],, AgSbF DCE 57
150 1a [Cp*RhCl,],, AgSbF, DCE 65
16! 1a [Cp*RhCl,],, AgSbF DCE 57 (69)
17t 1a [Cp*RhCl,],, AgSbF, DCE 20 (55)
18] 1a [Cp*RhCl,],, AgSbF; DCE 64
19 1b [Cp*RhCl,],, AgSbF, DCE of!
20 1c [Cp*RhCl,],, AgSbF DCE of
21 1d [Cp*RhCl,],, AgSbF DCE ot
22 1le [Cp*RhCl,],, AgSbF; DCE 55

(8] Recation conditions: 1a/2a=1:1.5, 0.3-mmol scale, 5 mol% of catalyst; Rh or Ir/Ag=1:4; 85°C for 24 h.
1 Yield of isolated product; Yield in parentheses is based on recovered starting material.

© Rh/Ag—1:2.

[ The reaction was carried out at 105°C.

[ The reaction was carried out at 95°C.

1" The reaction was carried out at 75°C.

] The reaction was carried out at 60°C.

" Reaction time =36 h.

0 Only the 3-substituted indole derivative was obtained.

prevalence of 2-indolylmethanamine scaffolds in me-
dicinal chemistry, we have developed a Rh(III)-cata-
lyzed highly regioselective and efficient addition of
“inert” indole C—H bonds to aryl- and alkyl-N-sulfon-
ylimines for the rapid preparation of 2-indolylmethan-
amine derivatives under mild reaction conditions [Eq.
(3), Scheme 1].

At first, 1-(N,N-dimethylcarbamoyl)indole (1a) and
N-tosylimine (2a) were used as the model substrates
to optimize the reaction conditions including catalysts,
additives, solvents and reaction temperatures
(Table 1). We chose 1-(N,N-dimethylcarbamoyl)indole
(1a) as the model substrate for arylation because of
its successful history in C—H functionalization at the
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C-2 position of indole."!! Although the use of 5 mol%
of [Cp*RhCl,], proved unsuccessful in catalyzing this
reaction (entry 1), [Cp*RhCl,], (5§ mol%) in the pres-
ence of silver salts,"? AgSbF, (20 mol%), for exam-
ple, in CH,CI, at 85°C provided the desired product
3a in 71% yield (entry 2). The prepared Rh(III) pre-
cursor [Cp*Rh(CH;CN);](SbF;), led to a relatively
low conversion of the starting material (entry 3). A
screen of solvents revealed that using DCE as the re-
action solvent led to reactivity similar to that ob-
served with CH,CI, (entries 2, 4-7). Analogous iridi-
um-based complexes were found to be inactive for
this transformation (entry 8). Other halide abstractors
were also explored (entries 9-12), but AgSbF, proved
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to be optimal (entry 4). Moreover, a decrease of the
yield was observed by reducing the ratio of Ag to Rh
(entry 13). Raising the temperature diminished the
yield (entries 14 and 15) and lowering the tempera-
ture led to a low conversion (entries 16 and 17).
Meanwhile, extension of the reaction time did not en-
hance the reaction’s efficiency (entry 18). In addition,
the influence of indole protecting group on the prog-
ress of the C—H arylation of imine 2a was assessed.
Replacement of the N,N-dimethylcarbamoyl group
with acetyl, methyl and Boc groups completely inhib-
ited this transformation (entries 19-21). Different
from the previous results,**"*! the use of a cyclic pyr-
rolidine amide directing group, in place of the N,N-di-
methyl substituents in la, resulted in a marked de-
crease in yield (entry 22). It is noteworthy to mention
that when using N,N-dimethylcarbamoyl group as
protecting group, the C—H at the 3-position remained
untouched, although it was found to be active in some
transformations." The regioselectivity of this trans-
formation was further confirmed by removing the
protecting group of 3a in ethanolic KOH to provide
3a-1 in 70% yield (Scheme 2). Comparison of the
physical properties of 3a-1 to those recorded confirms
its identity."”)

Having established the optimized reaction condi-
tions, we sought to further explore the reaction scope
for  1-(N,N-dimethylcarbamoyl)indole (1la) and
a broad range of N-sulfonylimines (Scheme 3). We
found that the steric bulkiness does not play a signifi-
cant role in reactivity. For example, 2-tolylaldimine
(3f) shows comparable reactivity with 4-tolylaldimine
(3h). Also, the electronic nature of the substituents
on the aromatic imines did not play a key role. Both
electron-rich (3f-3i) and electron-poor (3j-3m) aro-
matic imines gave the corresponding amine products
in moderate to good yields. Substitutions at the ortho
(3f and 3n), meta (3g), and para (3h-3m) positions
were all well tolerated. Moreover, the reaction
showed good functional group compatibility. For ex-
ample, aromatic imines with methyl (3f-3h), methoxy
(3i), nitro (3j), chloro (3m), fluoro (3m) and ester (31)
groups were effective coupling partners under opti-
mized conditions. In addition, 2-naphthyl- and 2-
thienyl-substituted branched amine products (30 and
3p) were also obtained from the corresponding imine
substrates. Particularly remarkable is the participation
of alkyl-N-sulfonylimines in this reaction, providing

O N 25% KOH A
N NHTs EtOH, r.t
, rt N
/=0 5h, 70% NN
\ 3a 3a-1

Scheme 2. Deprotection of 3a.
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[l Using CH,Cl, as the reaction solvent.

Scheme 3. Investigation of different N-sulfonylaldimines 2.
The reaction was performed with 0.3 mmol of 1a, 0.45 mmol
of 2, 0.015 mmol of [Cp*RhCl,], and 0.06 mmol of AgSbF,
at 85°C in 1.5 mL of DCE unless otherwise mentioned. The
reported yields are of isolated products.

the corresponding cyclohexyl- and n-butyl-substituted
branched amine producta (3q and 3r).

The substrate scope was further extended to a varie-
ty of substituted indoles (Scheme 4). It was found that
the electronic nature of the substituents on the indole
ring did not play a key role. Both electron-donating
(3s—3w) and electron-withdrawing (3x and 3y) indoles
were readily converted to the corresponding products
in moderate to good yields. Notably, the tolerance of
the bromo group (3x) offers the opportunity for fur-
ther functionalization. Steric bulkiness on the indole
ring was also tested. To our delight, all the reactions
with a methyl group at the 3- to 6-positions of the
indole ring showed good reactivities (3s-3v), thus
showing the high tolerance for steric hindrance. It
should be noted that the reaction exclusively afforded
the 2-indolylmethanamine products in all cases, and
no 3-indolylmethanamine products were observed by
"H NMR or GC-MS analysis.
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Scheme 4. Scope of indoles. The reaction was performed
with 0.3 mmol of 1, 0.45mmol of 2a, 0.015mmol of
[Cp*RhCl,], and 0.06 mmol of AgSbF, at 85°C in 1.5 mL of
DCE unless otherwise mentioned. The reported yields are
of isolated products.

The mechanism of this transformation is proposed
as Scheme 5. The reaction is initiated by the N,N-di-
methylcarbamoyl-directed C—H bond activation to
form a relatively stable five-membered rhodacycle A
and is accompanied by the release of one equivalent
of proton (H*).'l Coordination of the N-sulfonyl-
imine would then activate the imine for nucleophilic
addition to form the N—Rh species C. C is protonated
by the acid that is generated in sifu at the initiating
step, thus producing the desired product 3a and re-
generating the catalyst.

In summary, we have developed a Rh(III)-catalyzed
addition of indoles to a variety of aromatic or alkyl-
N-sulfonylimines via C—H bond functionalization to
give 2-indolylmethanamine derivatives. The Rh-cata-
lyzed reaction exhibits high regioselectivity, functional
group tolerance, and broad substrate scope under rel-
atively mild conditions and provides an efficient,
practical and rapid method to synthesize 2-indolylme-
thanamine derivatives. Mechanistic studies and syn-
thetic applications of the Rh-catalyzed reaction are
underway.
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Scheme 5. Proposed catalytic cycle.

Experimental Section

General Procedurs for Rhodium-Catalyzed Direct
Addition of Indole to N-Sulfonylaldimines

In a N,-filled glovebox, [Cp*RhCL], (9.3 mg, 0.015 mmol),
AgSbF, (21.0 mg, 0.06 mmol), substrate 1a (0.3 mmol), and
2a (0.45 mmol, 1.5 equiv.) were added to a screw-capped
vial followed by addition of a stir bar and DCE (1.5 mL).
The vessel was sealed and heated at 85°C (oil bath tempera-
ture) for 24 h. The resulting mixture was cooled to room
temperature, filtered through a short silica gel pad and
transferred to silica gel column directly to give product 3a.
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