

Cascade Reactions

A Cascade C–H-Functionalization/Cyclization Reaction of Indoles with α -Halo or α -Sulfonyloxy Ketones for the Synthesis of Dihydropyrimidoindolone Derivatives

Zi-Jun Wu,^[a] Ya-Qiong Li,^[a] and Zhi-Zhen Huang*^[a,b]

Abstract: A new cascade C–H-functionalization/cyclization reaction of *N*-carbamoylindoles **1** with α -halo, α -mesyloxy, or α tosyloxy ketones **2** has been developed under rhodium(III) catalysis, leading to dihydropyrimido[1,6-a]indolone derivatives **3** in moderate to excellent yields.

Introduction

Recently, much attention has been given to the C-H functionalization of indoles.^[1] Very recently, some work has been done on the α -C-H functionalization of indoles directed by an Ncarbamoyl group under rhodium(III) catalysis.^[2] In 2014, the Cui group developed cascade α -C–H-functionalization/cyclization reactions of N-carbamoylindoles 1 with arylboronic acids, alkynes, alkenes, or diazo carboxylate derivatives using rhodium catalysis (Scheme 1).^[3] In 2015, Zeng and co-workers reported an α-C-H-functionalization reaction of N-carbamoylindoles with alkynes to give alkenylated indoles using rhodium catalysis.^[4] However, to the best of our knowledge, the α -C–H functionalization of indoles with α -halo ketones still remains unknown. Chi et al. reported that free indoles underwent a coupling reaction with α -halo ketones to give β -C–H-functionalized indoles.^[5] Considering that an N-carbamoyl group can direct and assist in the activation of an $\alpha\text{-C-H}$ bond, $^{[3,4]}$ we embarked on an investigation of the α -C–H functionalization of N-carbamoylindoles 1 with α -halo ketones 2. In 2014, Glorius and co-workers reported a cascade C-H-functionalization/cyclization reaction of benzamides with α -mesyloxy, α -tosyloxy, or α -chloro ketones by α -C-H activation to give isoquinolones under rhodium catalysis.^[6] Thus, we further envisioned that the α -C-H-functionalization products of N-carbamoylindoles with α -halo ketones, i.e., α -indolyl ketones, might subsequently undergo cyclization through intramolecular nucleophilic attack of the nitrogen atom in the N-carbamoyl group onto the carbonyl group in the ketone moiety. This would produce dihydropyrimido[1,6-a]indolone derivatives 3 (Scheme 1), which have important biological activities.^[7] In this paper, we present our re-

 [a] Department of Chemistry, Zhejiang University, Hangzhou 310058, China
 E-mail: huangzhizhen@zju.edu.cn
 http://mypage.zju.edu.cn/huangzhizhen
 [b] Jiangsu Coben Pharmaceutical Co. Ltd,

Qidong, Jiangsu, P. R. China

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201600885. cent results on the cascade α -C–H-functionalization/cyclization reaction of *N*-carbamoylindoles **1** with α -halo or α -sulfonyloxy ketones **2** for the synthesis of dihydropyrimido[1,6-*a*]indolone derivatives **3**.

Scheme 1. Cascade C–H-functionalization/cyclization reactions of $N\mbox{-}carba moylindoles.$

Results and Discussion

Initially, *N*-carbamoylindole **1a** and α -chloro ketone **2aC** (C represents chloro) were chosen as model substrates to explore and optimize the cascade C–H-functionalization/cyclization reaction. When [Cp*RhCl₂]₂ (Cp* = 1,2,3,4,5-pentamethylcyclopentadienyl) and CsOAc were used as a transition-metal catalyst and an additive, respectively, the expected cascade reaction took

place in MeOH at 60 °C, and the desired dihydropyrimido[1,6a]indolone derivative (i.e., 3aa) was obtained, albeit in a low yield (Table 1, Entry 1). When [Rh(COD)₂Cl]₂ (COD = cyclooctadienyl) or Pd(OAc)₂ was used as catalyst, product **3aa** was not obtained (Table 1, Entries 2 and 3). When NaOAc was used as an additive instead of CsOAc, the yield of 3aa increased from 35 to 95 % (Table 1, Entry 5).^[3b] Optimization experiments with different solvents revealed that a solvent with a higher polarity is beneficial to the cascade reaction (Table 1, compare Entries 5 and 6 with Entries 7 and 8). The effect of temperature on the reaction was also studied, and lower yields of 3aa were obtained when the temperature was either higher or lower than 60 °C (Table 1, Entries 9 and 10). When the cascade reaction was carried out under air instead of nitrogen, the yield of 3aa decreased remarkably (Table 1, compare Entry 5 with Entry 11). In the absence of either [RhCp*Cl₂]₂ or NaOAc, none of the dihydropyrimido[1,6-a]indolone derivative (i.e., 3aa) was obtained (Table 1, Entries 12 and 13).

Table 1. Optimization of the cascade C–H-functionalization/cyclization reaction of *N*-carbamoylindole **1a** with α -chloro ketone **2aC**.^[a]

O N	OMe +	CI O [M], additive solvent		OH N OMe
1a	2aC		3aa	
Entry	[M]	Additive (equiv.)	Solvent	Yield [%] ^[b]
1	[Cp*RhCl ₂] ₂	CsOAc (1.2)	MeOH	35
2	Pd(OAc) ₂	CsOAc (1.2)	MeOH	0
3	[Rh(COD) ₂ Cl] ₂	CsOAc (1.2)	MeOH	0
4	[Cp*RhCl ₂] ₂	Cu(OAc) ₂ (1.2)	MeOH	trace
5	[Cp*RhCl ₂] ₂	NaOAc (1.2)	MeOH	95
6	[Cp*RhCl ₂] ₂	NaOAc (1.2)	EtOH	90
7	[Cp*RhCl ₂] ₂	NaOAc (1.2)	MeCN	9
8	[Cp*RhCl ₂] ₂	NaOAc (1.2)	DCE	trace
9	[Cp*RhCl ₂] ₂	NaOAc (1.2)	MeOH	73 ^[c]
10	[Cp*RhCl ₂] ₂	NaOAc (1.2)	MeOH	trace ^[d]
11	[Cp*RhCl ₂] ₂	NaOAc(1.2)	MeOH	45 ^[e]
12	-	NaOAc(1.2)	MeOH	0
13	[Cp*RhCl ₂] ₂	-	MeOH	0

[a] Reaction conditions: **1a** (0.10 mmol), **2aC** (0.12 mmol), [M] (2 mmol-%), solvent (1 mL), N₂, 60 °C, 18 h. DCE = 1,2-dichloroethane. [b] Isolated yields. [c] At 90 °C. [d] At 25 °C. [e] Under air.

After screening the reaction conditions, we concluded that the optimized reaction should be carried out using $[Cp*RhCl_2]_2$ as a catalyst and NaOAc as an additive at 60 °C in methanol under nitrogen. We investigated the substrate scope of the reaction under the optimized conditions, and found that various *N*-carbamoylindoles **1** were able to undergo the cascade C– H-functionalization/cyclization reaction smoothly with α -chloro phenyl ketone **2aC**, leading to dihydropyrimido[1,6-*a*]indolone derivatives **3aa–3ga** in moderate to excellent yields (Table 2). The structure of dihydropyrimido[1,6-*a*]indolone derivative **3da** was further determined by X-ray crystallography (Figure 1). α -Chloro aromatic ketones **2bC–2eC** bearing different substituents on the benzene rings led to dihydropyrimido[1,6-*a*]indolone derivatives **3ad–3ef** in good yields. α -Chloro aliphatic ketones also underwent the cascade reaction with *N*-carbamoylindole **1a** expediently, producing dihydropyrimido-[1,6-*a*]indolone derivatives **3ag** and **3ah** in excellent yields. α -Mesyloxy and α -tosyloxy aromatic ketones **2aM** and **2aT** also readily underwent the cascade reaction with **1a** to give the desired dihydropyrimido[1,6-*a*]indolone derivative (i.e., **3aa**). α -Mesyloxy aromatic ketones **2hM** and **2iM**, bearing electron-withdrawing groups on the benzene rings, seem more liable to undergo the cascade reaction than those (**2eM** and **2jM**) bearing electron-donating groups. Switching the directing group from an *N*-methoxycarbamoyl group to an *N*-ethoxycarbamoyl group also led to dihydropyrimido[1,6-*a*]indolone derivative **3ha** in a satisfactory yield.

Figure 1. X-ray structure of dihydropyrimido[1,6-a]indolone derivative 3da.

Further experiments indicated that in the presence of AlCl₃, dihydropyrimido[1,6-*a*]indolone derivative **3aa** was dehydrated in MeOH at room temperature to give pyrimido[1,6-*a*]indolone **4aa** in good yield (Scheme 2). However, pyrimido[1,6-*a*]indolone **4aa** is unstable at room temperature.

Scheme 2. Dehydration reaction of dihydropyrimido[1,6-*a*]indolone derivative **3aa** for the formation of pyrimido[1,6-*a*]indolone **4aa**.

A plausible mechanism for the cascade C-H-functionalization/cyclization reaction is proposed. [Cp*RhCl₂]₂ is not a typical Lewis acid catalyst for Friedel-Crafts alkylation reactions. If it had functioned as a Lewis acid catalyst in the cascade reaction, β -alkylated products would have been observed instead of α alkylated products **3**; β -alkylated indoles are formed more usually than $\alpha\text{-alkylated}$ indoles in Friedel–Crafts reactions of indoles with alkyl halides.^[5,8] When N-methylindole was used instead of *N*-carbamoylindole **1a**, none of the α -C–H-coupling product was observed (Scheme 3). The result of this control experiment supports the idea that the N-carbamoyl group may direct and assist the α -C–H activation by rhodium catalysis in the cascade C-H-functionalization/cyclization reaction.^[3] Thus, we tend towards a mechanism that proceeds through α -C–H activation by rhodium catalysis rather than via a carbocationic intermediate by Lewis acid catalysis. The plausible mechanism is as follows (Scheme 4). First, NaOAc reacts with [Cp*RhCl₂]₂ to

Table 2. Cascade C-H-functionalization/cyclization reactions of N-carbamoylindoles 1a-1h with α-chloro, α-mesyloxy, or α-tosyloxy ketones 2a-2m.^[a,b]

[a] Reaction conditions: 1 (0.10 mmol), 2 (0.12 mmol), [Cp*RhCl₂]₂ (2 mmol-%), NaOAc (0.12 mmol), MeOH (1 mL), N₂, 60 °C, 18 h. [b] Isolated yields.

generate Cp*Rh(OAc)₂.^[3b] The carbamoyl group in *N*-carbamoylindole **1a** directs and assists the α -C–H-bond activation to form rhodacycle **A**. The α -carbon atom in rhodacycle **A** attacks α -chloro ketone **2aC** nucleophilically to produce α -indolyl ketone intermediate **B**.^[6] Finally, the nitrogen atom in the *N*-carbamoyl group carries out an intramolecular nucleophilic addi-

tion to the carbonyl group in intermediate **B** to give the desired dihydropyrimidoindolone derivative (i.e., **3aa**).

Scheme 3. Control experiment.

Scheme 4. Plausible mechanism for the cascade C–H-functionalization/ cyclization reaction.

Conclusions

We have developed a new cascade C–H-functionalization/cyclization reaction of *N*-carbamoyl indoles **1** with α -halo or α -sulf-onyloxy ketones **2**. We found that under rhodium(III) catalysis, various *N*-carbamoylindoles **1a–1h** were able to undergo the cascade C–H-functionalization/cyclization reaction smoothly with α -chloro, α -mesyloxy, or α -tosyloxy ketones **2** to give the desired dihydropyrimido[1,6-*a*]indolone derivatives (i.e., **3aa–3hj**) in moderate to excellent yields. A plausible mechanism proceeding through α -C–H functionalization directed by the *N*-carbamoyl group in substrate **1** is postulated for the cascade reaction. The cascade C–H-functionalization/cyclization reaction may have applications in the synthesis of related pharmaceuticals in the future.

Experimental Section

General Procedure for the Cascade C–H-Functionalization/Cyclization Reaction of *N*-Carbamoyl Indoles 1 with α -Chloro or α -Sulfonyloxy Ketones 2 for the Synthesis of Dihydropyrimidoindolone Derivatives 3: A mixture of *N*-carbamoylindole 1a–1h (0.10 mmol), α -chloro or α -sulfonyloxy ketone **2** (0.12 mmol), [Cp*RhCl₂]₂ (1.2 mg, 2 mol-%), and NaOAc (9.8 mg, 1.2 equiv) was stirred under nitrogen at 60 °C for 18 h. After this time, the mixture was cooled to room temperature, and then concentrated under vacuum. The residue was purified by column chromatography (silica gel; petroleum ether/ethyl acetate) to give dihydropyrimidoindolone derivative **3aa-3hj**.

3-Hydroxy-2-methoxy-3-phenyl-3,4-dihydropyrimido[1,6-*a*]**indol-1(2***H***)-one (3aa):** Yellow solid (95 %); m.p. 165–167 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.37 (d, *J* = 8.0 Hz, 1 H), 7.64 (d, *J* = 7.2 Hz, 2 H), 7.47–7.37 (m, 4 H), 7.30–7.21 (m, 2 H), 6.30 (s, 1 H), 4.13 (br., 1 H), 3.69 (s, 3 H), 3.60 (d, *J* = 16.4 Hz, 1 H), 3.45 (d, *J* = 16.4 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 153.9, 140.9, 135.6, 131.2, 130.2, 128.8, 128.6, 125.9, 124.2, 123.5, 120.3, 115.6, 105.4, 91.9, 64.7, 38.0 ppm. HRMS (ESI): calcd. for [C₁₈H₁₅N₂O₃]⁻ 307.1088; found 307.1095.

3-Hydroxy-2-methoxy-5-methyl-3-phenyl-3,4-dihydropyrimido[1,6-*a*]indol-1(2*H*)-one (3ba): Pale yellow solid (86 %); m.p. 200–202 °C. ¹H NMR (400 MHz, [D₆]DMSO): δ = 8.27 (d, *J* = 7.6 Hz, 1 H), 7.66 (d, *J* = 7.2 Hz, 2 H), 7.50 (d, *J* = 7.2 Hz, 1 H), 7.43 (t, *J* = 7.6 Hz, 2 H), 7.38–7.35 (m, 2 H), 7.32–7.24 (m, 2 H), 3.62 (s, 3 H), 3.61 (d, *J* = 16.0 Hz, 1 H), 3.33 (d, *J* = 16.4 Hz, 1 H), 2.09 (s, 3 H) ppm. ¹³C NMR (100 MHz, [D₆]DMSO): δ = 152.7, 141.5, 134.3, 130.9, 128.2, 128.0, 126.2, 123.8, 122.9, 118.5, 114.5, 111.5, 91.0, 63.6, 36.7, 7.9 ppm. HRMS (ESI): calcd. for [C₁₉H₁₈N₂O₃ + Na]⁺ 345.1210; found 345.1194.

3-Hydroxy-2-methoxy-6-methyl-3-phenyl-3,4-dihydropyrimido[1,6-*a***]indol-1(2***H***)-one (3ca):** White solid (83 %); m.p. 192–193 °C. ¹H NMR (400 MHz, [D₆]DMSO): δ = 8.10 (d, *J* = 8.0 Hz, 1 H), 7.62 (d, *J* = 7.2 Hz, 2 H), 7.43–7.33 (m, 4 H), 7.17 (t, *J* = 7.8 Hz, 1 H), 7.03 (d, *J* = 7.2 Hz, 1 H), 6.46 (s, 1 H), 3.74 (d, *J* = 16.0 Hz, 1 H), 3.64 (s, 3 H), 3.38 (d, *J* = 16.0 Hz, 1 H), 2.42 (s, 3 H) ppm. ¹³C NMR (100 MHz, [D₆]DMSO): δ = 152.4, 141.2, 134.5, 131.8, 129.4, 129.1, 128.1, 128.0, 126.1, 123.6, 123.4, 112.2, 102.9, 91.1, 63.6, 38.3, 18.1 ppm. HRMS (ESI): calcd. for [C₁₉H₁₈N₂O₃ + Na]⁺ 345.1210; found 345.1193.

7-Chloro-3-hydroxy-2-methoxy-3-phenyl-3,4-dihydropyrimido[1,6-*a***]indol-1(***2H***)-one (3da):** White solid (89 %); m.p. 205– 208 °C. ¹H NMR (400 MHz, [D₆]DMSO): δ = 8.25 (d, *J* = 8.8 Hz, 1 H), 7.64–7.62 (m, 3 H), 7.44–7.34 (m, 4 H), 7.31 (dd, *J* = 8.8, *J* = 2.0 Hz, 1 H), 6.44 (s, 1 H), 3.78 (d, *J* = 16.4 Hz, 1 H), 3.62 (s, 3 H), 3.39 (d, *J* = 16.4 Hz, 1 H) ppm. ¹³C NMR (100 MHz, [D₆]DMSO): δ = 152.1, 140.9, 134.3, 133.2, 131.4, 128.2, 128.0, 127.4, 126.1, 123.3, 119.7, 115.8, 103.8, 91.1, 63.6, 38.1 ppm. HRMS (ESI): calcd. for [C₁₈H₁₅ClN₂O₃ + Na]⁺ 365.0663; found 365.0652.

8-Chloro-3-hydroxy-2-methoxy-3-phenyl-3,4-dihydropyrimido[1,6-*a***]indol-1(***2H***)-one (3ea):** Yellow solid (90 %); m.p. 203– 205 °C. ¹H NMR (400 MHz, [D₆]DMSO): δ = 8.28 (d, *J* = 2.0 Hz, 1 H), 7.63 (d, *J* = 7.6 Hz, 2 H), 7.57 (d, *J* = 8.4 Hz, 1 H), 7.44–7.35 (m, 4 H), 7.28 (dd, *J* = 8.4, *J* = 2.0 Hz, 1 H), 6.48 (s, 1 H), 3.73 (d, *J* = 16.4 Hz, 1 H), 3.63 (s, 3 H), 3.38 (d, *J* = 15.6 Hz, 1 H) ppm. ¹³C NMR (100 MHz, [D₆]DMSO): δ = 152.1, 140.9, 135.0, 133.6, 128.7, 128.2, 128.0, 127.9, 126.1, 123.3, 121.6, 114.2, 104.2, 91.1, 63.7, 38.2 ppm. HRMS (ESI): calcd. for [C₁₈H₁₅ClN₂O₃ + Na]⁺ 365.0663; found 365.0646.

7-Fluoro-3-hydroxy-2-methoxy-3-phenyl-3,4-dihydropyrimido[1,6-*a***]indol-1(***2H***)-one (3fa):** Pale yellow solid (76 %); m.p. 198–200 °C. ¹H NMR (400 MHz, [D₆]DMSO): δ = 8.27 (dd, *J* = 8.8, *J* = 4.8 Hz, 1 H), 7.65 (d, *J* = 7.2 Hz, 2 H), 7.45–7.35 (m, 5 H), 7.16–7.11 (m, 1 H), 6.45 (s, 1 H), 3.77 (d, *J* = 16.4 Hz, 1 H), 3.64 (s, 3 H), 3.39 (d, *J* = 16.0 Hz, 1 H) ppm. ¹³C NMR (100 MHz, [D₆]DMSO): δ = 158.8 (d, *J* = 235.2 Hz), 152.2, 141.0, 134.5, 131.3, 131.1 (d, *J* = 10.3 Hz),

128.2, 128.0, 126.2, 115.6 (d, *J* = 9.3 Hz), 110.9 (d, *J* = 24.9 Hz), 105.9 (d, *J* = 23.9 Hz), 104.2 (d, *J* = 3.8 Hz), 91.2, 63.6, 38.2 ppm. ¹⁹F NMR (376 MHz, [D₆]DMSO): δ = -119.99 ppm. HRMS (ESI): calcd. for [C₁₈H₁₅FN₂O₃ + Na]⁺ 349.0959; found 349.0939.

3-Hydroxy-2,7-dimethoxy-3-phenyl-3,4-dihydropyrimido-[1,6-a]indol-1(2H)-one (3ga): White solid (66 %); m.p. 206–209 °C. ¹H NMR (400 MHz, [D₆]DMSO): δ = 8.13 (d, *J* = 8.8 Hz, 1 H), 7.62 (d, *J* = 7.6 Hz, 2 H), 7.43–7.31 (m, 4 H), 7.06 (d, *J* = 2.4 Hz, 1 H), 6.88 (dd, *J* = 9.0, *J* = 2.6 Hz, 1 H), 6.35 (s, 1 H), 3.78 (s, 3 H), 3.72 (d, *J* = 16.4 Hz, 1 H), 3.61 (s, 3 H), 3.34 (d, *J* = 16.0 Hz, 1 H) ppm. ¹³C NMR (100 MHz, [D₆]DMSO): δ = 155.8, 152.3, 141.2, 133.1, 130.9, 129.3, 128.1, 127.9, 126.1, 115.1, 111.8, 104.2, 103.2, 91.1, 63.6, 55.3, 38.2 ppm. HRMS (ESI): calcd. for [C₁₉H₁₈N₂O₄ + Na]⁺ 361.1159; found 361.1142.

3-(4-Fluorophenyl)-3-hydroxy-2-methoxy-3,4-dihydropyrimido[1,6-*a***]indol-1(2***H***)-one (3ab):** Yellow solid (76 %); m.p. 184– 186 °C. ¹H NMR (400 MHz, [D₆]DMSO): δ = 8.31 (d, *J* = 8.0 Hz, 1 H), 7.72 (dd, *J* = 8.2, *J* = 5.4 Hz, 2 H), 7.58 (d, *J* = 7.2 Hz, 1 H), 7.44 (s, 1 H), 7.34–7.25 (m, 4 H), 6.49 (s, 1 H), 3.81 (d, *J* = 16.0 Hz, 1 H), 3.66 (s, 3 H), 3.41 (d, *J* = 15.6 Hz, 1 H) ppm. ¹³C NMR (100 MHz, [D₆]DMSO): δ = 161.8 (d, *J* = 242.9 Hz), 152.3, 137.4 (d, *J* = 2.9 Hz), 134.8, 132.4, 129.9, 128.5 (d, *J* = 8.3 Hz), 123.5, 123.1, 120.3, 114.8, 114.6 (d, *J* = 4.8 Hz), 104.4, 90.6, 63.6, 38.1 ppm. ¹⁹F NMR (376 MHz, [D₆]DMSO): δ = –114.50 ppm. HRMS (ESI): calcd. for [C₁₈H₁₅FN₂O₃ + Na]⁺ 349.0959; found 349.0944.

3-(4-Chlorophenyl)-3-hydroxy-2-methoxy-3,4-dihydropyrimido[1,6-*a***]indol-1(***2H***)-one (3ac):** White solid (91 %); m.p. 197– 200 °C. ¹H NMR (400 MHz, [D₆]DMSO): δ = 8.28 (d, *J* = 8.0 Hz, 1 H), 7.67 (d, *J* = 7.6 Hz, 2 H), 7.56–7.44 (m, 4 H), 7.31–7.24 (m, 2 H), 6.46 (s, 1 H), 3.77 (d, *J* = 16.0 Hz, 1 H), 3.63 (s, 3 H), 3.37 (d, *J* = 16.4 Hz, 1 H) ppm. ¹³C NMR (100 MHz, [D₆]DMSO): δ = 152.2, 140.2, 134.7, 132.8, 132.3, 129.9, 128.2, 128.0, 123.5, 123.1, 120.3, 114.6, 104.4, 90.6, 63.6, 37.9 ppm. HRMS (ESI): calcd. for [C₁₈H₁₅ClN₂O₃ + Na]⁺ 365.0663; found 365.0646.

3-Hydroxy-2-methoxy-6-methyl-3-phenyl-3,4-dihydropyrimido[1,6-*a***]indol-1(2***H***)-one (3ad):** White solid (88 %); m.p. 204– 205 °C. ¹H NMR (400 MHz, [D₆]DMSO): δ = 8.26 (d, *J* = 8.0 Hz, 1 H), 7.91 (d, *J* = 1.6 Hz, 1 H), 7.72–7.64 (m, 2 H), 7.55–7.54 (m, 2 H), 7.31– 7.22 (m, 2 H), 6.47 (s, 1 H), 3.83 (d, *J* = 16.4 Hz, 1 H), 3.63 (s, 3 H), 3.37 (d, *J* = 16.4 Hz, 1 H) ppm. ¹³C NMR (100 MHz, [D₆]DMSO): δ = 152.1, 142.3, 134.7, 132.2, 130.9, 130.8, 130.3, 129.9, 128.6, 126.7, 123.6, 123.1, 120.3, 114.6, 104.6, 90.2, 63.7, 37.6 ppm. HRMS (ESI): calcd. for [C₁₈H₁₄Cl₂N₂O₃ + Na]⁺ 399.0274; found 399.0258.

3-Hydroxy-2-methoxy-3-(*p***-tolyl)-3,4-dihydropyrimido[1,6-***a***]indol-1(2***H***)-one (3ae): White solid (87 %); m.p. 198–201 °C. ¹H NMR (400 MHz, [D₆]DMSO): \delta = 8.27 (d,** *J* **= 8.0 Hz, 1 H), 7.53–7.49 (m, 3 H), 7.29–7.19 (m, 5 H), 6.42 (s, 1 H), 3.72 (d,** *J* **= 16.0 Hz, 1 H), 3.63 (s, 3 H), 3.34 (d,** *J* **= 16.0 Hz, 1 H), 2.31 (s, 3 H) ppm. ¹³C NMR (100 MHz, [D₆]DMSO): \delta = 152.4, 138.3, 137.3, 134.8, 132.5, 129.9, 128.5, 126.1, 123.4, 123.0, 120.2, 114.5, 104.2, 91.0, 63.6, 38.2, 20.6 ppm. HRMS (ESI): calcd. for [C₁₉H₁₈N₂O₃ + Na]⁺ 345.1210; found 345.1215.**

3-(tert-Butyl)-3-hydroxy-2-methoxy-3,4-dihydropyrimido-[**1,6-a**]indol-1(2*H*)-one (**3a**f): White solid (63 %); m.p. 151–153 °C. ¹H NMR (400 MHz,[D₆]DMSO): $\delta = 8.20$ (d, J = 7.6 Hz, 1 H), 7.51 (d, J = 6.8 Hz, 1 H), 7.22–7.18 (m, 2 H), 6.43 (s, 1 H), 6.39 (s, 1 H), 3.86 (s, 3 H), 3.63 (d, J = 16.4 Hz, 1 H), 3.28 (d, J = 17.2 Hz, 1 H), 0.92 (s, 9 H) ppm. ¹³C NMR (100 MHz, [D₆]DMSO): $\delta = 149.5$, 134.6, 132.6, 129.6, 123.2, 122.7, 120.1, 114.2, 102.7, 93.6, 64.3, 40.6, 33.2, 26.0 ppm. HRMS (ESI): calcd. for [C₁₆H₂₀N₂O₃ + Na]⁺ 311.1366; found 311.1344. **Methyl 2-(3-Hydroxy-2-methoxy-1-oxo-1,2,3,4-tetrahydropyrimido[1,6-***a***]indol-3-yl)acetate (3ag): White solid (90 %); m.p. 168–170 °C. ¹H NMR (400 MHz, [D₆]DMSO): \delta = 8.21 (d,** *J* **= 7.6 Hz, 1 H), 7.53 (d,** *J* **= 7.2 Hz, 1 H), 7.27–7.20 (m, 2 H), 7.00 (s, 1 H), 6.50 (s, 1 H), 3.83 (s, 3 H), 3.66 (d,** *J* **= 16.8 Hz, 1 H), 3.62 (s, 3 H), 3.47 (d,** *J* **= 16.4 Hz, 1 H), 3.06 (s, 2 H) ppm. ¹³C NMR (100 MHz, [D₆]DMSO): \delta = 169.3, 151.3, 134.6, 132.1, 129.8, 123.4, 123.0, 120.1, 114.5, 104.5, 87.9, 64.1, 51.6, 41.1, 34.0 ppm. HRMS (ESI): calcd. for [C₁₅H₁₆N₂O₅ + Na]⁺ 327.0951; found 327.0935.**

3-Hydroxy-2-methoxy-3-(4-nitrophenyl)-3,4-dihydropyrimido[1,6-*a***]indol-1(2***H***)-one (3ah):** Yellow solid (88 %); m.p. 201– 203 °C. ¹H NMR (400 MHz, [D₆]DMSO): δ = 8.31–8.26 (m, 3 H), 7.95 (d, *J* = 8.8 Hz, 2 H), 7.68 (s, 1 H), 7.56 (d, *J* = 7.2 Hz, 1 H), 7.32–7.22 (m, 2 H), 6.48 (s, 1 H), 3.82 (d, *J* = 16.0 Hz, 1 H), 3.36 (s, 3 H), 3.40 (d, *J* = 16.4 Hz, 1 H) ppm. ¹³C NMR (100 MHz, [D₆]DMSO): δ = 152.1, 148.3, 147.3, 134.8, 132.1, 129.9, 127.8, 123.7, 123.23, 123.17, 120.3, 114.6, 104.7, 90.6, 63.7, 37.7 ppm. HRMS (ESI): calcd. for [C₁₈H₁₅N₃O₅ + Na]⁺ 376.0904; found 376.0892.

3-(4-Bromophenyl)-3-hydroxy-2-methoxy-3,4-dihydropyrimido[1,6-*a***]indol-1(2***H***)-one (3ai):** White solid (86 %); m.p. 206– 207 °C. ¹H NMR (400 MHz, [D₆]DMSO): δ = 8.26 (d, *J* = 8.0 Hz, 1 H), 7.64–7.58 (m, 4 H), 7.54 (d, *J* = 7.6 Hz, 1 H), 7.43 (s, 1 H), 7.30–7.21 (m, 2 H), 6.45 (s, 1 H), 3.75 (d, *J* = 16.4 Hz, 1 H), 3.63 (s, 3 H), 3.36 (d, *J* = 16.4 Hz, 1 H) ppm. ¹³C NMR (100 MHz, [D₆]DMSO): δ = 152.2, 140.6, 134.7, 132.3, 130.9, 129.9, 128.5, 123.5, 123.1, 121.5, 120.3, 114.6, 104.4, 90.7, 63.6, 37.9 ppm. HRMS (ES1): calcd. for [C₁₈H₁₄BrN₂O₃]⁻ 385.0193; found 385.0200.

3-Hydroxy-2-methoxy-3-(4-methoxyphenyl)-3,4-dihydropyrimido[1,6-*a***]indol-1(***2H***)-one (3aj):** White solid (66 %); m.p. 188–189 °C. ¹H NMR (400 MHz, [D₆]DMSO): δ = 8.26 (d, *J* = 8.0 Hz, 1 H), 7.53 (d, *J* = 7.6 Hz, 3 H), 7.28–7.20 (m, 3 H), 6.95 (d, *J* = 8.8 Hz, 2 H), 6.42 (s, 1 H), 3.76 (s, 3 H), 3.74 (d, *J* = 14.4 Hz, 1 H), 3.62 (s, 3 H), 3.35 (d, *J* = 16.8 Hz, 1 H) ppm. ¹³C NMR (100 MHz, [D₆]DMSO): δ = 158.9, 152.3, 134.7, 133.1, 132.6, 129.9, 127.5, 123.4, 123.0, 120.2, 114.5, 113.2, 104.2, 90.8, 63.6, 55.1, 38.2 ppm. HRMS (ESI): calcd. for [C₁₉H₁₈N₂O₄ + Na]⁺ 361.1159; found 361.1142.

2-Ethoxy-3-hydroxy-3-phenyl-3,4-dihydropyrimido[**1,6-***a*]**indol-1(2H)-one (3ha):** White solid (66 %); m.p. 200–203 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.41 (d, *J* = 8.4 Hz, 1 H), 7.65 (d, *J* = 7.6 Hz, 2 H), 7.47–7.35 (m, 4 H), 7.32–7.28 (m, 1 H), 7.25–7.21 (m, 1 H), 6.32 (s, 1 H), 4.25–4.17 (m, 2 H), 3.75 (br., 1 H), 3.65 (d, *J* = 16.4 Hz, 1 H), 3.47 (d, *J* = 16.4 Hz, 1 H), 0.83 (t, *J* = 6.8 Hz, 3 H) ppm. ¹³C NMR (100 MHz, [D₆]DMSO): δ = 152.4, 141.1, 134.8, 132.6, 129.9, 128.1, 127.9, 126.2, 123.4, 123.0, 120.2, 114.5, 104.2, 90.8, 71.7, 37.9, 13.3 ppm. HRMS (ESI): calcd. for [C₁₉H₁₈N₂O₃ + Na]⁺ 345.1210; found 345.1192.

Dehydration Reaction of Dihydropyrimido[1,6-*a*]indolone Derivatives 3aa for the Synthesis of Pyrimido[1,6-*a*]indolone 4aa: A mixture of *N*-carbamoylindole 3aa (0.10 mmol) and anhydrous $AlCl_3$ (0.20 mmol) in MeOH (1 mL) was stirred at room temperature for 2 h. Then, the mixture was concentrated. The residue was subjected to flash column chromatography [silica gel; ethyl acetate/ petroleum ether (1:10, v/v)] to give pyrimido[1,6-*a*]indolone 4aa.

2-Methoxy-3-phenylpyrimido[1,6-*a*]indol-1(2*H*)-one (4aa): Yellow solid (77 %); a melting point could not be obtained due to the thermal instability of the compound. ¹H NMR (400 MHz, CDCl₃): δ = 8.69–8.65 (m, 1 H), 7.66–7.62 (m, 3 H), 7.48–7.46 (m, 3 H), 7.40–7.36 (m, 2 H), 6.57 (s, 1 H), 6.38 (s, 1 H), 3.70 (s, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 146.5, 139.0, 133.8, 133.7, 132.0, 130.9, 129.5, 129.1, 128.5, 124.2, 123.1, 120.1, 116.1, 99.2, 99.1, 63.9 ppm. HRMS (EI-TOF): calcd. for C₁₈H₁₄N₂O₂ [M]⁺ 290.1055; found 290.1057.

CCDC 1503140 (for **3da**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

Acknowledgments

Financial support from the National Natural Science Foundation of China (no. 21372195) and the Ministry of Science and Technology of China (973 program 2011CB808600) is gratefully acknowledged.

Keywords: Cascade reactions · C-H functionalization · Cyclization · Nitrogen heterocycles · Rhodium · Homogeneous catalysis

For reviews on the C–H functionalization of indoles, see: a) M. Bandini,
 A. Eichholzer, Angew. Chem. Int. Ed. 2009, 48, 9608–9644; Angew. Chem.
 2009, 121, 9786–9824; b) S. Cacchi, G. Fabrizi, Chem. Rev. 2011, 111, 215–283; c) T. Guo, F. Huang, L. Yu, Z. Yu, Tetrahedron Lett. 2015, 56, 296–302.

- [2] For reviews of rhodium-catalyzed C–H-bond activation, see: a) D. A.
 Colby, R. G. Bergman, J. A. Ellman, *Chem. Rev.* 2010, *110*, 624–655; b) T.
 Satoh, M. Miura, *Chem. Eur. J.* 2010, *16*, 11212–11222; c) G. Song, F.
 Wang, X. Li, *Chem. Soc. Rev.* 2012, *41*, 3651–3678; d) N. Kuhl, N. Schroder, F. Glorius, *Adv. Synth. Catal.* 2014, *356*, 1443–1460.
- [3] a) J. Zheng, Y. Zhang, S. Cui, Org. Lett. 2014, 16, 3560–3563; b) Y. Zhang,
 J. Zheng, S. Cui, J. Org. Chem. 2014, 79, 6490–6500.
- [4] X. Chen, X. Hu, S. Bai, Y. Deng, H. Jiang, W. Zeng, Org. Lett. 2016, 18, 192–195.
- [5] Q. Tang, X. Chen, B. Tiwari, Y. R. Chi, Org. Lett. 2012, 14, 1922–1925.
- [6] D.-G. Yu, F. de Azambuja, F. Glorius, Angew. Chem. Int. Ed. 2014, 53, 2754– 2758; Angew. Chem. 2014, 126, 2792–2796.
- [7] a) M. Mizuta, K. Seio, K. Miyata, M. Sekine, *J. Org. Chem.* 2007, *72*, 5046–5055; b) J. Kamata, T. Okada, Y. Kotake, J. Niijima, K. Nakamura, T. Uenaka, A. Yamaguchi, K. Tsukahara, T. Nagasu, N. Koyanagi, K. Kitoh, K. Yoshimatsu, H. Yoshino, H. Sugumi, *Chem. Pharm. Bull.* 2004, *52*, 1071–1081; c) M. Kato, S. Nishino, K. Ito, H. Yamakuni, H. Takasugi, *Chem. Pharm. Bull.* 1994, *42*, 2556–2564; d) H. Hammer, Z. E. Winterfeldt, *Tetrahedron* 1981, *37*, 3609–3613.
- [8] a) R. J. Sundberg, "Indole", in Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, 2000; b) J. Catalan, M. Yanez, J. Am. Chem. Soc. 1984, 106, 421–422.

Received: July 18, 2016 Published Online: ■

Cascade Reactions

Z.-J. Wu, Y.-Q. Li, Z.-Z. Huang* 1-7

A Cascade C-H-Functionalization/ Cyclization Reaction of Indoles with α-Halo or α-Sulfonyloxy Ketones for the Synthesis of Dihydropyrimidoindolone Derivatives

A rhodium(III)-catalyzed cascade C–H functionalization/cyclization reaction of *N*-carbamoylindoles **1** with α -halo, α -mesyloxy or α -tosyloxy ketones **2**

has been developed, affording a novel synthesis of dihydropyrimido[1,6-*a*]-indolone derivatives **3**.

DOI: 10.1002/ejoc.201600885