Unexpected C2-Arylation of 1-(Pyridin-2-yl)indole-3-carboxaldehyde Mediated by Copper

Charlène Sagnes, Guy Fournet, Benoît Joseph*

Laboratoire de Chimie Organique 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR-CNRS 5246, Université Claude Bernard - Lyon 1, Bâtiment Curien, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France Fax +33(4)72431214; E-mail: benoit.joseph@univ-lyon1.fr Received 17 October 2008

Abstract: The C2-arylation of 1-(pyridin-2-yl)indole-3-carboxaldehyde with aryl iodides was carried out in the presence of Cu₂O in basic medium. This simple and efficient method led to the preparation of 1,2-diarylindole derivatives.

Key words: indole, arylation, copper, pyridine

N-Arylindole derivatives widely are used as pharmaceuticals¹ or agrochimicals.² The transition-metalcatalyzed formation (copper or palladium) of C-N bond is the simplest way to reach these compounds.^{3,4} Originally, the classical Ullmann reaction with aromatic amines required high temperature (140 °C or more) and stoichiometric amount of copper in the presence of a base in polar high-boiling-point solvent.⁵ Since this time, milder conditions have been reported for the synthesis of N-arylindoles, involving a catalytic amount of copper and a large scope of ligands such as aliphatic diamines,⁶ substituted 1,10-phenantroline,⁷ amino acid (L-proline),⁸ and different oximes or Schiff bases.9 For our part, we became interested in the synthesis of N-arylindole-3-carboxaldehydes as starting material of potent serotoninergic ligands. The N-arylation reaction was performed in the presence of commercial indole-3-carboxaldehyde (1), Cu_2O (0.1 equiv), aryl iodide (2 equiv), and K_2CO_3 (2 equiv) in DMF at 153 °C for three days to afford N-arylated indoles 2 (Scheme 1). These reaction conditions were chosen in consideration of its advantages.^{10,11} The method is easy to handle, the presence of a ligand is not required, and Cu₂O is described as an interesting copper source, due to its low cost and its insensitivity to light and air.

When 2-iodopyridine was used as the aryl halide, 1-(pyridin-2-yl)indole-3-carboxaldehyde $(2a)^{12}$ was obtained in 65% yield but biarylated product $3a^{13}$ was also isolated in

Scheme 1 Reagents and conditions: (i) ArI (2 equiv), Cu₂O (0.1 equiv), K₂CO₃ (2 equiv), DMF, 153 °C, 3 d; Ar: Ph (74%), 3-pyridinyl (70%), 4-MeC₆H₄ (64%), 2-MeC₆H₄ (26%).

SYNLETT 2009, No. 3, pp 0433-0436 Advanced online publication: 21.01.2009 DOI: 10.1055/s-0028-1087549; Art ID: G33408ST © Georg Thieme Verlag Stuttgart · New York

20% yield (Scheme 2). The preparation of **3a** from **1** was improved when 0.3 equivalent of Cu₂O was used. In this case, compound 2a and 3a were obtained in 16% and 41% yield, respectively.

Similarly, the synthesis of 2a was performed according to the literature methodology.¹⁴ A solution of the indole-3carboxaldehyde sodium salt was stirred with 2-fluoropyridine in DMF at 110 °C for 18 hours to afford 2a in 86% yield. Then, compound 2a was engaged in the arylation reaction (Cu₂O: 0.1 equiv, 2-iodopyridine: 2 equiv) to obtain the C2-arylated product **3a**.¹⁵ We were pleased to isolate 3a in 84% yield (Scheme 2).

Scheme 2 Reagents and conditions: (i) 2-iodopyridine (2 equiv), Cu₂O (0.1 equiv), K₂CO₃ (2 equiv), DMF, 153 °C, 3 d. From 1: 2a (65%); 3a (20%). From 2a: 3a (84%).

Over the past few years, intermolecular direct C2-arylation of indoles via cross-coupling of C2-H bond with aryl halide in the presence palladium¹⁶ and rhodium¹⁷ catalysts has received considerable attention. To our knowledge, one example of C2-arylation of indole with diaryliodine(III) reagents mediated by Cu(OTf)₂ was reported in a recent work.¹⁸ For our part, we next explored the scope of this coupling reaction.

We investigated a first set of experiments using various indole-3-carboxaldehyde derivatives [1-methylindole-3carboxaldehyde, 1-phenylindole-3-carboxaldehyde, 1-(pyridin-3-yl)indole-3-carboxaldehyde, and 1-(methylsulfonyl)indole-3-carboxaldehyde] in the presence of 0.1 equivalent of Cu₂O and 2 equivalents of 2-iodopyridine. The C2-arylated derivatives were isolated in low yield (11-23%). Thus, the presence of the 2-pyridinyl group at the N-position is crucial to promote the C2-arylation in fair yield.

The model compound 2a was then treated with various substituted aromatic halides to afford 2-aryl-1-(pyridin-2-yl)indole-3-carboxaldehydes 3b-k in 4-88% yield (Scheme 3, Table 1).

Scheme 3 Reagents and conditions: (i) ArX (2 equiv), Cu_2O (0.1 equiv), K_2CO_3 (2 equiv), DMF, 153 °C, 3 d (see Table 1).

Table 1 C2-Arylation of 2a

As shown in Table 1, higher yield was obtained when aryl iodide was used (compare entries 1 and 2). In our hands, bromobenzene gave poor yield. Electron-donating groups on *ortho-*, *meta-*, or *para-*position of the aryl iodide gave fair yields (entries 3–5 and 7–9). The use of bulky 2-iodo-1,3-dimethylbenzene (entry 6) led also to the desired with 80% yield. The presence of an electron-withdrawing group (entry 10) had a dramatic effect on the efficiency of

the reaction. In this last example, compound 3k was isolated in 35% yield.

In a second time, different functional groups at the C3position of indole were tested (Scheme 4). N-arylation of indoles **10a–e** was first performed to give derivatives **11a–e** in good yield (Table 2).^{14,21,22} The C2-arylation for **11a–c** did not occurr in the presence of Cu₂O and 2-iodopyridine in basic medium. For compounds **11d** and **11e**,²³ the same reaction afforded the compounds **12d** and **12e**²⁴ in 11–87% yield (Table 2). The arylation conditions require an aldehyde or nitrile group at the C3-position of indole.

Scheme 4 Reagents and conditions: (i) NaH (1.5 equiv), 2-fluoropyridine (2 equiv), DMF, 110 °C, 18 h; (ii) 2-iodopyridine (2 equiv), Cu_2O (0.1 equiv), K_2CO_3 (2 equiv), DMF, 153 °C, 3 d (see Table 2).

Table 2 Arylation of 10 and 11

10	Yield (%) of 11	Yield (%) of 12
	11a ²¹ 94	_a
10a		
Me	11b ²² 96	_a
10b		
CO ₂ Me	11c 60	_a
10c		
COMe	11d 93	12d 11
10d		
CN H	11e 98	12e 87
10e		

^a No reaction.

In a last part, we applied this arylation reaction under microwave dielectric heating as an alternative to the classical conductive heating. The reaction was first performed with 1, 2-iodopyridine (1 or 3 equiv), and Cu₂O (0.1 or 0.3 equiv) in DMF at 153 °C or 240 °C for 1–2 hours (Table 3).²⁵ At 153 °C, compound **2a** was the lone derivative observed and was isolated in 94% yield. In the presence of 3 equivalents of 2-iodopyridine and 0.3 equivalent of Cu₂O at 240 °C for 2 hours, 1,2-diaryl compound **3a** was obtained in 70% yield. The same reaction conditions were applied to **2a** and **10e** (Table 3). Again, the best yields were obtained when 0.3 equivalent of Cu₂O were used (2 equiv of 2-iodopyridine at 240 °C for 1 h).

Table 3 Arylation of 1, 2a, and 10e under Microwave Conditions

Compd	Cu ₂ O (equiv)	2-Iodopyridine (equiv)	Temp (°C)	Time (h)	Compd, yield (%)
1	0.1	2	153	1	2a , 94
1	0.1	2	240	1	2a , 58; 3a , 36
1	0.1	2	240	2	2a , 47; 3a , 37
1	0.3	2	240	1	2a , 40; 3a , 47
1	0.3	2	240	2	2a , 31; 3a , 57
1	0.3	3	240	2	2a , 17; 3a , 70
2a	0.1	1	240	1	3a , 28
2a	0.1	2	240	1	3a , 61
2a	0.3	2	240	1	3a , 81
10e	0.1	2	240	1	11e , 45; 12e , 42
10e	0.1	2	240	2	11e, 29; 12e, 55
10e	0.3	2	240	1	11e , 17; 12e , 71

In conclusion, the outcome of the C2-arylation of the indole core depends of the presence of a 2-pyridinyl group at the N-position and an aldehyde (or nitrile) group at C3. By this route, 1,2-diaryl-3-formylindoles have been prepared in one or two steps in good yields. Further applications are now under investigation.

Acknowledgment

The financial support and the grant to C.S. from the 'Cluster de recherche Chimie de la Région Rhône-Alpes' are duly acknowled-ged.

References and Notes

 (a) Perregaard, J.; Andersen, K.; Hyttel, J.; Sánchez, C. J. Med. Chem. 1992, 35, 4813. (b) Zhang, H.-C.; Derian, C. K.; McComsey, D. F.; White, K. B.; Ye, H.; Hecker, L. R.; Li, J.; Addo, M. F.; Croll, D.; Eckardt, A. J.; Smith, C. E.; Li, Q.; Cheung, W.-M.; Conway, B. R.; Emanuel, S.; Demarest, K. T.; Andrade-Gordon, P.; Damiano, B. P.; Maryanoff, B. E. J. Med. Chem. 2005, 48, 1725. (c) Xu, H.; Liu, W.-Q.; Fan, L.-L.; Chen, Y.; Yang, L.-M.; Lv, L.; Zheng, Y.-T. Chem. Pharm. Bull. 2008, 56, 720.

- (2) (a) Pallos, F. M.; Mathews, C. J. WO 9315049, 1993; Chem. Abstr. 1993, 120, 8470. (b) (Novartis AG) EP 1783114, 2007; Chem. Abstr. 2007, 146, 500886.
- (3) Ley, S. V.; Thomas, A. W. Angew. Chem. Int. Ed. 2003, 42, 5400.
- (4) Old, D. W.; Harris, M. C.; Buchwald, S. L. Org. Lett. 2000, 2, 1403.
- (5) (a) Lindley, J. *Tetrahedron* 1984, 40, 1433. (b) Beletskaya,
 I. P.; Cheparov, A. V. *Coord. Chem. Rev.* 2004, 248, 2337.
- (6) Antilla, J. C.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 11684.
- (7) (a) Gujadhur, R. K.; Bates, C. G.; Venkataraman, D. Org. Lett. 2001, 3, 4315. (b) Van Allen, D.; Venkataraman, D. J. Org. Chem. 2003, 68, 4590. (c) Tang, B.-X.; Guo, S.-M.; Zhang, M.-B.; Li, J.-H. Synthesis 2008, 1707.
- (8) (a) Ma, D.; Cai, Q. Synlett 2004, 128. (b) Cai, Q.; Zhu, W.;
 Zhang, H.; Zhang, Y.; Ma, D. Synthesis 2005, 496.
- (9) Cristau, H.-J.; Cellier, P. P.; Spindler, J.-F.; Taillefer, M. *Chem. Eur. J.* **2004**, *10*, 5607.
- (10) Huang, Y.-Z.; Miao, H.; Zhang, Q.-H.; Chen, C.; Xu, J. *Catal. Lett.* **2008**, *122*, 344.
- (11) Correa, A.; Bolm, C. Adv. Synth. Catal. 2007, 349, 2673.
- (12) Analytical Data of 1-(Pyridin-2-yl)-1*H*-indole-3carboxaldehyde (2a) Mp 114–115 °C (MeOH). IR (KBr): 3101, 3050, 2821, 1667, 1649, 1593, 1579, 1539, 1471, 1455, 1444, 1224, 1128, 1083, 739 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.33-7.43$ (m, 3 H, H-5, H-5', H-6), 7.64 (d, 1 H, *J* = 8.3 Hz, H-3'), 7.95 (td, 1 H, *J* = 1.9, 7.7 Hz, H-4'), 8.02–8.05 (m, 1 H, H-4 or H-7), 8.38 (s, 1 H, H-2), 8.38–8.41 (m, 1 H, H-4 or H-7), 8.64 (dd, 1 H, *J* = 1.3, 4.7 Hz, H-6'), 10.16 (s, 1 H, CHO). ¹³C NMR (75 MHz, CDCl₃): $\delta = 112.8$ (CH), 115.7 (CH), 120.5 (C), 122.2 (CH), 122.3 (CH), 123.8 (CH), 125.1 (CH), 126.3 (C), 136.2 (C), 137.0 (CH), 139.0 (CH), 149.4 (CH), 150.9 (C), 185.4 (CO). ESI-MS: *m/z* = 223 [M + H]⁺. Anal. Calcd for C₁₄H₁₀N₂O: C, 75.66; H, 4.54; N, 12.60. Found: C, 75.99; H, 4.32; N, 12.55.
- (13) Analytical Data of 1,2-Di(pyridin-2-yl)-1*H*-indole-3carboxaldehyde (3a)
 Mp 127–128 °C (EtOAc–PE). IR (KBr): 3051, 3012, 2831,

Mp 12/-128 °C (ElOAC-PE). IR (KBF): 3051, 3012, 2851, 1648, 1443, 1387, 1050, 754, 741 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.19 (d, 1 H, *J* = 7.9 Hz, H-3' or H-3"), 7.27–7.44 (m, 5 H, H-3' or H-3", H-5, H-5', H-5'', H-6), 7.54 (d, 1 H, *J* = 7,4 Hz, H-4 or H-7), 7.67–7.79 (m, 2 H, H-4', H-4"), 8.53–8.60 (m, 3 H, H-4 or H-7, H-6', H-6"), 10.18 (s, 1 H, CHO). ¹³C NMR (75 MHz, CDCl₃): δ = 111.4 (CH), 117.7 (C), 122.1 (CH), 122.7 (CH), 123.1 (CH), 123.6 (CH), 124.0 (CH), 125.3 (CH), 125.4 (C), 126.8 (CH), 136.3 (CH), 137.4 (C), 138.4 (CH), 147.3 (C), 148.8 (C), 149.6 (CH), 149.9 (CH), 150.4 (C), 187.8 (CO). ESI-MS: *m/z* = 300 [M + H]⁺. Anal. Calcd for C₁₉H₁₃N₃O: C, 76.24; H, 4.38; N, 14.04. Found: C, 76.34; H, 4.43; N, 13.96.

- (14) Seki, K.; Ohkura, K.; Terashima, M.; Kanaoka, Y. *Heterocycles* **1994**, *37*, 993.
- (15) **Typical Procedure**

In a sealed tube, a solution of **2a** (100 mg, 0.45 mmol, 1 equiv), Cu₂O (6.5 mg, 0.045 mmol, 0.1 equiv), 2-iodopyridine (101 μ L, 0.90 mmol, 2 equiv), and K₂CO₃ (124 mg, 0.90 mmol, 2 equiv) in anhyd DMF (0.9 mL) was stirred at 153 °C for 3 d. The reaction was cooled to r.t., filtered through Celite, and the filtrate was concentrated in vacuo. The residue was diluted in EtOAc (20 mL). The organic layer was washed with a solution of 2.5% aq NH₄OH (2 × 20 mL) and brine (20 mL). The organic phase was dried over MgSO₄, filtered, and concentrated in vacuo. The crude product was purified by flash column chromatography (PE–EtOAc, 2:8 to 1:1) to provide **3a** (110 mg, 84%).

- (16) (a) Lane, S. S.; Sames, D. Org. Lett. 2004, 6, 2897.
 (b) Lane, B. S.; Brown, M. A.; Sames, D. J. Am. Chem. Soc. 2005, 127, 8050. (c) Toure, B. B.; Lane, B. S.; Sames, D. Org. Lett. 2006, 8, 1979. (d) Bellina, F.; Cauteruccio, S.; Rossi, R. Eur. J. Org. Chem. 2006, 1379. (e) Bellina, F.; Calandri, C.; Cauteruccio, S.; Rossi, R. Tetrahedron 2007, 63, 1970. (f) Wang, X.; Gribkov, D. V.; Sames, D. J. Org. Chem. 2007, 72, 1476. (g) Lebrasseur, N.; Larrosa, I. J. Am. Chem. Soc. 2008, 130, 2926. (h) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174.
- (17) Wang, X.; Lane, B. S.; Sames, D. J. Am. Chem. Soc. 2005, 127, 4996.
- (18) Phipps, R. J.; Grimster, N. P.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 8172.
- (19) Analytical Data of 2-Phenyl-1-(pyridin-2-yl)-1*H*-indole-3-carboxaldehyde (3b)²⁶ Mp 171–172 °C (EtOAc–PE). IR (KBr): 3065, 3043, 2836, 1652, 1466, 1454, 1384, 1225, 1082, 756 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 6.94$ (d, 1 H, J = 7.9 Hz, H-3'), 7.30– 7.43 (m, 8 H, H-5, H-5', H-6, H_{arom}), 7.51 (d, 1 H, J = 7.5 Hz, H-4 or H-7), 7.68 (td, 1 H, J = 1.9, 8.0 Hz, H-4'), 8.50 (br d, 1 H, J = 6.9 Hz, H-4 or H-7), 8.65 (dd, 1 H, J = 1.3, 4.9 Hz, H-6'), 9.97 (s, 1 H, CHO). ¹³C NMR (75 MHz, CDCl₃): $\delta = 111.6$ (CH), 116.9 (C), 122.2 (CH), 122.4 (CH), 123.2 (CH), 123.9 (CH), 124.8 (CH), 125.5 (C), 128.5 (2 CH), 128.8 (C), 129.5 (CH), 131.1 (2 CH), 137.5 (C), 138.3 (CH), 149.6 (CH), 149.9 (C), 150.2 (C), 187.6 (CO). ESI-MS: *m/z* = 299 [M + H]⁺. Anal. Calcd for C₂₀H₁₄N₂O: C 80.52; H, 4.73; N, 9.39. Found: C, 80.83; H, 4.85; N, 9.27.
- (20) Analytical Data of 1-(Pyridin-2-yl)-2-(4-methylphenyl)-1H-indole-3-carboxaldehyde (3f) Mp 206-207 °C (EtOAc-PE). IR (KBr): 3048, 2916, 2836, 1642, 1435, 1081, 747, 737 cm⁻¹. ¹H NMR (300 MHz, CDCl_3): $\delta = 2.37$ (s, 3 H, CH_3), 6.92 (d, 1 H, J = 6.9 Hz, H-3'), 7.15 (d, 2 H, J = 8.0 Hz, H_{arom}), 7.26 (d, 2 H, J = 8.0Hz, H_{arom}), 7.29–7.41 (m, 3 H, H-5, H-5', H-6), 7.50 (dd, 1 H, J = 0.9, 7.4 Hz, H-4 or H-7), 7.68 (td, 1 H, J = 1.9, 7.7 Hz,H-4'), 8.48 (dd, 1 H, J = 1.1, 7.3 Hz, H-4 or H-7), 8.65 (dd, 1 H, J = 1.1, 4.9 Hz, H-6', 9.95 (s, 1 H, CHO). ¹³C NMR (75 MHz, CDCl₃): δ = 21.4 (CH₃), 111.5 (CH), 116.7 (C), 122.1 (CH), 122.5 (CH), 123.1 (CH), 123.8 (CH), 124.7 (CH), 125.5 (C), 125.8 (C), 129.2 (2 CH), 131.0 (2 CH), 137.5 (C), 138.3 (CH), 139.7 (C), 149.6 (CH), 150.2 (C), 150.3 (C), 187.6 (CO). ESI-MS: *m/z* = 313 [M + H]⁺. Anal. Calcd for C₂₁H₁₆N₂O: C, 80.75, H, 5.16; N, 8.97. Found: C, 8.48; H, 4.97; N, 9.03.
- (21) Kantam, M. L.; Yadav, J.; Laha, S.; Sreedhar, B.; Jha, S. Adv. Synth. Catal. 2007, 349, 1938.

- (22) Seki, K.; Ohkura, K.; Terashima, M.; Kanaoka, Y. *Heterocycles* 1987, 26, 3101.
- (23) Analytical Data of 1-(Pyridin-2-yl)-1*H*-indole-3carbonitrile (11e) Mp 150–151 °C (MeOH). IR (KBr): 3135, 3050, 2222, 1592, 1540, 1473, 1455, 1434, 1229, 1095, 735 cm^{-1. 1}H NMR (300 MHz, CDCl₃): δ = 7.32–7.45 (m, 3 H, H-5, H-5', H-6), 7.56 (d, 1 H, *J* = 8.1 Hz, H-3'), 7.83 (br d, 1 H, *J* = 7.5 Hz, H-4 or H-7), 7.93 (td, 1 H, *J* = 1.9, 7.5 Hz, H-4'), 8.10 (br d, 1 H, *J* = 7.1 Hz, H-4 or H-7), 8.23 (s, 1 H, H-2), 8.63 (dd, 1 H, *J* = 1.1, 4.9 Hz, H-6'). ¹³C NMR (75 MHz, CDCl₃): δ = 89.8 (C), 113.4 (CH), 115.3 (C), 115.6 (CH), 120.0 (CH), 122.3 (CH), 123.4 (CH), 125.2 (CH), 128.7 (C), 133.3 (CH), 134.4 (C), 139.1 (CH), 149.5 (CH), 150.7 (C). ESI-MS: *m*/*z* = 220 [M + H]⁺. Anal. Calcd for C₁₄H₉N₃: C, 76.70, H, 4.14, N, 19.17. Found: C, 76.72; H, 4.08; N, 19.25.
- (24) Analytical Data of 1,2-Di(pyridin-2-yl)-1*H*-indole-3carbonitrile (11d) Mp 128–129 °C (CH₂Cl₂–PE). IR (KBr): 3065, 2213, 1589, 1569, 1467, 1448, 1435, 1393, 1225, 738 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.24–7.41 (m, 5 H, H-3' or H-3", H-5, H-5', H-5", H-6), 7.50–7.53 (m, 1 H, H-4 or H-7), 7.82– 7.89 (m, 4 H, H-3' or H-3", H-4 or H-7, H-4', H-4"), 8.44 (br d, 1 H, *J* = 4.1 Hz, H-6' or H-6"), 8.51 (dd, 1 H, *J* = 1.1, 4.7, H-6' or H-6"). ¹³C NMR (75 MHz, CDCl₃): δ = 89.3 (C), 112.1 (CH), 116.1 (C), 120.0 (CH), 122.0 (CH), 123.1 (CH), 123.4 (CH), 123.5 (CH), 124.9 (CH), 125.5 (CH), 127.6 (C), 136.8 (CH), 137.2 (C), 138.4 (CH), 144.8 (C), 148.2 (C),
 - 130.8 (CH), 137.2 (C), 138.4 (CH), 144.8 (C), 146.2 (C), 149.5 (CH), 149.6 (CH), 150.7 (C). ESI-MS: m/z = 297 [M + H]⁺. Anal. Calcd for C₁₉H₁₂N₄: C, 77.01, H, 4.08, N, 18.91. Found: C, 76.88; H, 4.27; N, 19.01.

(25) Typical Procedure

In a microwave vial with a magnetic stir bar was introduced indole-3-carboxaldehyde (100 mg, 0.68 mmol, 1 equiv), Cu₂O (10 mg, 0.07 mmol, 0.1 equiv), and K₂CO₃ (189 mg, 1.36 mmol, 2 equiv) in anhyd DMF (1.4 mL). After a purge with argon, 2-iodopyridine (153 μ L, 1.36 mmol, 2 equiv) was added. The vial was sealed and heated at 240 °C under microwave irradiation (Biotage Initiator) for 1 h. The mixture was filtered through Celite, and the filtrate was concentrated in vacuo. The residue was diluted in EtOAc (20 mL). The organic layer was washed with a solution of 2.5% aq NH₄OH (2 × 20 mL) and brine (20 mL). The organic phase was dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified by flash chromatography (PE–EtOAc, 2:8 to 1:1) to provide **2a** (88 mg, 58%) and **3a** (73 mg, 36%).

(26) (a) Fernandez, I.; Galvez, C.; Urpi, L. An. Quim. 1991, 87, 936. (b) Maassarani, F.; Pfeffer, M.; Spencer, J.; Wehman, E. J. Organomet. Chem. 1994, 466, 265.

Synlett 2009, No. 3, 433–436 © Thieme Stuttgart · New York

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.