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Weak multivalent interactions are now recognized as key to
many biological processes.[1] Since the discovery of carbohy-
drate–carbohydrate interactions (CCIs),[2] studies of this
phenomenon have now linked CCIs (both cis- and trans-
CCIs) to critical biological recognition events, such as cell
signaling and adhesion, fertilization, and metastasis.[3] CCIs
are intrinsically weak so their study and quantification at the
monovalent level is a significant challenge that represents the
focus of this Communication.

Previous work has relied on macroscopic or multivalent
systems including synthetic polymers,[4] micelles and vesi-
cles,[5] glycosylated nanoparticles,[6] and Langmuir–Blodgett
monolayers.[7] These studies have generally (though not
exclusively) focused on the biologically important LewisX–
LewisX (LeX–LeX) interaction.[4–8] As a result, a number of
factors important in CCIs are now apparent, and these include
multivalent (Velcro-like) presentation of carbohydrates on a
surface; a requirement for polyamphiphilic surfaces associ-
ated with the hydraphobic effect;[9] and, in certain cases, roles
for both divalent metal cations (e.g. Ca2+) and ionic (charge)
effects. While multivalency effectively amplifies CCIs, the
complexity of such macroscopic systems makes mapping the
individual impact of component carbohydrate (CHO) units
and their associated molecular features difficult to define.

To achieve a more detailed picture of CCIs, while
recognizing the inherent challenge of studying this phenom-

enon in isolation (i.e. outside of a multivalent environ-
ment),[10] we have evaluated the ability of a conformationally
dynamic system to report on a weak, attractive CCI based on
LeX–LeX. Random-coil:a-helix equilibria displayed by ala-
nine-rich peptides in aqueous solution, where helix content is
highly sensitive to small changes in the free energy of helix
formation, provide an attractive, effective and potentially
versatile vehicle for this purpose (Figure 1 a). The requisite

peptides are readily accessible, and helix content can be
measured accurately by circular dichroism (CD) spectros-
copy. We posit that with two CHOs ligated at specified
positions (Figure 1b) on the peptide backbone, perturbation
of this highly sensitive equilibrium to a more helical state
would indicate the presence of an attractive (i.e. stabilizing)
CCI, thereby providing a means of studying this phenomenon
in comparative isolation, outside of a multivalent environ-
ment.

To validate the feasibility of a peptide-based reporter for
this purpose, a series of 19-residue host peptides was designed
(Figure 1c). These comprised mainly Ala and Lys residues,
incorporating Tyr (as a UV determinant of peptide concen-

Figure 1. a) Schematic of random-coil:a-helix equilibrium for detection
of CCIs. b) Helical wheel diagram showing functionalized i, i+4, and
i+5 sites. c) General peptide sequences used in this study.
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tration) and orthogonally protected Lys units provided the
two necessary glycosylation sites. The N- and C-termini were
capped with acetyl and amide groups, respectively, to remove
charges and stabilize the helix. Peptides were designed to be
close to 50 % helical in order to be maximally sensitive (given
the weak nature of the interaction to side-chain interactions
being pursued) involving the CHO guests. Modified Lifson–
Roig helix–coil theory[11] was used to predict a-helix contents
for the isolated peptides in aqueous solution, using parame-
ters for interior and N-cap positions of helices.[12] Given the a-
helical repeat of 3.6 amino acids per turn (Figure 1b)
glycosylation sites were spaced i, i+4 to locate two CHO
moieties close in space, and to maximize the population of
(and preference for) the helical component in the presence of
a stabilizing CCI.

General controls were provided by i, i+5 variants since
this relationship provides no stabilizing interaction within an
a-helix (see Figure 1b); other controls/benchmarks were also
employed as discussed below. Specifically, we have used these
sequences to probe the LeX–LeX interaction, and to validate
the applicability and veracity of the coil:helix approach to
detecting and studying CCIs. The introduction of a function-
alized C3 linker based on LeX thioglycoside 1[13] was achieved
(see Supporting Information), and provided LeX thiol 2a and
disulfide 2b (Figure 2); both were used for peptide ligation.
The same C3 linker unit was common to all the CHO-based
controls employed in this study.

Solid-phase Fmoc protocols provided a series of un-
derivatized and N-e-acetyl peptides 3a–d and 4a–c, respec-
tively. In addition, and using the same C3 linker, monoLeX

peptide 5 a, guest bisglycopeptides 5b and 5c incorporating
two LeX trisaccharide units, and the corresponding mono-
saccharide (glucose) 6a/b and disaccharide (lactose) 7a/b
variants were prepared. CD data were obtained as an average
of 30 spectra at five different concentrations and were
performed in triplicate to determine experimental repeat-
ability. The intensity of the CD signals at 222 nm indicated
that all peptides tested had a helical component in the range
of 37–54% (Table 1, Figure 3 and Figure 4, and Supporting
Information), consistent with the original peptide design.

Participation of higher-order aggregates was excluded as
no concentration dependencies were observed within the
range 12.5–200 mm ; this is important as peptide aggregation
would interfere with the detection of a monovalent, isolated
CCI.

The control systems were further calibrated. Peptides
carrying free (i.e. positively charged) lysine at i, i+4 and i, i+5

(controls 3a and 3b) had similar and relatively low (38% and
41%, respectively) helical contents.[15] To demonstrate the
sensitivity of the peptide reporter to a stabilizing side-chain
interaction, we used a known[16] glutamate-to-lysine interac-
tion: the i, i+4 peptide 3c displayed a higher helix content
(54 %) than the i, i+5 3d (39 %), confirming the ability of a
stabilizing effect to enhance helix content in the peptide
reporter system used here.[17]

The N-e-Ac-K (mono- and two bisacetylated) variants
4a–c relate more closely to the LeX glycopeptides 5a–c in
structural and charge terms and offered an important control
set; we suggest that N-capped 4a–c are more relevant to this
study as controls than the free lysine 3a/b variants. Mono-
acetylated 4a, the i, i+4 and i, i+5 bisacetylated peptides 4b
and 4c, respectively, and the monoLeX glycopeptide 5a
displayed similar levels of helicity (51–52%, Table 1), indi-
cating that these substitutions (both NAc and monoglycosy-
lation) do not affect significantly the coil:helix distribution.

Comparison of the two key bisglycosylated LeX glyco-
peptides 5b/c showed that i, i+4 5 b had a higher helical
content than i, i+5 isomer 5c (54% vs. 49%). Although small,
the increase in helicity associated with the i, i+4 isomer 5b
(5% vs. 5c compared against 1% for 4b vs. 4c), together with
the trend associated with two other glycopeptide controls 6a/
b and 7a/b (see below), indicates the presence of a stabilizing
carbohydrate–carbohydrate interaction.

The differences in helical content observed are small,
though we suggest significant based on the effect associated
with other glycopeptides controls. Both i, i+4 and i, i+5
isomers of mono- and disaccharide bisglycopeptides 6a/b and
7a/b incorporating glucose (Glc) and lactose (Lac, Galb1-4-
Glc) moieties, respectively, were synthesized and coil:helix
distributions determined. In each case, and in marked

Figure 2. LeX thioglycoside 1, LeX thiol 2a and disulfide 2b.

Table 1: Helicities of peptides: controls and glycopeptides variants.

Control peptides (X= K) % Helicity[a]

3a i, i+4 Ac-AKAAAAKAXAAAXAKAAGY-NH2 38
3b i, i+5 Ac-AKAAAAKAXAAAAXAKAGY-NH2 41
3c i, i+4 Ac-AKAAAAKAEAAAXAKAAGY-NH2 54
3d i, i+5 Ac-AKAAAAKAEAAAAXAKAGY-NH2 39

Acetylated control peptides (X= KAc)
4a – Ac-AKAAAAKAXAAAKAKAAGY-NH2 52
4b i, i+4 Ac-AKAAAAKAXAAAXAKAAGY-NH2 52
4c i, i+5 Ac-AKAAAAKAXAAAAXAKAGY-NH2 51

LeX glycopeptides (X = KCOCH2S(CH2)3OLeX)
5a – Ac-AKAAAAKAXAAAKAKAAGY-NH2 51
5b i, i+4 Ac-AKAAAAKAXAAAXAKAAGY-NH2 54
5c i, i+5 Ac-AKAAAAKAXAAAAXAKAGY-NH2 49

Other controls (X= KCOCH2S(CH2)3O-Glc 6a/b or O-Lac 7a/b)
6a i, i+4 Ac-AKAAAAKAXAAAXAKAAGY-NH2 40
6b i, i+5 Ac-AKAAAAKAXAAAAXAKAGY-NH2 48
7a i, i+4 Ac-AKAAAAKAXAAAXAKAAGY-NH2 37
7b i, i+5 Ac-AKAAAAKAXAAAAXAKAGY-NH2 49

[a] CD spectroscopy was performed at 5 8C (pH 7.0; 10 mm MOPS
buffer) with helicity values calculated using fh = (qobs�qcoil)/(qh�qcoil).

[14]

Experimental errors, based on multiple scans and replicates (see
Supporting Information), were all within the range 0.4–1.4%.
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contrast to the bisLeX glycopeptides 5 b/c, the i, i+4 variants
(6a and 7 a) displayed a lower helical content than the
corresponding i, i+5 controls (6b and 7 b); the i, i+4
monosaccharide 6 a and disaccharide 7a controls were 8%
and 12% less helical than the i, i+5 variants 6b and 7b
respectively (Figure 3).[18]

This demonstrates that the introduction of a mono- then
disaccharide moiety (i.e. glyco-based controls possessing a
steric, and an escalating steric demand, but no associated
stabilizing interaction) results in an increasing destabilization
of the helical state. Also noteworthy is that the three
bisglycosylated i, i+5 (i.e. non-interacting, Figure 1b) pep-
tides 5 c, 6b and 7b, all have closely similar helix contents at
approximately 49% suggesting that isolation of the CHO
units from each other has been achieved. These data, and in
particular the trend, shown schematically in Figure 4, of a
decrease in helical content associated with mono- and
disaccharide substrates (6a and 7a) compared to the increase
observed for the (trisaccharide) LeX–LeX glycopeptide 5b
supports the conclusion that this peptide reporter system is

responding to a weakly attractive, stabilizing and single
(monovalent) CCI.

Helix contents can be accurately predicted from helix–coil
theory, provided that parameters for the residues present are
known.[11b] This has been carried out for the glycopeptides
discussed here, to provide the free energies associated with
adding carbohydrate units to the helix and the free energies of
the side-chain interaction energies.[19] This indicates the LeX–
LeX interaction (associated with i, i+4 5b) stabilizes the helix
by approximately 0.5 kcalmol�1, compared to the other i, i+4
bisglycopeptides 6a and 7a.

Given the role reported for Ca2+ within LeX-based
carbohydrate interactions,[2, 3] the effect of Ca2+ on the helix
preference of 5b was also examined. Using either a large
excess of Ca2+ (167 mm with 100 mm of 5 b in 10 mm MOPS
buffer at pH 7.0) or under titration conditions (50 mm to
10 mm Ca2+), we observed no significant difference in helical
content of 5 b.[20] This lack of a Ca2+ effect is interesting but
not without precedent[21] and, as articulated earlier by
Penad�s et al.,[8a] draws attention to the limited understand-
ing currently available as to the precise mechanism by which
Ca2+ mediates CCIs.

While reflecting the inherently weak nature of CCIs, the
differences in helical content and trend observed (Table 1 and
Figure 4) are consistent with observation of a monovalent and
favorable carbohydrate–carbohydrate interaction. This, in
turn, supports the ability of a dynamic random-coil:a-helical
peptide system to provide a qualitative read-out of CCIs.
Given that peptide synthesis and carbohydrate ligation are
straightforward, this reporter, validated here with LeX–LeX,
offers a new means of probing the molecular level details of a
weak but fundamentally important biological interaction.
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