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Abstract

The catalytic performance of diphenylammonium triflates as an organocatalyst in the synthesis of f-enaminones from various
substituted B-diketones and amides (or amines) were evaluated. A wide range of 3-enaminones were efficiently synthesized
in good to excellent yields under mild reaction conditions. Applying diphenylammonium triflate (DPAT) as catalyst makes
this protocol cost-effective, low corrosive and easy to handle.
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Introduction

p-enaminones are important precursors for the construc-
tion of a variety of pharmaceutical compounds, including
anti-convulsivant, anti-inflammatory agents, anti-cancer
agents, and quinoline antibacterials (Edafiogho et al. 2006;
Tabatabaeian et al. 2014; Zhang et al. 2014). In addition,
substituted f-enaminones are commonly used as interme-
diates in the synthesis of heterocycles, such as pyridines
(Chen et al. 2017), indoles (Li et al. 2018), pyrroles (Zhao
et al. 2017) and isoxazole derivatives (Fatima and Adel
2005). Due to the extensive application of -enaminones
in organic synthesis and drug development, much attention
has been given to development of facile, green, and practical
methods for the preparation of p-enaminones. The classical
method to synthesize -enaminones synthesis involves direct
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condensation of corresponding amine with 1,3-dicarbonyl
compounds via catalysis of strong protonic acid (Baraldi
et al. 1983; Martin et al. 1961). Subsequently, greener meth-
ods which employed the metal as catalysts such as NaAuCl,
(Arcadi et al. 2003), Zn(Cl0O,),-6H,0O (Bartoli et al. 2004),
Er(OTf); (Dalpozzo et al. 2006), Zn[aminoacid], (Winck
et al. 2014) and Ca(CF;COO), (Harrad et al. 2010), to pre-
pare f-enaminones were developed. Although great progress
has been achieved in past decades, most of them suffer from
one or more of limitations, such as unsatisfactory yields,
the use of expensive or less easily available reagents, highly
corrosive, and longer reaction time. Until now, studies on
the synthesis of f-enaminones involved the condensation of
B-ketoesters with less active amides has rarely been reported
(Ovenden and Capon 1999; Guin et al. 2007; Klapars et al.
2005). Consequently, developing the green and highly effi-
cient methods for synthesis of a wide range of f-enaminones
under less hazardous conditions is of prime importance.

Ammonium triflates have been used as a novel type of
organocatalyst in a variety of reactions (Wakasugi et al.
2000; Mercs et al. 2007; Li et al. 2012; Mahjoob and Mon-
tazeri 2012; Li and Gui 2014; Jiang et al. 2018) and have dis-
played great catalytic activity and efficiency. Compared with
strong protonic acid or metal catalyst, it has the advantages
of reusable, cost-effective, operational simplicity and low
corrosive. Despite the considerable success that has been
achieved, we wished to expand the application of ammonium
triflate to the preparation of f-enaminones. Herein, we report
a green, mild and efficient method for the condensation of
p-ketoesters with amines or amides (sulfonamides) to syn-
thesize a variety of f-enaminones in good to excellent yields,
catalyzed by DPAT (Scheme 1).

Scheme 1 Different strate- Previous work:

gies for the synthesis of
f-enaminones
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Results and discussion

To begin our study, we chose benzamide and ethyl acetoac-
etate as model reactants to examine and optimized the con-
ditions of this condensation. The transformation was ini-
tially carried out in toluene under refluxing for 6 h without
adding any catalyst and the experimental result showed that
no desired product was detected. A variety of ammonium
triflates (Fig. 1, Table 1) such as piperidinium triflate (PT),
morpholinium triflate (MorT), (1-ethylpyrrolidin-2-yl)meth-
anaminium triflate (EPMAT), p-methoxyanilinium triflate
(p-MOAT), p-nitroanilinium triflate (p-NAT), 1-phenyle-
than-1-aminium triflate (1-PEAT), tributylaminium triflate
(TBAT) and diphenylammonium triflate (DPAT) were then
tested for this reaction. To our delight, DPAT showed an
excellent catalytic activity and the corresponding product
was obtained in 96% yield. Subsequently, we also explored
whether the amounts of DPAT would affect the efficiency
of this reaction. It was observed that increasing or decreas-
ing the amount of DPAT all led to a slight decrease in the
yield (Table 1, entries 10, 11). Furthermore, various com-
monly used solvents including CH;CH,OH, THF, CH;CN,
cyclohexane, methylcyclohexane and p-xylene (Table 1,
entries 13—18) were examined. However, none of them gave
a better result than toluene.

On the basis of the screening of the reaction conditions, it
was concluded that this condensation should be performed
in toluene by employing DPAT as catalyst (10 mol%) under
refluxing for 6 h. To demonstrate the generality of this
method, the scope of the reaction was investigated under
the optimized conditions, and the results are summarized
in Table 2. This method was found to be applicable to a
wide range of p-diketones (f-ketoesters) and amides, deliv-
ering the desired product in moderate to excellent yields.
Moreover, B-diketones (B-ketoesters) and amides resulted
(Z2)-B-enaminones with high stereoselectivity (Z/E >20:1,
determined by 'H NMR spectroscopy of the crude reaction
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Fig.1 Ammonium triflates
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Table 1 Optimization of the reaction conditions
o) o
O)J\ NH, *+ 11 _— Ph)J\ NH O
OC,Hs “
OC,Hs
Entry Catalyst (mol%) Solvent Yield (%)*
1 None Toluene Trace
2 PT(10) Toluene Trace
3 MorT(10) Toluene Trace
4 EPMAT(10) Toluene Trace
5 p-MOAT(10) Toluene 11
6 p-NAT(10) Toluene 17
7 1-PEAT(10) Toluene 9
8 TBAT(10) Toluene Trace
9 DPAT(10) Toluene 96
10 DPAT(5) Toluene 92
11 DPAT(15) Toluene 93
12° DPAT(10) Toluene 68
13 DPAT(10) C,H;OH 56
14 DPAT(10) THF 51
15 DPAT(10) CH;CN 64
16 DPAT(10) Cyclohexane 91
17 DPAT(10) Methylcyclohexane 92
18 DPAT(10) p-xylene 87

Reaction conditions: benzamide (0.6 mmol), ethyl acetoacetate (0.5 mmol) in refluxing solvent (2 mL), catalyst (5-15 mol %), 6 h

solated yields after column chromatography based on ethyl acetoacetate

At 80 °C
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Table 2 Synthesis of
B-enaminones catalyzed by
DPAT*

o o DPAT(10 mol%) RS\NH o
+  RNH,
1 2 N
R R toluene,reflux R R2
1 2 3
R A
‘ _N R' = CHj, R? = OMe, 3f, 98%
2 = g’M?’:v:t?"/;w R' = CHy, R? = OC(CHy)s, 39, 91%
R:CI e 750/ ° 0o“>NH O 0“>NH O R'=Ph, R? = Ph, N.D.
NGRS R' = CH3, R? = Ph, 3h, 86%
° M R =NO, 3d, 51% MOEt R1MR2 ?
N
OFEt 3e, 86%

F
F O F O
F
E Y F O%E F Y NH, O
NH O F NH O
NH O “ NKFN\
N
OCH N
[ OCHs N"ocH, [ o F K/N\/(
3i, 83%° F 3 7300 3k, 61%° Sitagliptin CFs
o N NH, O o] R' = CH;, R? = OEt, 3m, 58%
Kj/ NOCHa ANH o R" = CHj, R? = Ph, 3n, 52%
o J\)L R' = Ph, R2 = OEt, 30, 55%
R' R2 R'=-Pr, RZ = OMe, 3p, 51%
N.D. 31, 40%°
o)
Cﬁ H R? = OMe, 3r, 93% ©\
g 2 _ NH O
N R2 = OEt, 3s, 91%
0" NH O NH O R2 = OC(CHs)s, 3t, 88% X
R?= CHg, 3u, 98% 3v. 95%
X OEt MRz
3q, 78%"

L
NH

R = OMe, 3w, 89%
R =Cl, 3x, 73%

o)
R = NO,, 3y, 47%
Moa Moa

II II NH O

3z, 87%

#Reaction conditions: amides or amines (0.6 mmol), p-dicarbonyl compounds (0.5 mmol), and DPAT
(0.05 mmol), all reactions were stirred in refluxing toluene (2 mL), 6 h

"8 h

“Urea (0.6 mmol), B-dicarbonyl compounds (0.5 mmol), under optimized conditions

mixture). The occurrence of (Z)-selectivity was probably
due to feasible hydrogen-bond formation between (N)H
and O(=C). For example, the screened -ketoesters were
all effective substrates examined, which could proceed this
condensation well with aromatic amides or aliphatic amides
to gave the corresponding products in 51-98% yields. Aro-
matic amides bearing electron-donating groups at 4-position
of aromatic ring such as methoxy 2b provided the desired
products in 93% yield. The electron-withdrawing substitu-
ents at 4-position of aryl group such as chloro or nitro, seem
to disfavor this transformation, as the yield was reduced to
79%, 51%. p-Diketone substrate was also tolerated well for
this transformation and provided the desired product 3h
in 86% yield. However, it failed to give the product when
1,3-cyclohexanedione or 1,3-diphenylpropane-1,3-dione

@ Springer

was used as -diketone substrate mainly due to their steric
hindrance and inherent low reactivity (Table 2). Satisfac-
torily, amides substrate including the aromatic amides,
aliphatic amide and benzylamide were all compatible for
this protocol, providing a series of products f-enaminones
via condensation with p-diketones (p-ketoesters) (Table 2).
Furthermore, an unprotected -amino product was observed
when urea was used as substrate. Urea successfully functions
as a latent scaffold for amino group. Products 3i, 3j and 3Kk,
the intermediates for synthesis of sitagliptin that is an active
ingredient of antidiabetic drug used in the treatment of type
2 diabetes mellitus (T2DM) (Enguzel-Alperen et al. 2018),
could be synthesized via the condensation with amides
under optimized conditions in satisfied yields. Further-
more, aromatic amines and benzylamine were investigated
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for this reaction and the results are given in Table 2. Screen-
ing revealed that the reactions between aromatic amines and
1,3-diketones or p-ketoesters could proceeded smoothly and
provided the desired products 3v—3z in 47-95% yields. The
general applicability of our method was then extended to the
condensation of a-ketoesters with acetamide or benzamide
(Scheme 2). a-Ketoesters with acetamide only led to the
synthesis of desired products 4a and 4d in moderate yields.
Moreover, it only selectively gave the product 4d when
the condensation between acetamide and ethyl 2,4-dioxo-
pentanoate was proceeded under optimized conditions. To
our surprise, except for the desired product 4b (46%), an
unexpected bis(benzamide) byproduct 4¢ was also obtained

between the condensation of benzamide with ethyl pyruvate
in 21% yield (Scheme 2). Interestingly, a similar result was
obtained when using 2,4-dioxovalerate as substrate instead
of ethyl pyruvate. Besides the isolation of the desired prod-
uct 4e in a yield of 45%, the coupling product 4f was isolated
in 21% yield. Finally, it was delight to find that this approach
was also applicable to sulfonamides though its activity was
inferior to amides, such as 4-methoxybenzenesulfonamide,
giving the corresponding products in 31 to 61% yields
(Scheme 3, 5a-5d).

To gain mechanistic insight into the transformation of
4c, the control experiment was carried out (Scheme 4).

Scheme 2 Reaction between 0 o R
acetamide (benzamide) and )J\ )J\ o0 HN /go
a-ketoester R™ NH DPAT(10 mol%) R™ N OFt
o + _ = + )J\ OEt
OEt toluene, reflux o R H 4
o) R = CH3, 4a: 53% R = CH3, N.D.
R = Ph, 4b: 46% R =Ph, 4¢c: 21%

o)
R)J\NHZ

. DPAT(10 mol%)

O O

_—
toluene, reflux % OEt

O

Scheme 3 Condensation reac-
tion between 4-methoxyben-
zenesulfonamide and a- and
B-keto compounds 0 0

R'=CHs3, R?=Ph

R"= CH(CHj3),, R?= OCHjy

R'=Ph, R?= OEt

o

Scheme 4 Control experiment
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- O// NH O
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o HsCO
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\ > 4
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5d, 61% o)
Ph
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Ph” “NH, Ph)J\N%\H/OEt
H
O
0.6 mmol 4c, 28%
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Scheme 5 Proposed mechanism Ph B Ph
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The condensation of benzamide with 4b was conducted
and provided the desired product 4¢ in 28% yield.
According to the above mentioned observations, a pos-
sible mechanism for the DPAT-catalyzed synthesis of 3a
and 4c¢ has been proposed in Scheme 5. Initially, the 3a’
is formed after condensation between benzamide and ethyl
acetoacetate in the presence of DPAT, followed by elimina-
tion of a molecule of H,O to generate the imine intermediate
3a”. After removing the catalyst DPAT, the 3a” is trans-
formed into the desired product 3a (Scheme 5a). Similarly,

Scheme 6 Gram-scale synthesis
of product 3a and 3i

o o
/U\)J\ocsz

1a, 10 mmol

)\W‘V Tph’ R TAE

O A Ph o
Ph Ph—NH>*OTf

| -
Ph—NH,+OT

NJJ\”/O\/ 4b
H

(0]

the imine A is generated after the condensation of benza-
mide with ethyl pyruvate in the presence of DPAT. Subse-
quently, the imine A is attacked by the benzamide to form
the coupling product 4c. Meanwhile, A is also transformed
into the more stable product 4b by removing the catalyst
DPAT (Scheme 5b). In addition, no bis-addition product was
detected between the reaction of acetamide with a-ketoesters
(Scheme 2), suggesting that the imine intermediate formed
by acetamide and a-ketoesters is probably unstable due to
lack of large conjugated system.

o]

DPAT(10 mol%) )J\
NH, Ph™ NH O

toluene, reflux e

OC,Hs
3a, 2.2 g, 94% yield

F 0] Ph
Y

12 mmol

DPAT(10 mol%)

F
NH O
toluene, reﬂux S
OCH; OCH;
F

1i, 10 mmol
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To further demonstrate the practicality of this transforma-
tion, a gram-scale experiment of 1a and 1i were carried out.
The result is shown in the Scheme 6, 3a and 3i was obtained
in 94% and 82% yields, respectively, which indicated the
easy scale up of this transformation.

Conclusions

DPAT is widely used as organocatalyst in various chemical
transformations (Wakasugi et al. 2000; Li et al. 2012). In
this work, we have developed a novel method for the synthe-
sis of f-enaminones using DPAT as the metal-free catalyst.
This protocol featured by its environmentally benign, simple
work-up procedure, easy manipulation and highly efficient,
which make it an attractive and useful addition to the exist-
ing methods for the synthesis of f-enaminones. Notably, this
reaction can be run on the gram-scale, giving the desired
products in 94% and 82% yields. Moreover, the amides and
sulfonamides were well compatible for this protocol. Further
applications of DPAT are ongoing in our laboratory.

Experimental

All reagents were purchased from commercial suppliers
and used without further purification. The flash column
chromatography was carried out over silica gel (200-400
mesh), purchased from Qingdao Haiyang Chemical Co., Ltd.
Melting points were determined on a Biichi B-540 capil-
lary melting point apparatus and uncorrected. 'H NMR and
13C NMR spectra were recorded at VARIAN-400, using
DMSO-d, or CDClj; as the solvent with tetramethylsilane
(TMS) as an internal standard. Chemical shifts are given
in d relative to TMS, the coupling constants J are given
in Hz. Mass spectra were measured with Thermo Finnigan
LCQ-Advantage. High resolution mass spectral (HRMS)
analyze were measured on an Agilent 6210 TOF LC/MS
and Q-Exactuve(Thermo USA) UHPLC-Q-Orbitrap using
ESI techniques.

General procedures for the synthesis
of B-enaminones

A mixture of amides (amines) (0.6 mmol), 1,3-dicarbonyl
compounds (0.5 mmol), and DPAT (0.05 mmol) was stirred
in refluxing toluene for 6 h. After completion of the reaction
(Reaction progress was monitored by TLC), the mixture was
washed with water (3 X 10 mL). The organic layer was dried
over anhydrous Na,SO,, filtered and evaporated. Purification
by column chromatography on silica gave the product 3, 4, 5.

(2)-Ethyl 3-benzamidobut-2-enoate (3a)

White solid; m.p.: 47.3-47.6 °C. (lit. of Aberhart and Lin
1981)

'"H NMR (400 MHz, CDCl;) 6 12.03 (s, 1H), 7.92-7.90
(m, 2H), 7.49 (d, J=7.2 Hz, 1H), 7.43 (t, J=8.0 Hz, 2H),
5.00 (s, 1H), 4.17 (q, J="7.2 Hz, 2H), 2.52 (s, 3H), 1.30 (t,
J=17.2 Hz, 3H).

13C NMR (100 MHz, CDCl;) & 169.2, 165.0, 155.1,
133.8, 132.1, 128.6, 127.4,97.2, 59.9, 22.1, 14.4.

MS (ESI): m/z=234.1 [M+H]".

(2)-Ethyl 3-(4-methoxybenzamido)but-2-enoate
(3b)

White solid; m.p.: 108.5-109.8 °C.

'H NMR (400 MHz, CDCL,) § 12.09 (s, 1H), 7.97 (d,
J=9.2 Hz, 2H), 7.00 (d, J=9.2 Hz, 2H), 5.02 (d, J=0.8 Hz,
1H), 4.22 (q, J=7.2 Hz, 2H), 3.88 (s, 3H), 2.54 (d,
J=0.8 Hz, 3H), 1.32 (t, J=7.2 Hz, 3H).

13C NMR (100 MHz, CDCL,) § 169.6, 164.9, 162.9,
155.7,129.7, 126.3, 114.1, 96.8, 59.9, 55.4, 22.1, 14.3.

HRMS (ESI): C,,H;NNaO, [M + Na]*; calculated:
286.1050, found: 286.1050.

(2)-Ethyl 3-(4-chlorobenzamido)but-2-enoate (3c)

White solid; m.p.: 88.3-89.1 °C.

'H NMR (400 MHz, CDCL,) § 12.17 (s, 1H), 7.94 (d,
J=8.8 Hz, 2H), 7.48 (d, J=8.4 Hz, 2H), 5.07 (d, J=0.8 Hz,
1H), 4.22 (q, J=7.2 Hz, 2H), 2.54 (d, J=0.8 Hz, 3H), 1.32
(t, J=7.2 Hz, 3H).

13C NMR (100 MHz, CDCL,) § 169.6, 164.2, 155.2,
138.8, 132.4, 129.1, 129.0, 97.7, 60.1, 22.0, 14.3.

HRMS (ESI): C,;H,,CINNaO; [M + Na]*; calculated:
290.0554 found: 290.0566.

(2)-Ethyl 3-(4-nitrobenzamido)but-2-enoate (3d)

Yellow solid; m.p.: 122.3-123.0 °C.

'H NMR (400 MHz, CDCl;) § 12.36 (s, 1H), 8.36 (d,
J=8.4 Hz, 2H), 8.16 (d, J=8.8 Hz, 2H), 5.13 (s, 1H), 4.23
(q, J=7.2 Hz, 2H), 2.56 (s, 3H), 1.33 (t, J="7.2 Hz, 3H).

13C NMR (100 MHz, CDCl;) & 169.6, 163.2, 154.7,
150.0, 139.5, 128.8, 124.0, 98.7, 60.3, 21.9, 14.3.

HRMS (ESI): C;H,,N,NaOs [M + Na]*; calculated:
301.0795 found: 301.0797.

(2)-Ethyl 3-(picolinamido)but-2-enoate (3e)
White solid; m.p.: 76.7-77.3 °C.

'H NMR (400 MHz, CDCl,) & 13.00 (s, 1H), 8.77 (d,
J=4.4Hz, 1H), 8.22 (d, J=8.0 Hz, 1H), 7.91-7.87 (m, 1H),
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7.52-7.46 (m, 1H), 5.09 (s, 1H), 4.26 (q, /J=7.2 Hz, 2H),
2.56 (s, 3H), 1.32 (t, J=7.2 Hz, 3H).
13C NMR (100 MHz, CDCl) & 168.5, 163.4, 153.4,
149.9, 148.8, 137.4, 126.6, 122.9, 98.9, 59.9, 22.1, 14.4.
HRMS (ESI): C,,H,,N,NaO; [M + Na]*; calculated:
257.0897 found: 257.0911.

(2)-Methyl 3-benzamidobut-2-enoate (3f)

White solid; m.p.: 55.2-55.7 °C. (lit. of Holz et al. 2003)

"H NMR (400 MHz, CDCl;) & 12.08 (s, 1H), 7.98-7.95
(m, 2H), 7.56-7.52 (m, 1H), 7.50-7.46 (m, 2H), 5.04 (s,
1H), 3.74 (s, 3H), 2.54 (s, 3H).

13C NMR (100 MHz, CDCl;) & 169.6, 165.1, 155.4,
133.8,132.2, 128.7, 127.5, 96.8, 51.2, 22.2.

MS (ESI): m/z=242.4 [M+Na]*.

(Z2)-Tert-butyl 3-benzamidobut-2-enoate (3g)

White solid; m.p.: 80.2-80.7 °C.

'H NMR (400 MHz, CDCl,) & 12.14 (s, 1H), 7.97-7.95
(m, 2H), 7.54-7.47 (m, 3H), 4.95 (s, 1H), 2.50 (s, 3H), 1.50
(s, 9H).

3C NMR (100 MHz, CDCl;) & 168.9, 165.2, 154.0,
134.0, 132.1, 128.6, 127.5,99.2, 80.4, 28.4, 22.1.

HRMS (ESI): C,sH,,NO; [M + H]"; calculated:
262.1438, found: 262.1435.

(2)-N-(4-oxo-4-phenylbut-2-en-2-yl)benzamide (3h)

Yellow solid; m.p.: 108.6-109.2 °C. (lit. of Sugiura et al.
2009)

'H NMR (600 MHz, CDCl;) & 13.87 (s, 1H), 8.14-8.13
(m, 2H), 7.99-7.98 (m, 2H), 7.62 (t, J=7.2 Hz, 1H),
7.59-7.55 (m, 3H), 7.50 (t, J=7.8 Hz, 2H), 6.21 (s, 1H),
2.71 (s, 3H).

13C NMR (150 MHz, CDCl;) & 191.9, 166.2, 158.2,
138.8, 133.8, 132.7, 132.5, 129.0, 128.6, 128.1, 127.7,
102.6, 22.8.

MS (ESI): m/z=288. 1 [M+Na]*.

(2)-Methyl 3-benzamido-4-(2,4,5-trifluorophenyl)
but-2-enoate (3i)

Yellow solid; m.p.: 119.8-120.0 °C.

'H NMR (400 MHz, CDCl;) & 12.04 (s, 1H), 7.91-7.89
(m, 2H), 7.51 (t, J=7.6 Hz, 1H), 7.44 (t, J=8.0 Hz, 2H),
7.10-7.04 (m, 1H), 6.92-6.86 (m, 1H), 4.91 (s, 1H), 4.29 (s,
2H), 3.72 (s, 3H).

13C NMR (100 MHz, CDCl;) 8 169.4, 165.0, 156.0 (dm,
Jp=247.0 Hz), 155.0, 149.0 (dm, J.=246.0 Hz), 146.5
(dm, J.=242.0 Hz), 133.4, 132.5, 128.8, 127.6, 120.4
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(dm, Jp=15.0 Hz), 118.4 (dm, J;=20.0 Hz), 105.5 (tm,
Jp=24.0Hz), 98.1 (d, Jr=4.0 Hz), 51.5, 32.7.

HRMS (ESI): C,gH3F;NO; [M-H]"; calculated:
348.0853, found: 348.0861.

(2)-Methyl
3-(2-phenylacetamido)-4-(2,4,5-trifluorophenyl)
but-2-enoate (3j)

White solid; m.p.: 104.2-104.3 °C.

'H NMR (400 MHz, CDCl,) § 11.11 (s, 1H), 7.35-7.25
(m, 5H), 6.99-6.93 (m, 1H), 6.91-6.84 (m, 1H), 4.80 (s,
1H), 4.11 (s, 2H), 3.66 (s, 3H), 3.63 (s, 2H).

13C NMR (100 MHz, CDCl5) § 169.5, 168.7, 155.8 (dm,
Jr=244.0 Hz), 154.1, 148.9 (dm, J-=235.0 Hz), 146.5
(dm, J;=241.0 Hz), 133.4, 129.1, 128.7, 127.3, 120.1
(dm, J=20.0 Hz), 118.1 (dm, J;=20.0 Hz), 105.4 (tm,
Jr=19.0 Hz), 98.0, 51.3, 45.6, 32.5.

HRMS (ESI): C,oH,sF;NO; [M-H]™; calculated:
362.1010, found: 362.0998.

(2)-Methyl 3-acetamido-4-(2,4,5-trifluorophenyl)
but-2-enoate (3k)

White solid; m.p.: 102.6-102.8 °C.

"H NMR (400 MHz, CDCl,) 6 11.04 (s, 1H), 7.03-6.96
(m, 1H), 6.89-6.83 (m, 1H), 4.78 (s, 1H), 4.11 (s, 2H), 3.68
(s, 3H), 2.13 (s, 3H).

13C NMR (100 MHz, CDCl;) 6 169.0, 168.6, 155.8 (dm,
Jr=243.0 Hz), 154.4, 149.0 (dm, J,=248.0 Hz), 146.5
(dm, J,=241.0 Hz), 120.2 (dt, Jp=19.0, 5.0 Hz), 118.2
(dt, Jp=19.0, 5.0 Hz), 105.4 (tm, J=26.0 Hz), 97.2 (d,
Jr=4.0Hz), 51.3,32.4,25.3.

HRMS (ESI): C3H,,F;NO; [M-H]"; calculated:
286.0697, found: 286.0691.

(2)-Methyl 3-amino-4-methylpent-2-enoate (3I)

Yellow oil.

"H NMR (600 MHz, CDCl;) 6 4.53 (s, 1H), 3.61 (s, 3H),
2.30 (m, 1H), 1.12 (d, J=7.8 Hz, 6H).

13C NMR (150 MHz, CDCl5) 6 171.0, 169.7, 80.3, 50.0,
34.8, 21.1.

HRMS (ESI): C;H,,NO, [M +H]*; calculated: 144.1019,
found: 144.1021.

(2)-Ethyl 3-acetamidobut-2-enoate (3m)

White solid; m.p.: 63.1-63.6 °C. (lit. of Lee and Zhang
2002)

"H NMR (400 MHz, CDCl;) 6 11.10 (s, 1H), 4.88 (s, 1H),
4.14 (q, J=7.2 Hz, 2H), 2.37 (s, 3H), 2.14 (s, 3H), 1.28 (t,
J=17.2 Hz, 3H).
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13C NMR (100 MHz, CDCl,) § 168.9, 168.6, 154.8,96.3,
59.8,25.3,22.0, 14.4.
MS (ESD): m/z=172.0 [M +H]*.

(2)-N-(4-oxo-4-phenylbut-2-en-2-yl)acetamide (3n)

Yellow solid; m.p.: 97.8-98.9 °C. (lit. of Sugiura et al. 2009)

"H NMR (500 MHz, CDCl;) § 12.82 (s, 1H), 7.92 (d,
J=7.0Hz, 2H), 7.55 (t, J=7.5 Hz, 1H), 7.47 (t, J=8.0 Hz,
2H), 6.05 (s, 1H), 2.53 (s, 3H), 2.24 (s, 3H).

13C NMR (125 MHz, CDCl,) & 191.4, 169.9, 157.6,
138.7, 132.4, 128.6, 127.6, 101.6, 25.5, 22.5.

MS (ESI): m/z=226.1 [M+Na]*

(2)-Ethyl 3-acetamido-3-phenylacrylate (30)

White solid; m.p.: 42.5-44.8 °C. (lit. of Lee and Zhang
2002)

'H NMR (600 MHz, CDCl5) § 10.67 (s, 1H), 7.43-7.36
(m, 5H), 5.30 (s, 1H), 4.25 (q, J=7.2 Hz, 2H), 2.19 (s, 3H),
1.34 (t, J=7.2 Hz, 3H).

3C NMR (150 MHz, CDCl;) & 168.6, 168.4, 154.5,
135.9, 129.6, 128.0, 127.1, 101.1, 60.3, 24.8, 14.3.

MS (ESI): m/z=256.2 [M+Na]*

(2)-Methyl 3-acetamido-4-methylpent-2-enoate
(3p)

Yellow oil. (lit. of Wu et al. 2011)

'H NMR (600 MHz, CDCl,) 8 11.15 (s, 1H), 5.07 (s, 1H),
3.87 (m, 1H), 3.71 (s, 3H), 2.15 (s, 3H), 1.12 (d, J=6.6 Hz,
6H).

13C NMR (150 MHz, CDCl,) § 170.1, 168.4, 165.7,92.3,
51.1,29.3,25.6,21.3.

MS (ESI): m/z=208.1 [M+H]*.

(2)-Ethyl 3-(2-(2-oxopyrrolidin-1-yl)butanamido)
but-2-enoate (3q)

White solid; m.p.: 60.2-60.6 °C.

'H NMR (400 MHz, CDCl;) § 11.42 (s, 1H), 4.92 (d,
J=1.0 Hz, 1H), 4.66 (dd, J,=10.8 Hz, J,=4.8 Hz, 1H),
4.13 (q, J=7.2 Hz, 2H), 3.42-3.32 (m, 2H), 2.66-2.59 (m,
1H), 2.51-2.41 (m, 1H), 2.36 (d, J=1.0 Hz, 3H), 2.22-2.00
(m, 4H), 1.25 (t, J=7.2 Hz, 3H), 0.92 (t, J=7.6 Hz, 3H).

3C NMR (100 MHz, CDCl,): & 176.6, 169.6, 168.9,
154.0, 98.2, 60.2, 57.7, 43.8, 31.0, 22.1, 21.3, 18.3, 14.7,
11.2.

HRMS (ESI): C,H,N,0, [M+H]"; calculated:
281.1507, found: 281.1493.

(Z2)-Methyl 3-(benzylamino)but-2-enoate (3r)

White solid; m.p.: 35.2-35.6 °C. (lit. of Hebbache et al.
2008).

'"H NMR (400 MHz, CDCl;) 6 8.91 (s, 1H), 7.34-7.23
(m, 5H), 4.53 (s, 1H), 4.42 (d, J=6.4 Hz, 2H), 3.63 (s, 3H),
1.92 (s, 3H).

3C NMR (100 MHz, CDCl;) & 170.6, 161.6, 138.5,
128.6, 127.2, 126.5, 82.8, 50.0, 46.8, 19.4.

MS (ESI): m/z=206.1 [M+H]".

(2)-Ethyl 3-(benzylamino)but-2-enoate (3s)

White solid; m.p.: 22.1-22.6 °C. (lit. of Hebbache et al.
2008).

'"H NMR (400 MHz, CDCl;) 6 8.93 (s, 1H), 7.34-7.23
(m, 5H), 4.52 (s, 1H), 4.42 (d, J=6.4 Hz, 2H), 4.08 (q,
J=17.2 Hz, 2H), 1.91 (s, 3H), 1.26 (t, J=7.2 Hz, 3H).

3C NMR (100 MHz, CDCl;) 8 170.3, 161.5, 138.6,
128.6, 127.2, 126.5, 83.2, 58.4,46.8, 19.4, 14.7.

MS (ESI): m/z=220.4 [M+H]".

(2)-Tert-butyl 3-(benzylamino)but-2-enoate (3t)

Yellow oil. (lit. of Hebbache et al. 2008)

'"H NMR (400 MHz, CDCly) 6 8.87 (s, 1H), 7.34-7.22 (m,
5H), 4.45 (s, 1H), 4.40 (d, J=6.4 Hz, 2H), 1.87 (s, 3H), 1.46
(s, 9H).

13C NMR (100 MHz, CDCl,) & 170.4, 159.2, 138.9,
128.6, 127.1, 126.6, 85.0, 77.9, 46.8, 28.8, 19.4.

MS (ESI): m/z=248.2 [M+H]".

(2)-4-(benzylamino)pent-3-en-2-one (3u)

White solid; m.p.: 25.1-25.3 °C. (lit. of Chen et al. 2010)

'H NMR (400 MHz, CDCl;) § 11.13 (s, 1H), 7.34-7.22
(m, 5H), 5.03 (s, 1H), 4.45 (d, J=6.4 Hz, 2H), 2.03 (s, 3H),
1.91 (s, 3H).

13C NMR (100 MHz, CDCl;) & 195.0, 162.8, 137.8,
128.6, 127.2, 126.5, 95.8, 46.7, 28.9, 18.9.

MS (ESI): m/z=190.0 [M+H]*.

(2)-4-(phenylamino)pent-3-en-2-one (3v)

White solid; m.p.: 50.3-50.7 °C. (lit. of Chen et al. 2010).
'H NMR (400 MHz, CDCl;) § 12.44 (s, 1H), 7.32 (t,
J=8.0Hz, 2H), 7.17 (t, J=7.6 Hz, 1H), 7.11-7.06 (m, 2H),
5.18 (s, 1H), 2.10 (s, 3H), 1.99 (s, 3H).
13C NMR (100 MHz, CDCl;) & 195.7, 159.9, 138.6,
128.9, 125.3, 124.6, 97.5, 29.2, 19.9.
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MS (ESI): m/z=176.2 [M+H]".

(2)-Ethyl 3-((4-methoxyphenyl)amino)but-2-enoate
(3w)

White solid; m.p.: 40.6—41.2 °C. (lit. of Zhang et al. 2006)

"H NMR (400 MHz, CDCl,) & 10.17 (s, 1H), 7.04 (d,
J=8.8 Hz, 2H), 6.87 (d, /J=8.8 Hz, 2H), 4.67 (s, 1H),
4.16 (q, J=7.2 Hz, 2H), 3.82 (s, 3H), 1.90 (s, 3H), 1.30 (t,
J=7.2 Hz, 3H).

13C NMR (100 MHz, CDCl,) & 170.5, 160.0, 157.4,
132.2,126.8, 114.2, 84.7, 58.6, 55.5, 20.1, 14.6.

MS (ESI): m/z=236.2 [M+H]".

(2)-Ethyl 3-((4-chlorophenyl)amino)but-2-enoate
(3x)

White solid; m.p.: 51.0-52.0 °C. (lit. of Zhang et al. 2006)

'H NMR (400 MHz, CDCl5) & 10.37 (s, 1H), 7.34-7.28
(m, 2H), 7.03 (d, J=8.8 Hz, 2H), 4.73 (s, 1H), 4.17 (q,
J=7.2 Hz, 2H), 2.00 (s, 3H), 1.30 (t, J=7.2 Hz, 3H).

13C NMR (100 MHz, CDCl;) & 170.4, 158.4, 138.0,
130.3, 129.2, 125.5, 86.9, 58.9, 20.2, 14.6.

MS (ESI): m/z=240.1 [M+H]".

(2)-Ethyl 3-((4-nitrophenyl)amino)but-2-enoate (3y)

Green solid; m.p.: 112.0-112.8 °C. (lit. of Zhang et al. 2006)
'H NMR (400 MHz, CDCl;) § 10.96 (s, 1H), 8.23 (d,
J=8.8 Hz, 2H), 7.17 (d, J=8.8 Hz, 2H), 4.93 (s, 1H), 4.22
(q, J=7.2 Hz, 2H), 2.26 (s, 3H), 1.34 (t, /=7.2 Hz, 3H).
3C NMR (100 MHz, CDCl;) & 170.0, 155.7, 145.8,
142.8, 125.3, 120.6, 91.6, 59.5, 21.0, 14.4.
MS (ESI): m/z=251.1 [M+H]".

(2)-Ethyl 3-(naphthalen-2-ylamino)but-2-enoate
(32)

Yellow oil; (lit. of Chen et al. 2010)

'"H NMR (400 MHz, CDCl,) & 10.61 (s, 1H), 8.10 (d,
J=7.6 Hz, 1H), 7.93-7.91 (m, 1H), 7.79 (d, J=8.4 Hz, 1H),
7.62-7.54 (m, 2H), 7.49 (t, J=8.0 Hz, 1H), 7.36-7.32 (m,
1H), 4.86 (s, 1H), 4.26 (q, J="7.2 Hz, 2H), 1.90 (s, 3H), 1.38
(t, J=7.2 Hz, 3H).

13C NMR (100 MHz, CDCl;) & 170.7, 160.5, 135.4,
134.3, 130.5, 128.2, 126.7, 126.6, 126.4, 125.3, 123.6,
122.8, 85.7, 58.8, 20.0, 14.7.

MS (ESI): m/z=256.2 [M+H]*.

Ethyl 2-acetamidoacrylate (4a)

Yellow oil. (lit. of Yamashita et al. 2014)
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'H NMR (500 MHz, CDCl,) § 7.83 (s, 1H, NH), 6.46
(s, 1H, =CH), 5.77 (d, J=1.0 Hz, 1H, =CH), 4.18 (q,
J=17.0 Hz, 2H), 2.03 (s, 3H), 1.23 (t, J=7.0 Hz, 3H).

13C NMR (125 MHz, CDCl;) & 168.7, 163.8, 131.0,
108.1,61.8,24.2, 13.8.

MS (ESI): m/z=158.0 [M+H]™.

Ethyl 2-benzamidoacrylate (4b)

Yellow oil. (lit. of Yang et al. 2018)

'"H NMR (400 MHz, CDCl;) & 8.55 (s, 1H, NH),
7.84-7.81 (m, 2H), 7.55-7.51 (m, 1H), 7.49-7.44 (m, 2H),
6.77 (s, 1H, =CH), 5.99 (d, /=1.6 Hz, 1H, =CH), 4.33 (q,
J=7.2 Hz, 2H), 1.38 (t, J=7.2 Hz, 3H).

13C NMR (100 MHz, CDCl;) § 165.4, 164.0, 134.2,
131.8,131.1, 128.6, 126.8, 108.4, 62.3, 14.2.

MS (ESI): m/z=220.1 [M+H]".

Ethyl 2,2-bis(benzamido)propanoate (4c)

White solid; m.p.: 132.0-133.0 °C.

'H NMR (400 MHz, CDCl;) & 7.82 (s, 2H), 7.78-7.75
(m, 4H), 7.50-7.46 (m, 2H), 7.39 (t, J=7.6 Hz, 4H), 4.35
(q, J=7.2 Hz, 2H), 2.08 (s, 3H), 1.32 (t, J="7.2 Hz, 3H).

3C NMR (100 MHz, CDCl;) 8 170.9, 168.7, 133.5,
131.8, 128.4,127.1, 67.3, 62.9, 23.8, 14.2.

HRMS (ESI): C,yH,,N,O,Na [M + Na]*; calculated:
363.1315, found: 363.1316.

(2)-Ethyl 4-acetamido-2-oxopent-3-enoate (4d)

Yellow oil.

"H NMR (400 MHz, CDCly) 6 11.18 (s, 1H), 5.75 (s, 1H),
4.33 (q, J=7.2 Hz, 2H), 2.27 (s, 3H), 2.18 (s, 3H), 1.35 (t,
J=17.2 Hz, 3H).

13C NMR (100 MHz, CDCl;) & 200.6, 168.4, 163.9,
142.7,106.3, 62.3, 31.0, 23.4, 13.8.

HRMS (ESI): CiH;,NO, [M-H]; calculated: 198.0772,
found: 198.0777.

(2)-Ethyl 2-benzamido-4-oxopent-2-enoate (4e)

Yellow solid; m.p.: 107.2-107.8 °C.

'"H NMR (400 MHz, CDCly) 6 12.26 (s, 1H), 7.95-7.93
(m, 2H), 7.58 (t, J=7.6 Hz, 1H), 7.49 (t, J=8.0 Hz, 2H),
5.85 (s, 1H), 4.39 (q, J=7.2 Hz, 2H), 2.30 (s, 3H), 1.37 (t,
J=17.6 Hz, 3H).

13C NMR (100 MHz, CDCl;) & 200.9, 165.7, 163.1,
143.5, 133.0, 132.6, 128.8, 128.0, 106.5, 62.6, 29.8, 14.2.

HRMS (ESI): C,H,(NO, [M + H]J"; calculated:
262.1074, found: 262.1075.
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Diethyl 3,4-diacetyl-2,5-bis(benzamido)
hex-3-enedioate (4f)

Yellow solid; m.p.: 103.2-103.4 °C.

"H NMR (400 MHz, CDCl,) § 13.32 (s, 2H), 8.06 (d,
J=7.6 Hz, 4H), 7.59 (t, J=7.6 Hz, 2H), 7.49 (t, J=7.6 Hz,
4H), 6.28 (s, 2H), 4.36 (q, J=7.2 Hz, 4H), 2.68 (s, 6H),
1.41 (t, J=17.2 Hz, 6H).

13C NMR (100 MHz, CDCl5) & 200.9, 164.6, 163.9,
143.6, 133.0, 131.5, 128.8, 128.0, 62.5, 31.2, 22.9, 14.1.

HRMS (ESI): C,gH;)N,OgNa [M + Na]™; calculated:
545.1894, found: 545.1902.

(2)-4-methoxy-N-(4-oxo-4-phenylbut-2-en-2-yl)
benzenesulfonamide (5a)

Yellow solid; m.p.: 70.8-72.0 °C. (lit. of Lee et al. 2017)

'H NMR (600 MHz, CDCl5) & 13.34 (s, 1H), 7.93-7.88
(m, 4H), 7.55 (t, J=7.8 Hz, 1H), 7.47 (t, J=7.8 Hz, 2H),
7.02 (d, J=9.0 Hz, 2H), 6.05 (s, 1H), 3.89 (s, 3H), 2.23
(s, 3H).

13C NMR (150 MHz, CDCl5) & 191.1, 163.4, 156.3,
138.0, 132.6, 132.0, 129.5, 128.6, 127.7, 114.6, 100.5,
55.7,20.2.

MS (ESI): m/z=354.3 [M+H]*.

(Z2)-Methyl 3-((4-methoxyphenyl)
sulfonamido)-4-methylpent-2-enoate (5b)

Yellow oil.

'"H NMR (600 MHz, CDCl,) 8 11.01 (s, 1H), 7.82 (d,
J=9.0Hz, 2H), 6.99 (d, /=9.0 Hz, 2H), 5.04 (s, 1H), 3.88
(s, 3H), 3.72 (s, 3H), 3.13 (dt, J=13.2, 7.2 Hz, 1H), 1.02
(d, J=6.6 Hz, 6H).

13C NMR (150 MHz, CDCl;) 6 169.9, 164.4, 163.3,
129.3, 128.3, 114.4,93.9, 55.7, 51.3,29.4, 21.8.

HRMS (ESI): C,,H sNOsS [M-H]"; calculated:
312.0911, found: 312.0906.

(2)-Ethyl 3-((4-methoxyphenyl)
sulfonamido)-3-phenylacrylate (5¢)

Yellow solid; m.p.: 76.6-78.1 °C.

"H NMR (600 MHz, CDCl,) § 10.69 (s, 1H), 7.46 (m,
3H), 7.36-7.30 (m, 4H), 6.86 (d, J=9.0 Hz, 2H), 5.22
(s, 1H), 4.20 (q, J=7.2 Hz, 2H), 3.87 (s, 3H), 1.29 (t,
J=17.2 Hz, 3H).

3C NMR (150 MHz, CDCl;) & 168.4, 163.2, 155.0,
134.0, 131.0, 130.5, 129.7, 128.9, 127.9, 113.9, 102.1,
60.5, 55.6, 14.2.

HRMS (ESI): C,;3sH,sNOsS [M-H]7; calculated:
360.0911, found: 360.0909.

Ethyl 2-((4-methoxyphenyl)sulfonamido)acrylate
(5d)

Yellow solid; m.p.: 96.1-97.9 °C.

'H NMR (600 MHz, CDCl5) & 7.82 (d, J=9.0 Hz, 2H),
7.13 (s, 1H), 6.98 (d, /=8.4 Hz, 2H), 5.66 (s, 2H), 4.22 (q,
J=17.2Hz, 2H), 3.88 (s, 3H), 1.28 (t, J=7.2 Hz, 3H).

3C NMR (150 MHz, CDCl;) & 163.4, 163.2, 131.1,
129.9, 129.8, 114.2, 106.6, 62.5, 55.7, 14.0.

HRMS (ESI): C,H;,NOsS [M-H]"; calculated:
284.0598, found: 284.0605.
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