
NaCl as Catalyst and Water as Solvent: Highly E‑Selective
Olefination of Methyl Substituted N‑Heteroarenes with Benzyl
Amines and Alcohols
Susanta Hazra, Vikas Tiwari, Ashutosh Verma, Pritam Dolui, and Anil J. Elias*

Cite This: https://dx.doi.org/10.1021/acs.orglett.0c01851 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Oxidative coupling of benzylamines and alcohols with
methyl substituted N-heteroarenes such as quinolines and quinoxalines
has been achieved using chloride, a sea abundant anion as the catalyst
for practical synthesis of a wide range of E-disubstituted olefins in
aqueous medium. Detailed mechanistic studies and control experiments
were carried out to deduce the reaction mechanism which indicated that
in situ formed ClO2

− is the active form of the catalyst. We have
successfully carried out a 1 g scale reaction using this methodology, and
five pharmaceutically relevant conjugated olefins were also synthesized
by this method in moderate to good yields.

E-Selective conjugated olefins are considered as valuable
building blocks due to their diverse applications in the
synthesis of agrochemicals, pharmaceuticals, and fine chem-
icals, and they are also structural entities present in several
bioactive natural products (Scheme 1).1,2 There are well-
known methods for the synthesis of regioselective alkenes such
as the Wittig reaction, Julia olefination, Peterson olefination,
etc., where a suitable leaving group is present.3 Heck or Suzuki

couplings and olefin metathesis are also standard methods for
realizing conjugated olefins.4

The synthesis of conjugated olefins was also carried out by
the condensation of aldehydes with N-heteroarenes in the
presence of a strong acid or base.5 However, these methods
often suffer from (i) requirement of prefunctionalized starting
materials, (ii) multistep reaction sequences, (iii) use of organic
solvents, (iv) generation of stoichiometric waste, (v) harsh
reaction conditions, (vi) poor selectivity, and (vii) poor atom
economy.3−5 Therefore, the development of green and
economical methods for the sustainable synthesis of highly
E-selective olefins conjugated with N-heteroarenes is highly
demanding and constitutes a new challenge.
In this context, the dehydrogenative coupling of alcohols was

widely applicable for realizing value-added alkenes using
various precious metal based catalysts.6−8 The α-olefination
of N-heteroarenes with alcohols was also achieved by using
earth abundant metal catalysts stabilized by triazinyl-core PN5P
or NNN pincer ligands and the 1,10-phenanthroline
ligands.9−12 However, in addition to the use of metals, the
multistep synthesis, highly expensive nature of pincer-based
ligands, use of organic solvents, and strong bases are major
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Scheme 1. Some Selected Examples of Pharmaceutically
Important Conjugated Olefins and Olefin Precursors
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limitations of these methods.9−12 Although I2 and NBS have
been used as metal-free catalysts in oxidation reactions, cross
dehydrogenative coupling (CDC) reactions,13,14 and even in
olefination reactions using benzylamines,13e,14b they cannot be
considered as “abundant”, as their natural abundance is poor.15

In sharp contrast, catalysis using chloride, the most abundant
anion present in seawater, has rarely been explored.16 In
addition, carrying out organic reactions using water as a green,
economical, nontoxic, and nonflammable solvent has become
one of the prime goals in sustainable organic synthesis in the
last two decades.17 Therefore, utilization of the ubiquitous
NaCl as the catalyst and water as the solvent for key organic
transformations is an attractive, sustainable, and inexpensive
alternative.
Herein, we report the highly E-selective olefination of

methyl substituted N-heteroarenes with benzyl amines and
alcohols in water using NaCl as the catalyst and aq TBHP as
the oxidant. The study has been extended to the synthesis of
five pharmaceutically important conjugated olefins which have
been carried out using water as the only solvent.
In our previously reported work on NaCl catalyzed

oxidation of aromatic amines and alcohols to imines and
carboxylic acids, we observed that aldehydes were generated in
situ and subsequently converted to the corresponding imines
and carboxylic acids (Scheme 2).16 We were therefore keen to

study whether the in situ generated aldehydes could be coupled
with N-containing heteroarenes under mild reaction conditions
to obtain the desired olefinic compounds.9−12 This method
would be highly sustainable and advantageous for several
reasons: (i) the alcohols and amines are readily available from
several industrial processes; (ii) NaCl is inexpensive and is a
readily available commodity; (iii) water is the greenest and

most sustainable solvent; (iv) no requirement of an external
ligand; (v) the method is base-free or requires only catalytic
amount of base; and (vi) the byproduct is t-BuOH which can
be reused if necessary (Scheme 2). We began our investigation
by examining the oxidative coupling of 4-methoxybenzylamine
2a with 2-methylquinoline 1a in aqueous medium using NaCl
as catalyst and aq TBHP as oxidant at 70 °C. The reaction was
carried out for 24 h, and we were able to isolate E-2-(4-
methoxystyryl) quinoline 4 in 42% yield. This result
encouraged us to study the effect of varying the reaction
parameters to improve the yields. To explore the role of the
cation, different chloride salts were tried such as NaCl, KCl,
MgCl2, and Et4NCl and the maximum yield was obtained with
NaCl. After detailed studies (see the Supporting Information,
Tables S1−S5), the yields of olefins were improved up to 90%
using sodium chloride (20 mol %) and aq TBHP (4 equiv) at
100 °C (Scheme 3).

Unlike aromatic amines, aromatic alcohols were not found
to oxidize to acids in the absence of a base such as NaOH.
Therefore, we carried out the olefination reaction of 4-
methoxybenzyl alcohol 3a with 2-methylquinoline 1a in
aqueous medium using NaCl as catalyst and aq TBHP as
oxidant at 70 °C in the presence of 50 mol % NaOH.
Unfortunately, 4-methoxybenzyl alcohol was mostly converted
to the corresponding 4-methoxybenzoic acid and we isolated
the olefin 4 in only 5% yield. After detailed studies (see the
Supporting Information, Tables S6−S9), we found that a
catalytic amount of an organic base such as 4-dimethylamino-
pyridine (DMAP) increases the yield of the olefin up to 70%
using sodium chloride (20 mol %) and aq TBHP (4 equiv) at
100 °C (Scheme 4). While electrophilic halogenating reagents

such as NBS in organic solvent have been used for the
olefination of benzylamines, no reports indicating the use of
anionic halogens are reported in the literature.14b Our attempts
to explore other halides such as Br− and I− for this reaction
resulted in lesser yields of the products (see the Supporting
Information, Table S1).

Scheme 2. Advantages of NaCl as Catalyst for Olefination
Reaction in Water

Scheme 3. Oxidative Coupling of 4-Methoxybenzylamine
with 2-Methylquinolinea

aReaction conditions: 2-methylquinoline 1a (143 mg, 1 mmol), 4-
methoxybenzylamine 2a (240 mg, 1.75 mmol), NaCl (11.6 mg, 0.2
mmol), TBHP (70% in water, 360 mg, 4 mmol), and water (0.3 mL),
100 °C oil bath for 24 h.

Scheme 4. Oxidative Coupling of 4-Methoxybenzylalcohol
with 2-Methyl Quinolinea

aReaction conditions: 2-methylquinoline 1a (143 mg, 1 mmol), 4-
methoxybenzyl alcohol 3a (241 mg, 1.75 mmol), NaCl (11.6 mg, 0.2
mmol), 4-dimethylaminopyridine (12.2 mg, 0.1 mmol), TBHP (70%
in water, 360 mg, 4 mmol), and water (0.3 mL), 100 °C oil bath for
24 h.
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Keeping optimized reaction conditions in hand, we explored
the substrate scope with the compounds having electron
donating as well as electron withdrawing groups on the aryl
ring of amines and alcohols as well as on the heterocyclic ring

(Table 1). Both afforded the desired olefinated products in
good to excellent yields. We have also carried out the reaction
with various substituted quinolines 21−25 and quinoxazoline
derivatives 27−30 using aromatic amines as the coupling

Table 1. Substrate Scope for the Olefination and for the Synthesis of Pharmaceutically Important Compounds in Watera

aReaction condition A: Heteroarenes 1a−g (1 mmol, 1 equiv), amines 2a−l (1.5 mmol, 1.5 equiv), NaCl (0.2 mmol, 20 mol %), TBHP (70% in
water, 4 mmol, 4 equiv), 0.3 mL of water, 100 °C oil bath for 24−40 h. Reaction condition B: Heteroarenes 1a−e (1 mmol, 1 equiv), alcohols 3a−
g (1.5 mmol, 1.5 equiv), NaCl (0.2 mmol, 20 mol %), DMAP (0.1 mmol, 10 mol %), aq TBHP (4 equiv), 0.3 mL of water, 100 °C oil bath for 24 h
(% yields in parentheses are for alcohol substrates).
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partner (Table 1). A series of functional groups such as
halogens, −CF3, −NO2, and −CO2Me were compatible with
the present catalytic system for alcohols and amines.
The applicability of our method was experienced by the

synthesis of STB-8, an in vivo specific staining agent for β-
amyloid plaques found in the brain cells of patients with
Alzheimer’s disease (Table 1). The STB-8 unit is also present
in the core structure of 2E10, another imaging agent for
amyloid deposits. The core structures of the drugs Montelukast
and UCF 501, which are used for the treatment of asthma/
seasonal allergies and malaria, respectively, were also
synthesized using this present method (Table 1). In addition,
we were able to isolate (±)-Galipinine in 53% overall yield
using the olefin 34 followed by Ni catalyzed hydrogenation
and N-methylation (see the Supporting Information, pp S12
and S13). These examples highlight the potential applications
of this present work. We have also carried out a 1 g scale
reaction of 4-methoxybenzylamine 2a with 2-methylquinoline
1a which resulted in the desired olefin 4 in 85% yield (see the
Supporting Information, p S12). We have also attempted the
possibility of performing the olefination reaction in seawater
(Scheme 5). As given in Scheme 5, oxidative coupling of four
different amines has been performed in seawater with excellent
selectivity and yields.

To understand the reaction mechanism and to identify the
active chlorine species for the oxidative olefination, several
control experiments were carried out (see the Supporting
Information, p S14).
Using the results obtained from our control experiments and

analysis of similar studies reported in the literature, a possible
mechanism has been proposed in the catalytic cycle given in
Scheme 6.13,14,16 Initially, TBHP oxidizes the chloride ion to
molecular chlorine (Cl2) and t-BuO• radical (eq 1, Scheme 6),
which in the presence of water forms the hypochlorite.16 This
is followed by oxidation of hypochlorite (ClO−) to chlorite
(ClO2

−) and chlorate (ClO3
−) by TBHP (Scheme 6).16

Primary amine reacts with hypochlorite or chlorite, resulting in
the formation of the N-chloroamine IM1 (Scheme 6) which
gets converted to imine IM2 readily. The formation of IM2
was confirmed by gas chromatographic analysis (m/z 135.0).16

Hydrolysis of IM2 initiated by H2O with the subsequent
elimination of NH3 results in benzaldehyde, which reacts with
2-methylazaarene to generate the desired olefin with the
release of one molecule of H2O (path A).9−12,14b In pathway B,
imine IM2, which bears an electrophilic carbon atom, is
attacked directly by 2-methylazaarene and loses a molecule of
ammonia to generate product 4.14b The isotope labeling
experiments carried out suggest that in situ generated ammonia
is acting as the base (pKa 37, pKa of substrate 14.5), which

possibly assists in the formation of 2-methylene-1,2-dihydro-
quinoline from 2-methyl quinoline. This nucleophile attacks
the aldehyde or imine intermediates to form the desired
olefins. The reaction mixture becomes more basic in nature
(from pH 9.84 to pH 10.04) after the completion of the
reaction which supports the generation of NH3 during the
reaction. The selectivity for the E-isomers of the synthesized
olefins was confirmed by single crystal X-ray diffraction and
NMR studies (see the Supporting Information, pp S16−S21).
Conclusion

In conclusion, using Cl− as catalyst, we report in this paper an
efficient and easy catalytic method for the oxidative olefination
of methyl substituted heteroarenes with benzyl amines and
alcohols in water. Although base has been found to be essential
for the olefination with alcohols, the olefination of amines has
been found to occur even without the use of a base. A study of
the mechanism of this reaction indicated that both radical and
ionic mechanisms are responsible for oxidative coupling with
benzyl alcohols. However, for benzyl amines, the mechanism
seems to be purely ionic in nature. Simplicity in carrying out
the reaction, broad substrate scope, and effortless scaling-up
are additional features of this method, which is also both
economical and metal-free. Five pharmaceutically significant
conjugated olefins were also synthesized using this methodolgy
in moderate to good yields.
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Experimental procedures, experimental data, and reac-
tion kinetics (PDF)

Scheme 5. Olefination of Heteroarenes with Benzylamines
in Sea Watera

aReaction conditions: 2-methylquinoline 1a (143 mg, 1 mmol),
benzylamines 2a−d (1.75 mmol), TBHP (70% in water, 360 mg, 4
mmol), and seawater (0.4 mL), 100 °C oil bath for 36 h.

Scheme 6. Proposed Reaction Mechanism for the Oxidative
Coupling of Benzylamines with N-Heteroarenes
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