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Abstract: A series of polysubstituted pyrroles 3 have been synthe-
sized very efficiently in two or three steps starting from primary
amines 1. The key-step of this process is the bromocyclisation of �-
enaminoesters 2. The chemoselectivity of the reaction could depend
on the nature of the solvent.
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Pyrroles are heterocycles of great importance because of
their presence in numerous natural products such as heme,
chlorophyll, vitamin B12 or enzymes like the various cyto-
chromes.1 In addition, polysubstituted pyrroles are molec-
ular frameworks of many biologically active compounds
and have emerged as chemotherapeutic agents.2 Although
there is a number of potentially useful methods, (for ex-
ample the well known Knorr reaction),3 many synthetic
designs for these ring systems continue to be developed.4

This paper describes a facile and flexible regioselective
synthesis of 2,4-dicarbonylated substituted pyrroles 3 in
two or three steps, starting from primary amines 1
(Scheme 1). The key-step involves the bromocyclisation
of �-enaminoesters 2 with N-bromosuccinimide (NBS).

The preparation of derivatives 2 has been achieved by two
different procedures.5 The first one allowed, in a one-pot
procedure, the stereoselective synthesis of ��enami-
noester 2a,b by refluxing amines 1 (R1 = H or Me) with
methyl propiolate in methanol (Scheme 2). The Z-config-
uration of the double bond � to the nitrogen atom is as-
sumed on grounds of earlier work.6 The E-configuration
of the second double bond is based upon the coupling
(15.5 Hz) of the ethylenic hydrogen atoms.

The �-enaminoester 2c-f were prepared stereoselectively
via a two-step procedure:7 i) condensation between
amines 1 and methyl acetoacetate or 2,4-pentanedione led
to �-enaminoester 4c-e and �-enaminoketone 4f respec-
tively ii) addition of methyl propiolate8 to these adducts
4c-f afforded �-enaminoester 2c-f in a diastereomerically
pure form (Scheme 3).9

Six examples of the conversion of �-enaminoesters 2 to
various substituted pyrroles are listed in Table 1. The re-
actions were performed by adding NBS to a solution of
substrates 2 in dichloromethane at 0 °C.10 The reactions
were completed in 5 minutes, the solvent evaporated and
the residue purified by chromatography on silica gel. 

Table 1 Reaction of �-enaminoesters 2 with NBS (Scheme 1)

The products were usually obtained as solids.11 This
method gives very good results when R2 is a methyl group
(Table 1, entries 3-6). In contrast, when R1 and R2 are hy-
drogen atoms, pyrrole 3a is formed in moderate yield (Ta-
ble 1, entry 1). Moreover, when R2 = H and when R1 = Me
as in substrate 2b only traces of pyrrole 3b could be ob-
served in the 1H NMR spectrum of the crude mixture (Ta-
ble 1, entry 2). In this case compound 5b was obtained in
good yield.12
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Similar brominated products 5 were detected by 1H NMR
as by-products in the reaction of NBS in dichloromethane
with all others substrates 2a,c-f. These compounds 5 were
not isolated and led slowly (3-24 h) to pyrroles 3a,c-f
(Scheme 4).13

In order to enhance the yield of formation of pyrrole 2b,
we examined the influence of various solvents on the
chemoselectivity of this reaction (Table 2). For this pur-
pose, a solution of �-enaminoester 2b in various solvents
was added at room temperature to 1.2 equivalent of NBS.
Reactions were completed within a period of 5 minutes.
The solvents were then evaporated and the ratio of the
products 3b / 5b were determined by 1H NMR of the crude
material.

Table 2 Solvent effect on the reaction of �-enaminoester 2b with
NBS (Scheme 4)

a Combined yields determined by 1H NMR

A dramatic solvent effect has been observed. Product 5b
is formed chemoselectively in all solvents (Table 2, en-
tries 1-5) except in methanol (Table 2, entry 6) which pro-
motes the exclusive formation of pyrrole 3b; a wet DMSO
medium (Table 2, entry 7) shows the same effect, albeit to
a lesser extent. These results are in agreement with a nu-
cleophilic external addition of the solvent on an interme-
diate imminium. The resulting �-bromo-�-aminoester
would then cyclize to furnish, after elimination of metha-
nol (Table 2, entry 6) or water (Table 2, entry 7), the ex-
pected pyrrole 3b. Research aimed at elucidating this
intriguing question is currently underway.

In summary, it appears that this synthetic two- or three-
step sequence starting from commercially avalaible pri-
mary amines is straightforward and flexible for the prepa-
ration of 2,4-dicarbonylated pyrroles. This procedure
does not require harsh reaction conditions or difficult to
handle reagents, offers high yields and can be easily
scaled up to the preparation of gram quantities of pyrroles. 

We currently investigate the use of pyrroles 3b,c,e in
asymmetric synthesis in order to prepare polysubstituted
chiral non racemic pyrroles and pyrrolidines.
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