Journal of Organometallic Chemistry, 76 (1974) 225—233
© Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

CARBONYL(ORGANOELEMENT-IVB)STIBIN-UBERGANGSMETALL-KOMPLEXE. DARSTELLUNG UND KOMPLEXCHEMISCHES VERHALTEN VON TRI-t-BUTYLSTIBIN

HERBERT SCHUMANN und HANS JOACHIM BREUNIG

Institut für Anorganische und Analytische Chemie der Technischen Universität Berlin, Berlin-Charlottenburg (Deutschland)

(Eingegangen den 13. März 1974)

Summary

Antimony tribromide reacts with t-butylmagnesium chloride under formation of tri-t-butylstibine (I). The reaction of hexacarbonylchromium, hexacarbonylmolybdenum, or hexacarbonyltungsten with I results in the elimination of one CO ligand and formation of the corresponding pentacarbonyltri-t-butylstibine-chromium(0), -molybdenum(0), or -tungsten(0) complexes. Tetracarbonylnickel reacts with I, tris(trimethylsilyl)-, tris(trimethylgermyl)-, or tris(trimethylstannyl)stibine yielding the corresponding tricarbonylorganometalstibine-nickel complexes. The IR, Raman, and ¹H NMR spectra are discussed.

Zusammenfassung

Antimontribromid reagiert mit t-Butylmagnesiumchlorid unter Bildung von Tri-t-butylstibin (I). Die Umsetzung von Hexacarbonylchrom, Hexacarbonylmolybdän und Hexacarbonylwolfram mit I führt unter Abspaltung einer CO-Gruppe zur Bildung von Pentacarbonyltri-t-butylstibin-chrom(0), -molybdän (0), oder wolfram(0)- Komplexen. Mit Tetracarbonylnickel reagieren I sowie Tris-(trimethylsilyl)-, Tris(trimethylgermyl)- und Tris(trimethylstannyl)-stibin unter Bildung entsprechender Tricarbonyl-organometallstibin-nickel-Komplexe. Die IR-, Raman- und ¹H-NMR-Spektren werden diskutiert.

Einleitung

Im Rahmen der Untersuchungen des komplexchemischen Verhaltens von Organometallstibinen berichteten wir über die Synthese, die Eigenschaften und die Schwingungsspektren von Pentacarbonyl-chrom-, -molybdän- und -wolfram-Komplexen mit Tris(trimethylgermyl)- und Tris(trimethylstannyl)-stibin als sechstem Liganden [1, 2]. Da sich in entsprechenden Tricarbonylnickel-Kom-

plexen die π -Akzeptoreinflüsse des Organometallstibin-Liganden auf nur drei Carbonylreste auswirken, war es interessant zu untersuchen, ob deren Schwingungsspektren empfindlicher auf Unterschiede im Element IVB—Antimon-Bindungsgerüst reagieren, als die bereits untersuchten Pentacarbonyl-chrom-, -molybdän- und -wolfram-Komplexe.

In den Vergleich des komplexchemischen Verhaltens der Organometallstibine bezogen wir auch Tri-t-butylstibin (I) mit ein. Die Ergebnisse unserer Untersuchungen über Tri-t-butylphosphin-[3] und -arsin-[4] Übergangsmetallcarbonylkomplexe wurden bereits mitgeteilt.

Die Darstellung von I wurde bis zu Beginn unserer Arbeiten lediglich zweimal versucht. Hartmann und Kühl [5], die bei der Umsetzung von t-Butylmagnesiumchlorid mit Antimontrichlorid bei —20° und Aufarbeitung des Reaktionsgemisches in wässriger Ammoniumchloridlösung nur bis zur Stufe des Di-t-butylchlorstibins gelangten, zogen aus diesem Ergebnis den Schluss, dass I aus sterischen Gründen gar nicht existenzfähig sei. Analoge Verhältnisse finden sich bei der Reaktion von t-Butylmagnesiumchlorid mit Phosphor- bzw. Arsen-trichlorid. Dort zeigte es sich jedoch, dass die Einführung einer dritten t-Butylgruppe sehr wohl durch die weitere Umsetzung von Di-t-butylchlor-phosphin [6] bzw. -arsin [7] mit t-Butyllithium möglich ist. Die Synthese von I gelang erstmals, wenn auch nur in verschwindenden Ausbeuten Amberger und Salazar [8], durch Umsetzung von t-Butylchlorid mit Lithiumantimonid in Äther.

Darstellung und Eigenschaften von Tri-t-Butylstibin (I)

Die Zugabe von Antimontribromid zu einem Überschuss von t-Butylmagnesiumchlorid in Äther und unter Argonatmosphäre löst eine heftige Reaktion aus, wobei I in 30% Ausbeute entsteht.

$$3(CH3)3CMgCl + SbBr3 \rightarrow [(CH3)3C]3Sb + 3MgClBr$$
(I)

I ist eine im Vakuum destillierbare schwach gelb gefärbte, ölige Flüssigkeit, die sich an der Luft spontan entzündet und unter Luftausschluss selbst bei —20° langsam unter Schwarzfärbung zersetzt. I addiert wie viele andere organische Derivate des dreiwertigen Antimons Brom, wobei Tri-t-butylantimondibromid in Form farbloser Kristalle anfällt. Letzteres spaltet in der Hitze t-Butylbromid ab. Als Zersetzungsprodukt konnte statt des erwünschten Di-t-butylbromstibins jedoch nur Antimontribromid isoliert werden.

Pentacarbonyl-tri-t-butylstibin-chrom-, -molybdän und -wolfram

Bestrahlt man Lösungen von Hexacarbonyl-chrom, -molybdän oder -wolfram in Tetrahydrofuran (THF) mit UV-Licht und rührt die Lösungen der dabei entstehenden Pentacarbonyl-THF—Metall-Komplexe anschliessend mehrere Stunden mit I, so bleibt nach Entfernung des Lösungsmittels Pentacarbonyl-trit-butylstibin-chrom (II), -molybdän (III) bzw.-wolfram (IV) in Form eines aufgrund von Verunreinigungen schwarz gefärbten kristallinen Pulvers in 50—60% Rohausbeute zurück.

$$M(CO)_6 + THF \xrightarrow{h\nu} (CO)_5 M - THF + CO$$
 (2)

$$(CO)_5M$$
—THF + $[(CH_3)_3C]_3Sb \rightarrow (CO)_5M$ —Sb $[C(CH_3)_3]_3$ + THF (3)
(I) (II) M = Cr
(III) M = Mo
(IV) M = W

Durch Vakuumsublimation erhält man II—IV als farblose Kristalle, die sich bei 180° (II), 110° (III) bzw. 190° (IV) zersetzen. Die Komplexe sind an der Luft nur wenige Stunden stabil und verfärben sich selbst beim Aufbewahren unter Luftausschluss, bei —20° nach einiger Zeit gelb. Sie lösen sich in frisch zubereitetem Zustand gut und zunächst ohne Zersetzung in Pentan und Benzol. Erst nach einiger Zeit bilden sich schwarze Niederschläge und die Lösungen färben sich grün.

Tricarbonyl-tri-t-butyl-, -tris(trimethylsilyl-, -germyl- und -stannyl)-stibin-nickel

Rührt man äquimolare Mengen von Tetracarbonylnickel und dem entsprechenden Tris(trimethylelement-IVB)stibin in Pentan, so spaltet sich bei Raumtemperatur sehr schnell Kohlenmonoxid ab. Nach Abziehen des Lösungsmittels im Vakuum bei Raumtemperatur bleiben die entsprechenden Verbindungen Tricarbonyl-tri-t-butylstibin- (V), -tris(trimethylsilyl)stibin- (VI), -tris(trimethylgermyl)stibin- (VII), bzw. -tris(trimethylstannyl)stibin-nickel (VIII) als farblose, an der Luft selbstentzündliche Feststoffe zurück, die sich aus absolutem Pentan umkristallisieren lassen. Während hochgereinigtes V erstaunlich stabil ist, zersetzten sich VI—VIII von gleichem Reinheitsgrad selbst in Argonatmosphäre immer wieder unter Schwarzfärbung.

$$Ni(CO)_4 + [(CH_3)_3M]_3Sb \rightarrow [(CH_3)_3M]_3Sb - Ni(CO)_3 + CO$$

(V) M = C

(VI) M = Si

(VII) M = Ge

(VIII) M = Sn

Die Komplexe V-VIII lassen sich nicht durch Sublimation reinigen. Sie zerfallen im Hochvakuum schon oberhalb 30° unter Abspaltung von CO und des in sublimierter Form zurückgewinnbaren Stibinliganden.

Spektroskopische Untersuchungen

Infrarot- und Raman-Spektren

Tri-t-butylstibin (I). Bei der Zuordnung der in den Schwingungsspektren von I im Bereich zwischen 30 und 4000 cm^{-1} auftretenden Banden dienten die Spektren von Tri-t-butylphosphin [9] und Tri-n-butylstibin [10] als Vergleichsmaterial. Geht man von der berechtigten Annahme aus, dass die vom Antimon ausgehenden Bindungen nicht in einer Ebene liegen, so besitzen das C_3 Sb-Gerüst, die C_3 C-Einheiten aller t-Butylgruppen und alle CH_3 -Einheiten für sich jeweils die Symmetrie C_3 _v. Für jeden dieser drei Molekülteile sind demnach je zwei Valenzschwingungen $\nu_s(A_1)$ p und $\nu_{as}(E)$ dp* und zwei Deformationsschwingungen

^{*} p, polarisiert, dp, depolarisiert.

 $\delta_s(A_1)$ p und $\delta_{as}(E)$ dp zu erwarten, die sowohl infrarot- als auch ramanaktiv sein sollten. Die gefundenen Frequenzen sind in Tabelle 1 aufgeführt und zugeordnet. Im Erwartungsbereich der Sb—C-Valenzschwingungen um 500 cm⁻¹ tritt sowohl im Infrarot- als auch im Raman-spektrum überraschenderweise eine Bande auf.

Derivate von Pentacarbonylchrom, -molybdän und -wolfram (II—IV). Die Aufnahme der IR-Spektren der Komplexe II—IV erfolgte im Bereich der CO-Valenzschwingungen an Pentanlösungen im Bereich von 1200 bis 50 cm⁻¹ in Nujolsuspensionen. Zur Aufnahme der Raman-Spektren wurden die Substanzen in reiner, kristalliner Form herangezogen.

Bei der Komplexbildung entsteht aus der C_{3v} -Einheit des [Sb(t-Bu)₃]-Liganden und der C_{4v} -Einheit des [M(CO)₅] Gerüstes ein Molekül der Gesamtsymmetrie C_s . Für jede der fünf CO-Gruppen ist demnach nur eine CO-Valenzschwingungs bande zu erwarten. Darüber hinaus gelten die gleichen Überlegungen wie bei den Pentacarbonyltris(trimethylgermyl)- bzw. -tris(trimethylstannyl)-stibin-chrom-,-molybdän- und -wolfram-Komplexen [2]. Die in Tabelle 2 aufgeführten Frequenzwerte zeigen jedoch, dass der im Vergleich zu den organometallsubstituierten Stibinliganden leichtere Ligand I nicht in der Lage ist, die Entartung der bei einer Betrachtung nach C_{4v} -Symmetrie zu erwartenden E-Bande aufzuheben.

TABELLE 1 IR-ABSORPTIONEN a (in cm $^{-1}$) UND RAMAN-LINIEN b (in cm $^{-1}$) VON I st, stark; m, mittel; s, schwach; (Sch), Schulter; p, polarisiert; dp, depolarisiert; Werte in Klammern, geschätzte Intensitäten

Zuordnung	IR	Raman
ν _{as} (CH ₃)	2980 st	2980(1)
$v_{\rm e}({\rm CH_3})$	2960 st	2960(1)
	2840 st	2845(3)
	2770 m	
Oberschwingung	2740 s	
Oberschwingung	2710 m	
$\delta_{as}(CH_3)$	1465 st	1470(1)
	1440 s	1440(1)
δ _S (CH ₃)	1385 m	
	1364 st	
	1359 st	
$\delta(\mathrm{CH}_3) + \rho(\mathrm{CH}_3) + \nu(\mathrm{CC}_3)$	(1258 s	
	1232 s	
	1187 s	
	⟨1150 s	1158(8) p
	1012 st	
	931 m	
	√ 800 st	805(5) p
v(SbC ₃)	505 m	510(7) p
	405 m	
	385 s	
δ(SbC ₃)	272 m	278(1) dp
The second secon		237(10) p
		210(2) dp
 patricular services and a service 		130(3) dp

^a Perkin—Elmer IR-Spektrophotometer 457, 0.1 mm Schichtdicke in Substanz. ^b Raman-Spektrophotometer Cary 82, in Substanz, Krypton-Laser, Spectra-Physics, 647. 1nm-Linie.

TABELLE 2

IR-ABSORPTIONEN ^a(in cm⁻¹) UND RAMAN-LINIEN (in cm⁻¹) VON II—IV

st., stark; m, mittel; s, schwach; (Sch), Schulter; Werte in Klammern, geschätzte Intensitäten

Zuordnung	П		ш		IV		Jan Jan
	IR	Raman	IR	Raman	IR	Raman	
ν(CO) (² A ₁)	2056 m	2045(2)	2065 m	2065(2)	2062 m	2060(2)	
$\nu(CO)(B_1)$	1965 s	1970(4)		1980(5)	1945 s	1970(5)	
ν(CO) (E)	1935 st	1935(1)	1943 st	1935(1)	1937 st	1933(1)	
$\nu(CO)$ (1A_1)	1907 s	1928(1)	1912 m	1927(1)	1905 s	1926(1)	-
ρ(CH ₃)	1155 (Sch)	1168(2)	1155 (Sch)	1168(2)	1158 (Sch)	1165(2)	
$\rho(CH_3)$	1149 st	1148(2)	1149 st	1150(2)	1149 st	1149(2)	
$\rho(CH_3)$	1012 m	1015(0)	1012 m		1013 m	1015(0)	=
$v_{as}(CC_3)$	932 s	935(0)	935 s	935(0)	935 s	935(0)	
$\nu_{\rm e}({\rm CC}_3)$	797 m	795(2)	797 m	798(2)	797 m	797(2)	
δ(MCO)	676 st	•	675 s	• •	602 st		
δ(MCO)	655 st		655 s		578 st	•	
δ(MCO)			611 st				
δ(MCO)	550 m		587 st				
v(SbC ₃)		510(2)		510(2)		510(3)	
$\nu(MC_5)$		482(2)		450(2)		470(2)	
$\nu(MC_5)$	468 st		401 st	405(2)	415 m	430(4)	
$\nu(MC_5)$		399(5)	380 st		385 st		
δ(SbC ₃)		237(2)		237(2)		237(2)	
$\delta(MC_5)$		175(2)		167(1)		167(1)	
δ(SbC ₃)		130(5)		130(4)		130(4)	

^a Perkin—Elmer IR-Spektrophotometer 457; in Pentan (ν (CO)) und Nujol zwischen CsJ. ^b Raman-Spektrophotometer Cary 82; Krypton-Laser, Spectra-Physics, 647. 1 nm-Linie in polykristalliner Substanz.

Auch die B_1 -Schwingung ist nur in den IR-Spektren von II und IV als schwache Schulter zu erkennen. Ausserdem zeigt ein Vergleich der Frequenzwerte von II, III und IV mit denen der entsprechenden Organometallstibin-Komplexe [2], dass der Einfluss der unterschiedlichen Liganden auf die Lage der diagnostischen CO-Valenzschwingungsbande (2A_1) minimal ist. Die Frequenzen ändern sich nur innerhalb der Fehlergrenzen.

Derivate von Tricarbonylnickel (V-VIII). Beim Ersatz eines CO-Liganden in Tetracarbonylnickel durch I, Tris(trimethylsilyl)-, Tris(trimethylgermyl)bzw. Tris(trimethylstannyl)-stibin resultiert ein Komplex der Symmetrie C_{3v} . Dementsprechend sind je zwei infrarot- und ramanaktive CO-Valenz- und -Deformationsschwingungen, sowie zwei NiC₃-Valenz- und -Deformationsschwingungen der Rassen A_1 und E zu erwarten. Die in Tabelle 3 getroffene Zuordnung erfolgte durch Vergleich mit den entsprechenden Pentacarbonylchrom-Komplexen [2], sowie mit Tricarbonyl-trimethylphosphinnickel [11]. Im Bereich um 2000 cm⁻¹ findet man zwei starke Banden, die jedoch von schwächeren Banden begleitet werden. Diese Banden wurden für den Fall von Tricarbonyltriäthylstibinnickel dem Disubstitutionsprodukt Dicarbonylbis(triäthylstibin)nickel zugeordnet [12]. Die Lage der gefundenen CO-Valenzschwingungen ändert sich nur unerheblich innerhalb der Fehlergrenzen, was zeigt, dass sich der Einfluss der verschiedenen Organometallstibin-Liganden auf den Tricarbonylnickelrest nicht differenzierend bemerkbar macht. Die Lage der inneren Schwingungen der Liganden wird durch die Komplexierung nicht wesentlich beeinflusst.

TABELLE 3

IR-ABSORPTIONEN UND RAMAN-LINIEN DER KOMPLEXE V-VIII (in cm⁻¹)

st, Stark; m, mittel; s, schwach; (Sch), Schulter; Werte in Klammern geschätzte Intensitäten

Zuordnung	v		VI, IRa, c	VII, IRa, c	VIII, IR ^{a,c}	
	IR ^a RL ^b					
ν(CO) (A ₁)	2060 st	2080(2)	2059 st	2059 st	2059 st	
	2055 (Sch)		2048 st	2050 (Sch)	2050 (Sch)	
ν(CO) (E)	1990 st	1990(4)	1982 st	1985 st	1983 st	
	1955 s	1977(4)	1946 s	1900 s	1950 (Sch)	
$\rho_{as}[M(CH_3)_3 + \nu_{as}MC_3]$			ere e	1260 s	1260 m	
$\delta_{s}(CH_{3})$	1160 (Sch)	1168(3)	1258 (Sch)	1232 st .	1190 (Sch)	
$\delta_{s}(CH_{3})$	1152 st	1149(3)	1245 st	1170 s	1181 m	
			1055 m	1155 s	1095 m	
ρ(CH ₃)	1012 st		860 (Sch)	830 st	763 st	
ρ(CH ₃)			838 st	810 st	731 st	
ρ(CH ₃)			827 st			
ρ(CH ₃)	. •		749 m	735 m	700 (Sch)	
ρ(CH ₃)			740 m	721 m		
$\nu_{as}(MC_3)$	931 m		690 st	598 st	520 st	
$\nu_{\rm s}({\rm MC}_3)$	799 st	799(2)	612 st	558 st	499 st	
ν(SbC ₃)		510(4)				
δ(NiCO)	485 s	487(2)	480 (Sch)	479 (Sch)		
δ(NiCO)	460 st	465(1)	460 st	458 st	458 st	
ν(NiC)	425 s	425(2)	420 m	421 m	420 st	
$\delta(SbC_3)$	404 s					
$\delta(SbC_3)$	390 (Sch)				•	
v(NiC)	375 m	380(0)	372 m	371 m	371 m	
$\nu_{as}(SbM_3)$		` •	320 st	231 st	185 st	
δ(SbC ₃)		284(5)				
$\delta(SbC_3)$		210(1)				
ν(SbNi)		187(5)	193 st	189 m	185 st	
δ(MC ₃)		136(4)		170 st	143 st	
δ(NiC ₃)		100(10)			100 (Sch)	
δ(NiC ₃)		87(9)			63 s	

^a Perkin—Elmer IR-Spektrophotometer 457; in Pentan (ν (CO)) und Nujol zwischen Cs.J. ^b Raman-Spektrophotometer Cary 82; Krypton-Laser, Spectra-Physics, 647. 1 nm-Linie in polykristalliner Substanz. ^c Polytec-Fourierspektrometer FIR 30, in Nujol zwischen Polyäthylenküvetten (0.1 mm).

TABELLE 4

¹H-NMR-DATEN DER VERBINDUNGEN I—VIII

Alle Werte in Hz, Varian A60, 60 MHz, Ca. 5%. Lösungen in Benzol, Benzol als interner Standard.

Verbindungen		δ
[(CH ₃) ₃ C] ₃ Sb	(I)	360
[(CH ₃) ₃ C] ₃ SbCr(CO) ₅	(II)	363
[(CH ₃) ₃ C] ₃ SbMo(CO) ₅	(III)	363
[(CH ₃) ₃ C] ₃ SbW(CO) ₅	(IV)	362
[(CH ₃) ₃ C] ₃ SbNi(CO) ₃	(V)	358
[(CH ₃) ₃ Si] ₃ SbNi(CO) ₃	(VI)	406
[(CH ₃) ₃ Ge] ₃ SbNi(CO) ₃	(VII)	393
[(CH ₃) ₃ Sn] ₃ SbNi(CO) ₃	(VIII)	396

Ob die in den Schwingungs-Spektren dieser Komplexe um 190 cm⁻¹ auftretende starke Bande einer Sb-Ni-Valenzschwingung entspricht, kann nicht mit absoluter Sicherheit angenommen werden. Um diese Zuordnung zu sichern, ist die Auswertung der Spektren weiterer analoger Modellsubstanzen notwendig.

¹H-NMR-Spektren

Die ¹H-NMR-Spektren des Liganden I und der Komplexe II—VIII wurden von benzolischen Lösungen der Verbindungen zur Reinheitskontrolle aufgenommen. Sie zeigen ein Singulett-Signal, das im Falle der Zinn-Verbindung VIII von Kopplungssatelliten-Signalen umgeben ist (*J*(HC¹¹⁷Sn) 47, *J*(¹HC¹¹⁹Sn) 51 Hz). Die Werte der chemischen Verschiebung, gemessen gegen Benzol als internem Standard sind Tabelle 4 zu entnehmen.

Experimentelles

Alle Reaktionen wurden in einer sorgfältig von Wasser und Sauerstoff befreiten Argonatmosphäre durchgeführt.

Tri-t-butylstibin (I). Zu einer Grignardlösung aus 39 g (1.6 mol) Magnesiumspänen und 148 g (1.6 mol) t-Butylchlorid in 1.6 l absolutem Äther werden 143 g (0.4 mol) festes Antimontribromid zugegeben. Nach heftiger Reaktion unter Schwarzfärbung des Reaktionsgemisches wird die ätherische Lösung vorsichtig abdekantiert und der Rückstand zweimal mit absolutem Äther ausgewaschen. Nach Abdestillieren des Äthers bei Normaldruck wird das verbliebene schwarze Öl bei 1 mmHg vom restlichen Äther befreit und bei 0.1—0.2 mmHg und bei einer Badtemperatur von 80° destilliert. Bei 50—60° siedet I als hellgelbe Flüssigkeit, die an der Luft spontan entflammt und sich selbst bei —30° langsam unter Schwarzfärbung zersetzt. Ausbeute: 43 g, 36.6% d.Th.

Tri-t-butylstibindibromid. Zu einer Lösung von 1.5 g (5 mmol) I in 100 ml Pentan wird so lange eine Lösung von Brom in Pentan zugetropft, bis die braune Farbe des Broms erhalten bleibt. Nach Abziehen des Lösungsmittels im Vakuum bleibt Tri-t-butyl-stibindibromid in Form farbloser Nadeln zurück, die an der Luft einige Zeit unzersetzt haltbar sind. Ausbeute 2.1 g, 93% d.Th.

Pentacarbonyltri-t-butylstibin-chrom-, -molybdän- und -wolfram-Komplexe II—IV. Tabelle 5 gibt einen Überblick über die eingesetzten Mengen an I und Metallhexacarbonyl, über die Reaktionszeiten, Ausbeuten und Zersetzungspunkte der erhaltenen Komplexe. Aus Tabelle 6 sind die Analysenwerte der Verbindungen zu entnehmen. Man belichtet eine Lösung der Metallhexacarbonyle in 100 ml Tetrahydrofuran unter Rühren, wobei sich in der angegebenen Zeit 10 mMol Kohlenmonoxid abscheiden, das in einem Gasometer aufgefangen und gemessen wird. Nach anschliessender Zugabe von I wird 4 Stunden unter Eiskühlung gerührt. Anschliessend wird das Lösungsmittel unter vermindertem Druck abgezogen, II—IV vermischt mit schwarzen Verunreinigungen und Hexacarbonylmetall fallen als kristalline Rückstände an. Bei 10⁻⁵ mmHg und 60—80° sublimieren die Komplexe in Form farbloser Kristalle.

Tricarbonyltri-t-butyl-tris(trimethylsilyl)-, -tris(trimethylgermyl)-, -tris(trimethylstannyl)-stibin-nickel (V—VIII). Zu einer Lösung der Stibine in 70 ml Pentan wird bei 25° Tetracarbonylnickel zugegeben. Innerhalb von 10 Minuten spaltet sich die äquivalente Menge Kohlenmonoxid ab, die in einem Gasometer

그 병생들과 시작하는 것으로 전한 1999년 사람								
							Ţ.,	
andre and the second of the se						٠.	·.`	. :
					_		_	. 4
			180 (Zers.)	ers.	130 (Zers.) 140 (Zers.)	60 (Zers.	70 (Zers.)	
	Schmp.	• • .	Š	110 (Zers.	ŠŠ	Š	Š	
	1 5 6	3	8	200	6	9	2	62
	8	•	. "				٠	
				٠. ٠				
	وا	(%)	92	တွင်	706	09	55	63
	ent	ڪ		ກວ່ວ	9 05	9	īĊ.	•
	Ausbeute	(g)	3.7	2, 20	9 6	2.9	3,4	4.8
	< 1	=	8	C3 10		સ		4
	ļ		18	<u> </u>	<u> </u>	3	Ĭ	M
			=	= =	ے د	٠ :		٦
				<u>.</u>	~ ~	ے د	73]3
)3]	3)3]	5.5	ő	3	3)3
	.		(CO)5CrSb[C(CH3)3]3	(CO) ₅ MoSb[C(CH ₃) ₃] ₃	(CO)3 W 35[C(CH3)3] 3	(CO) NiSb[Si(CH1)]	(CO)3NiSb[Ge(CH3)3]	(CO) ₃ NiSb[Sn(CH ₃) ₃] ₃
	Reakt, Produkt		3	$\tilde{\mathbf{z}}$	3 5	Sic	Ge	Sn(
	rod]qs	Sp	Sel	Sb	Sp]qg
$(\mathcal{A}_{i,j}, \mathcal{A}_{i,j}, A$	13		ď	ž,	, iX	Ž	ž	3N.
	ak		Ô	6 6	9	Ó	õ	õ
	2		٤	y s	ي و	9	٤.	¥
	Reakt, Zeit							
	t							
	Reakt	Î	90	8	3 2	15	25	20
				₹, `				
•	# 3			1200				
	#2 ±			173				
	H			12				
	H						•	•
	R .	(mMol)		10 12		10	10	10
	R					10	10	10
III.	R .	(mMol)	10	0 0	01			
ıı-Vıllı			10		01			
EN 11—VIII		(mMol)	10	0 0	01			
NGEN II—VIII		(g) (mMol)	2.2 10	2,6 3.5	1.7	1,7	1.7	1.7
DUNGEN II—VIII	M'(CO) _n R	(mMol)	2.2 10	0 0	1.7	1,7		1.7
INDUNGEN II—VIII		(g) (mMol)	2.2 10	2,6 3.5	1.7	1,7	1.7	1.7
		M' (g) (mMol)	2.2 10	2,6 3.5	1.7	1,7	1.7	1.7
		M' (g) (mMol)	2.2 10	2,6 3.5	1.7	1,7	1.7	1.7
		(g) (mMol)	2.2 10	2,6 3.5	1.7	1,7	1.7	1.7
		M' (g) (mMol)	2.2 10	2,6 3.5	1.7	1,7	1.7	1.7
JNG DER VERBI		(mMol) M' (g) (mMol)	2.2 10	2,6 3.5	10 Ni 1.7 10	10 Ni 1.7	1.7	1.7
JNG DER VERBI		M' (g) (mMol)	2.2 10	2,6 3.5	9 10 Ni 1.7 10	10 Ni 1.7	1.7	1.7
JNG DER VERBI	M'(60) _n	(mMol) M' (g) (mMol)	2.2 10	9 10 Mo 2.6 10	10 Ni 1.7 10	10 Ni 1.7	1.7	1.7
JNG DER VERBI	M'(60) _n	(mMol) M' (g) (mMol)	2.2 10	9 10 Mo 2.6 10	10 Ni 1.7 10	10 Ni 1.7	4.8 10 Ni 1.7	6,1 10 Ni 1.7
TABELLE 5 DARSTELLUNG DER VERBINDUNGEN II—VIII		(mMol) M' (g) (mMol)	2.2 10	2.9 10 Mo 2.6 10	10 Ni 1.7 10	3.4 10 Ni 1.7	e 4.8 10 Ni 1.7	6,1 10 Ni 1.7
JNG DER VERBI	M'(60) _n	(mMol) M' (g) (mMol)	2.2 10	2.9 10 Mo 2.6 10	2.9 10 Ni 1.7 10	3.4 10 Ni 1.7	e 4.8 10 Ni 1.7	6,1 10 Ni 1.7
JNG DER VERBI	M'(60) _n	(mMol) M' (g) (mMol)	2.2 10	2.9 10 Mo 2.6 10	2.9 10 Ni 1.7 10	3.4 10 Ni 1.7	e 4.8 10 Ni 1.7	6,1 10 Ni 1.7
JNG DER VERBI	M'(60) _n	(mMol) M' (g) (mMol)	2.2 10	2.9 10 Mo 2.6 10	2.9 10 Ni 1.7 10	3.4 10 Ni 1.7	e 4.8 10 Ni 1.7	6,1 10 Ni 1.7
JNG DER VERBI	M'(60) _n	(mMol) M' (g) (mMol)	2.2 10	2.9 10 Mo 2.6 10	2.9 10 Ni 1.7 10	3.4 10 Ni 1.7	e 4.8 10 Ni 1.7	6,1 10 Ni 1.7

TABELLE 6 ANALYSENWERTE DER VERBINDUNGEN I-VIII

Verbindung		MolGew.	Analysenwert	Analysenwerte. Gef. (ber.) (%)			
		Gef. a(ber.)	C	H			
C ₁₂ H ₂₇ Sb	(I) b	358 ^b	41.1	8.1			
		(293.1)	(49.18)	(9.29)			
C ₁₇ H ₂₇ CrO ₅ Sb	(II)	489	42.1	5.6			
		(485.1)	(42.09)	(5.61)			
C ₁₇ H ₂₇ MoO ₅ Sb	(III)	529	37.7	5.0			
		(529.1)	(38.59)	(5.14)			
C ₁₇ H ₂₇ O ₅ SbW	(IV)	621	32.7	4.3			
		(617.0)	(33.09)	(4.41)			
C ₁₅ H ₂₇ NiO ₃ Sb	(V)	442	41.3	6.5			
		(435.8)	(41.34)	(6.24)			
C ₁₂ H ₂₇ NiO ₃ SbSi ₃	(VI) ^b	731.1 ⁶	12.9 ^b	3.6°			
• • • • • • • • • • • • • • • • • • • •		(484.1)	(29.78)	(5.62)			
C ₁₂ H ₂₇ Ge ₃ NiO ₃ Sb	(VII) ^b	381 <i>b</i>					
		(617.6)	(23.34)	(4.41)			
C ₁₂ H ₂₇ O ₃ SbSn ₃	(VIII) ^b	607 ^{<i>b</i>}	17.2 ⁶	3.6			
12 2. 3. 3	-	(755.9)	(19.07	(3.60)			

a Kryoskopisch in Benzol. b Verbindung zersetzt sich während der Analyse.

aufgefangen wird. Nach dem Abziehen des Lösungsmittels fallen die Komplexe V-VIII als farblose Kristalla an, die jedoch im Falle von VI-VII selbst bei -20° unter Schwarzfärbung zerfallen. Umkristallisation durch Auflösen in Pentan bei 25° und Ausfällen bei -60° erhöht die Stabilität der Verbindungen nicht.

Dank

Unser Dank gilt der Badischen Anilin und Soda-Fabrik AG., Ludwigshafen für kostenlose Überlassung von Molybdänhexacarbonyl, sowie der Deutschen Forschungsgemeinschaft, dem Senator für Wirtschaft des Landes Berlin und dem Fonds der Chemischen Industrie für finanzielle Unterstützung dieser Arbeit.

Literatur

- 1 H. Schumann und H.J. Breunig, J. Organometal. Chem., 27 (1971) C28.
- 2 H. Schumann, H.J. Breunig und U. Frank, J. Organometal. Chem., 60 (1973) 279.
- 3 H. Schumann, O. Stelzer und U. Niederreuther, J. Organometal. Chem., 16 (1969) P64.
- 4 H. Schumann, G. Pfeiffer und H. Röser, J. Organometal. Chem., 44 (1972) C10.
- 5 H. Hartmann und G. Kühl, Z. Anorg. Allg. Chem., 312 (1961) 186.
- 6 H. Hoffmann und P. Schellenbeck, Chem. Ber., 100 (1967) 692.
- 7 H. Röser, Zulassungsarbeit Universität Würzburg, 1970.
- 8 E. Amberger und R.W. Salazar, J. Organometal. Chem., 8 (1967) 111.
- 9 H. Schumann und L. Rösch, Chem. Ber., im Druck.
- 10 F. Oswald, Z. Anal. Chem., 197 (1963) 309.
- 11 A. Loutellier und M. Bigorgne, J. Chim. Phys., 67 (1970) 99.
- 12 D. Beulian und M. Bigorgne, Bull. Soc. Chim. Fr., (1963) 1583.