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7-Borylindoles undergo a one-pot oxidative-hydrolysis of the aryl-
boronate and oxidative cleavage of the indole C2—C3 double bond to
afford o-amidophenol derivatives. Subsequent cyclisation delivers
benzoxazoles bearing an acyl group at C4, a substitution pattern
common to fungal-derived benzoxazole alkaloids. Using 7-borylindoles
as substrates to access functionalised o-amidophenols circumvents the
difficult preparation of these compounds from arenes, streamlining
access to substituted 4-acylbenzoxazoles in the process.

Benzoxazole natural products derived from fungi display a wide
range of structural diversity and biological properties. Due to
their common biosynthesis from 3-hydroxyanthranilic acid
(3-HANA) via the shikimate pathway, these alkaloids always
possess an acyl group at the benzoxazole C4 position (Scheme 1A).'?
Moreover, a number of 4-substituted benzoxazoles have also been
isolated from both plant and marine sources (Scheme 1B)."?

Most synthetic approaches to 4-acylbenzoxazoles mimic the
biosynthesis and involve the condensation of an o-aminophenol
bearing an acyl substituent with an aldehyde or ester (or
equivalent), a straightforward process when the 4-acylbenz-
oxazole does not possess any additional substituents. However,
accessing substituted 4-acylbenzoxazoles such as many of those
shown in Scheme 1, or for medicinal chemistry studies,
requires access to densely functionalised o-aminophenols, sub-
strates that are not readily attainable. For example, procedures
for the synthesis of substituted 3-HANA'’s are quite rare and are
generally limited to the derivatisation of 3-HANA.*® Similarly,
facile synthetic routes to substituted 2-amino-3-hydroxy-
benzaldehydes and 2-amino-3-hydroxyacetophenones are also
few in number.®

A proposal for a distinct route to substituted 4-acylbenz-
oxazoles that circumvent these issues is shown in Scheme 2.
Iridium-catalysed C7-H borylation” of indole 1 would give the
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One-pot oxidative hydrolysis-oxidative cleavage
of 7-borylindoles enables access to
o-amidophenols and 4-acylbenzoxazolest
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Scheme 1 (A) Fungal benzoxazole natural products and their general
biosynthesis (3-HANA = 3-hydroxyanthranilic acid; DHHA = trans-2,3-
dihydro-3-hydroxyanthranilic acid); (B) non-fungal benzoxazole alkaloids
with a substituent at C4.

7-borylindole 2. A one-pot oxidation-hydrolysis of the arylboronate
and oxidative cleavage of the indole 2,3-bond®® would generate
the o-amidophenol 3 that upon cyclisation would give the
4-acylbenzoxazole 4, the common heteroaromatic unit found
in the fungal benzoxazoles shown in Scheme 1. Given that
substituted indoles are easy to prepare and a vast number are
commercially available, this methodology should enable access
to 4-acylbenzoxazoles bearing a variety of different substituents
that would be otherwise cumbersome to prepare using existing
methods.

We initially examined if a 2,3-disubstituted indole could
proceed through the route outlined in Scheme 2. 2,3-Dimethyl-
indole (5) underwent facile iridium-catalysed C-H borylation
to give the 7-borylindole 6,'® setting up the pivotal step in
the proposed route; the simultaneous oxidative cleavage of the
indole C2-C3 double bond and oxidative hydrolysis of the
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Scheme 2 Proposed route to 4-acylbenzoxazoles from indoles.

heteroarylboronate at C7. Subjecting 6 to a wide variety of
different oxidants including NalO,, VO(acac),, CrOs, salcomine,
RuCl; and CuCl, was met with universal failure, with the
desired o-amidophenol 7 not observed. The only two oxidants
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Scheme 3 Initial proof of concept.

that were found to be capable of converting 6 into 7 were
m-CPBA" and ozone,'” with the former giving a slightly better
yield in this instance. Cyclisation of 7 with TFA gave 4-acetyl-2-
methylbenzoxazole (8) in good overall yield.

With the example shown in Scheme 3 successful, we sub-
jected a variety of 2-substituted indoles to this process
(Scheme 4). By using 2,3-disubstituted indoles, benzoxazoles
harbouring a ketone at C4 are readily attainable, exemplified by
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Scheme 4 Synthesis of 4-acylbenzoxazoles from 2-substituted indoles.
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Scheme 5 (A) Preparation of benzoxazoles 26 and 27 from skatole (21);
(B) synthesis of the 6-benzyloxybenzoxazole 32 and the 7-fluorobenzoxazole
33 from commercially available skatole derivatives.
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Scheme 6 Application of the methodology towards the calcimycin
benzoxazole.

the synthesis of 4-acylbenzoxazoles 8-12. Next, a series of
2-substituted indoles with a vacant C3 site were trialled;
2-methylindole, 2-phenylindole and 2-(4-fluorophenyl)indole
all proceeded through the sequence smoothly, affording the
4-formylbenzoxazoles 13-15. 2,5-Disubstituted indoles also work
well in this process, enabling access to 4-acylbenzoxazoles bearing
a variety of substituents on the benzenoid ring, including nitro
(16), methyl (17) and a variety of halogens (18-20).

With a series of mono- and disubstituted indoles bearing a
C2-substituent successfully transformed into their corresponding
o-amidophenols and hence 4-acylbenzoxazoles, attention turned to
incorporating 3-substituted indoles into this process. 3-Substituted
indoles present a challenge as the vacant C2-position will undergo
C-H borylation along with the C7-site. Iridium-catalysed diboryla-
tion of skatole 21 gave the 2,7-diborylindole 22 that upon selective
protodeborylation at C2'* gave the 7-borylindole 23 (Scheme 5A).
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Subjecting 23 to ozone led to the o-amidophenol 24 in acceptable
yield. Facile cleavage of the formamide in 24 gave 2’-amino-3’-
hydroxyacetophenone (25), which could also be obtained in one-
pot from 23 by ozonolysis followed by acidic workup. Interestingly,
25 was directly attainable from the 2,7-diborylindole 22 by ozono-
lysis followed by acidic workup. Treatment of 25 with trimethyl
orthoformate and trimethyl orthobutyrate gave the 4-acetylbenz-
oxazoles 26 and 27, respectively. 5-Benzyloxyskatole (28) and
6-fluoroskatole (29) both proceeded through this sequence, afford-
ing the o-aminophenols 30 and 31, that upon heteroannulation
with trimethyl orthoformate gave the benzoxazoles 32 and 33,
respectively (Scheme 5B).

Finally, the methodology was used to access a benzoxazole
related to the natural product calcimycin (Scheme 6). 2-Methyl-
4-nitroindole (34)"° underwent the established sequence to give
the benzoxazole 35, which itself is structurally related to the
calcimycin benzoxazole. Moreover, the 2,4-disubstituted indole
34 harbours a substitution pattern that complements the
examples shown in Schemes 4 and 5.

Indoles serve as readily available substrates for the synthesis
of substituted o-amidophenols and hence a range of 4-acylbenz-
oxazoles. Iridium-catalysed C-H borylation of the indole gives a
7-borylindole that undergoes a one-pot oxidative hydrolysis and
oxidative cleavage in the presence of either m-CPBA or ozone.
The resulting o-amidophenol derivatives undergo cyclisation to
give the desired 4-acylbenzoxazoles bearing a variety of different
substituents. A variety of substituents tolerate this process, and the
final cyclisation in TFA is compatible with aldehydes, ketones,
halogens and the nitro group. The use of 7-borylindoles as
templates to access functionalised o-aminophenol derivatives
circumvents the difficulty in preparing these compounds, simulta-
neously streamlining access to substituted 4-acylbenzoxazoles in
the process.
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