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Late-Stage Diversification by Selectivity Switch in meta-C–H Activation: 
Evidence for Singlet Stabilization
Korkit Korvorapun, Rositha Kuniyil, and Lutz Ackermann*

Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 
Göttingen (Germany)
 

ABSTRACT: The full control of site selectivity in C–H activation is paramount for the programmed late-stage functionalization of 
structurally complex structures. During the past decade, directing groups have revolutionized molecular synthesis in terms of ortho-
selective C–H activation. In sharp contrast, a selectivity switch that guides the typical ortho- to remote meta-C–H activation has thus 
far proven elusive. Herein, we describe the realization of such a concept for a robust selectivity-control in ruthenium-catalysis. The 
distal C–H transformation was guided by key mechanistic insights into the mild, synergistic action of carboxylates and phosphines 
in ruthenium(II) catalysis. Our findings allowed remote selectivity in broadly-effective late-stage diversification of structurally 
complex drugs and natural product molecules, tolerating sensitive fluorescent dyes, drugs, lipids, peptides, nucleosides and 
carbohydrates.
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INTRODUCTION
The transformation of otherwise inert C–H bonds has 

emerged as an increasingly powerful tool in molecular sciences, 
with transformative applications to among others material 
sciences, drug discovery, crop protection and pharmaceutical 
industries.1 The key towards the development of synthetically 
useful C–H transformation is the full control of site selectivity.2 
In this regard, chelation assistance has been identified as a 
particularly effective approach towards proximity-induced 
ortho-C–H functionalization.3 In sharp contrast, considerably 
more challenging remote C–H functionalizations continue to be 
in high demand.4 In this context, notable recent progress was 
accomplished through ruthenium catalysis,5 with meta-
benzylations being underdeveloped.5h, 5i Particularly, the distal 
late-stage diversification of bioactive compounds6 bears unique 
potential for the identification of novel therapeutic agents of 
relevance to agrochemical and pharmaceutical industries.7 
While the effect of phosphate5a, 5i, 8 and phosphine5c-e, 5l, 5m 
additives has been noted, a mechanistic rationale for the meta-
selectivity has proven elusive. Based on detailed mechanistic 
insights into the cooperative action of carboxylates and 
phosphines in ruthenium9 catalysis, we have now unravelled a 
uniquely versatile manifold for the chemo-selective late-stage 
modification of structurally complex molecules (Figure 1a). 
Notable features of our findings include (i) the cooperative 
action of ruthenium(II) biscarboxylates and phosphines for a 
programmable ortho- to meta-C–H functionalization switch, 
(ii) mild reaction conditions, (iii) tolerance of a broad range of 
functional groups, and (iv) bioorthogonal late-stage C–H 
conjugation of biorelevant motifs, including monosaccharides, 
nucleotides, amino acids, peptides, and triglycerides, as well as 
BODIPY labels for fluorescence spectroscopy (Figure 1b).
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Figure 1. Site selectivity control by ortho- to meta-selective 
ruthenium-catalyzed C–H functionalization switch. a) 
Mechanistic insights enable a general platform for site-selective 
C–H benzylation by phosphine/carboxylates cooperation in 
ruthenium catalysis. b) Transformative ruthenium-catalyzed 
remote meta-C–H functionalizations of biorelevant molecules, 
featuring saccharides, nucleosides, amino acids, peptides, 
triglycerides, and fluorescence labeling.

RESULTS AND DISCUSSION
Given the unique potential of ruthenium catalysis for remote 

arene functionalization, we set out to delineate the coordination 
environment of the key C–H activated ruthenacycles towards 
meta-selective C–H functionalization (Scheme 1). The 
cooperation of [Ru(OAc)2(p-cymene)] with a phosphine10 
ligand resulted in the meta-benzylated product 3aa (Scheme 
1a).11 In the absence of the phosphine ligand, the selectivity 
completely switched from meta to ortho, yielding 4aa. 
Likewise, the ruthenium complex Ru-I gave by carboxylate 
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assistance the ortho-substituted products 4aa (Scheme 1b). In 
sharp contrast, the cooperative action of carboxylates and 
phosphines led again to a switch in site-selectivity to furnish the 
meta-decorated arene 3aa upon the judicious addition of 
phosphine. The sole action of phosphine complexes gave 
unsatisfactory results.
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Scheme 1. Switching selectivity. a) Switch of site selectivity 
by carboxylate and phosphine cooperation. b) Identification of 
synergistic carboxylate/phosphine assistance with well-defined 
complex Ru-I. The conversion in parentheses was determined 
by 1H-NMR using 1,3,5-trimethoxybenzene as the internal 
standard.

Given this switch in selectivity, we became intrigued to 
prepare a series of well-defined ruthenacyles Ru-I–Ru-V, 
among others the novel ruthenium(II) complexes Ru-II, Ru-
III, and Ru-IV. All new complexes were fully characterized, 
including X-ray diffraction analysis, as depicted in Scheme 2a. 
Here, the unique selectivity of the carboxylate and phosphine 
synergistic cooperation was reflected by the efficacy of 
ruthenacycles Ru-II and Ru-III with two and one phosphines, 
respectively (Scheme 2a), both of which were effective in 
catalytic transformations (Scheme 2b). In contrast, the 
ruthenacycle Ru-IV with a bidentate bisphosphine failed to 
provide the desired product 3aa.12 The stoichiometric 
experimentation further reflected the central importance of 
carboxylate and phosphine additives for the meta-selective C–
H functionalization manifold (Scheme 2c). These findings are 
in good agreement with an analysis of the optimal metal to 
ligand stoichiometry that featured an ideal ruthenium to 
phosphine ratio of 1:1, with an excess of phosphine being 
beneficial.12 The typically used radical scavenger12 (2,2,6,6-
tetramethylpiperidin-1-yl)oxyl (TEMPO) fully inhibited the 
ruthenium-catalyzed meta-C–H functionalization (Scheme 2d). 
Instead, the TEMPO-adduct was isolated, being indicative of 
homolytic C–X scission by single-electron-transfer to deliver 
an alkyl radical.
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Scheme 2. Mechanistic Studies. a) Synthesis of ruthenacycles 
Ru-II–Ru-IV. b) Catalytic meta-C–H functionalization. The 
yield in parentheses was obtained in the absence of KOAc. c) 
Stoichiometric transformations of ruthenacycles. d) Reaction 
with radical scavenger.

We have previously studied site-selectivity of the meta-C−C 
formation by means of Fukui indices analysis.5d, 5e In stark 
contrast, we here probed the nature of the thus-formed key 
intermediate by DFT calculation at the PBE0-
D3(BJ)/def2-TZVP+SMD(1,4-dioxane)//TPSS-
D3(BJ)/def2-TZVP level of theory (Figure 2).12 Our detailed 
orbital analysis unravel for the first time a mechanistic rational 
for the site-selective C–C formation para to ruthenium. Thus, 
the highly reactive triplet radical is significantly stabilized as 
the singlet metallacycle C by 20 kcal mol–1 via ligand-to-metal 
charge transfer. 
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Figure 2. Computational DFT analysis unravels significant 
stabilization of the singlet ruthenacycle by 20  kcal mol–1. WBI 
= Wiberg Bond Indices.

Moreover, cyclic voltammetry studies of ruthenacycles Ru-
I, Ru-II, Ru-III, and Ru-IV showed reversible redox processes 
at E1/2 = 0.75 V (Ru-I), E1/2 = 0.32 V (trans-Ru-II), E1/2 = 
0.47 V (Ru-III), and E1/2 = 0.44 V (Ru-IV) versus Ag/AgCl, 
respectively (Figure 3). Contrarily, the p-cymene-coordinated 
ruthenacycle Ru-V exhibited an irreversible oxidation event at 
E = 0.81 V. 
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Figure 3. Cyclic voltammetry studies in 1,2-DCE containing 
0.1 mol L–1 nBu4NPF6, scan rate 100 mV s–1.

A plausible catalytic cycle, hence, features carboxylate-
assisted ortho-C–H ruthenation to generate complex Ru-II 
(Scheme 3). Then, single-electron-transfer (SET) from the 
ruthenium(II) complex Ru-II to the benzyl halide 2, generates 
the ruthenium-(III) intermediate A. The benzyl radical attacks 
on the arene moiety at the position para to ruthenium, providing 
triplet species B. Next, ligand-to-metal charge transfer leads to 
the significantly stabilized singlet ruthenacycle C. Finally, re-
aromatization and ligand exchange delivers the desired meta-
benzylated product 3 and regenerates ruthenium(II) complex 
Ru-II.
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Scheme 3. The proposed catalytic cycle highlights meta-
selective C–H functionalization by singlet stabilization para 
to ruthenium.

To explore the synthetic utility of the carboxylate-phosphine 
cooperation, we probed its robustness with a representative set 
of arenes 1 and electrophiles 2 under the optimized reaction 
conditions (Scheme 4). Our strategy proved to be generally 
applicable for primary and secondary meta-benzylations, 
leading to monobenzylated products without the observation of 
dialkylated products. The ruthenium catalyst was not limited to 
pyridine guidance, but indeed also allowed for the use of 
transformable oxazolines and biorelevant purine bases.13 The 
mild reaction conditions were mirrored by fully tolerating 
sensitive functional groups, including ester (3he), halides (3hf–
3hh),14 ketone (3ia), and amide (3la). Likewise, twofold meta-
C–H functionalization proved to be viable, providing bis-purine 
hybrid 3hk. The connectivities of  the meta-products 3 were 
unambiguously confirmed by two-dimensional nuclear 
magnetic resonance (2D-NMR) spectroscopy and X-ray crystal 
structure analyses for select compounds.
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functionalization by carboxylate-phosphine cooperation 
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manner. a With Ru(OAc)2(PPh3)2 (10 mol %) as the catalyst at 
100 °C. b Without PPh3, determined by 1H-NMR using 1,3,5-
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The singlet stabilization manifold was not restricted to 
synergistic cooperation towards simple electrophile 
transformations. Instead, the transformative potential of our 
approach was harnessed for the late-stage diversification with 
fluorescence labels of relevance to spectroscopy (Scheme 5). 
Thus, purine bases were directly transformed with BODIPY 
labels by the singlet stabilization in carboxylate-phosphine 
ruthenium catalysis (6a and 6b). Electrophiles bearing amino 
acids were efficiently converted to meta-products 6c–6i with 
high levels of chemo-selectivity without any evidence for 
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racemization. Thereby, otherwise reactive free hydroxyl groups 
in serine and tyrosine as well as free NH-indole in tryptophan 
were fully tolerated. Even more structurally complex peptides 
underwent the desired chemical ligation15 towards products 6j 
and 6k, featuring among others sensitive methionine. The 
synergistic ruthenium(II) catalyst proved also fully compatible 
with vitamin D-a-tocopherol (6l), and triglycerides derived 
from saturated and unsaturated fatty acids (6m–6p). 
Particularly, the chemo-selectivity of the meta-C–H 
transformation in the presence of unsaturated fatty acids is 
noteworthy, since they are normally prone to olefinic and allylic 
functionalizations. Importantly, the late-stage modification of 

marketed drugs was accomplished, including transformations 
of neuroprotective agent gastrodin, and the fully anti-
inflammatory salicin. The ruthenium catalysis was not 
restricted to benzylic electrophiles, but synthetically useful 
monosaccharide bromoesters furnished the desired meta-
products 6u–6w with high catalytic efficacy. Notably, hybrids 
6x and 6y were obtained by the synergistic catalysis via 
unprecedented nucleoside ligation. It is noteworthy that for the 
first time fully unprotected OH-free monosaccharides proved to 
be amenable substrates (6t).
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Scheme 5. Carboxylate-phosphine cooperation allows for late-stage diversification by singlet stabilization in terms of meta-
C–H functionalization of arenenucleobases with fluorescence tags, peptides, lipids, drugs, unprotected sugars and nucleosides.
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CONCLUSIONS
Mechanistic insights into the working mode of ruthenium-

catalyzed meta-C–H functionalization have unraveled a 
carboxylate-phosphine synergistic manifold for effective 
singlet stabilization. Thereby, a uniquely effective catalytic 
system for remote arene functionalization was identified for 
remote C–H functionalization, fully tolerating purine and 
uridine nucleobases, sensitive lipids, functionalized amino 
acids and peptides, fluorescent tags as well as unprotected sugar 
motifs. The high levels of site- and chemo-selectivity of our 
robust, synergistic ruthenium catalysis should prove invaluable 
for enabling late-stage modifications of biorelevant compounds 
in academia as well as by practitioners in agrochemical and 
pharmaceutical industries.
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