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Soluble guanylate cyclase (sGC) is the only proven receptor for
the ubiquitous biological messenger nitric oxide (NO). Stimulation
of the enzyme by NO facilitates the conversion of guanosine-50-tri-
phosphate (GTP) to the intracellular second messenger cyclic
guanosine-30,50-monophosphate (cGMP), which regulates various
cGMP-specific effector systems such as PDEs, ion channels, and
protein kinases.1 Thus, the NO/cGMP pathway is important in
many physiological processes including vasodilatation, neuro-
transmission, and platelet aggregation.2 Since the emergence of
sGC as a therapeutic target for cardiovascular and pulmonary
disease, two classes of molecules have been developed: NO-inde-
pendent but heme-dependent sGC stimulators and NO- and
heme-independent sGC activators.1,2 The first reported direct
stimulator of sGC is YC-1,3 followed by the discovery of more
potent compounds such as BAY 41-8543 and the advanced clinical
candidate riociguat (BAY 63-2521) by Bayer4 (Figure 1).5 Riociguat
is currently in phase III clinical trials for the treatment of chronic
thromboembolic pulmonary hypertension (CTEPH) and pulmonary
arterial hypertension (PAH).6 These compounds have a dual mode
of action: they sensitize sGC to the body’s own NO and can also in-
crease sGC activity in the absence of NO, causing vasorelaxation,
anti-proliferation and anti-fibrotic effects. It is postulated that they
bind to an allosteric binding site within the catalytic domain and
stabilize the nitrosyl-haem complex to keep sGC in its active
conformation.7

To further improve physicochemical and pharmacokinetic prop-
erties, we envisaged to synthesize weakly acidic compounds instead
of weakly basic aminopyrimidine congeners. A similar approach was
published recently by Roberts et al. (Pfizer, example 25), yielding
acidic triazoles.8 As a starting point we reinvestigated the acidic
tetrazole congener 1 (Table 1), which has been reported earlier.4

Tetrazole 1 was found to have an excellent physicochemical and
DMPK profile (Table 2), but its potency was insufficient. Thus, we
synthesized a series of other heterocyclic carboxylic acid isosteres,9

with the aim to improve potency (Table 1), while maintaining the
favorable physico chemical and pharmacokinetic profile.

Compounds 2, 3, and 4 were synthesized from the intermediate
13, which was built up in four linear steps (Scheme 1) in analogy to
our work on 7-azaindoles.11 2-Fluoropyridine (10) was converted
to the pyrazolopyridine 11 in two steps.12 Upon lithiation at the
3-position it reacted with ethyl trifluoroacetate to give the corre-
sponding trifluoroketone. Subsequent reaction with hydrazine hy-
drate provided 11. The trifluoromethyl group in pyrazolopyridine
11 was anionically activated and underwent aminolysis via a
methine intermediate and thus furnished nitrile 12.13 Regioselec-
tive benzylation in the presence of cesium carbonate gave interme-
diate 13. The nitrile 13 was elaborated further to hydroxyamidine
14. Treating 14 with 1,10-thiocarbonyldiimidazole (TCDI) under
either basic (DBU)14 or acidic (boron trifluoride etherate)15
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Figure 1. Chemical structure of some sGC stimulators.

Table 1
SAR of several heterocyclic substituents
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Table 2
Pharmacokinetics in Wistar ratsa

Compound AUCnorm
b (kg h/L) CL (L/h/kg) T1/2 (h) MRTe (h) Ff (%)

BAY 41-8543 0.32 4.5d 1.2 — 25
1 3.63 0.28c 2.4 — 94
4 2.79 0.7d 1.4 1.9 75

a Mean values derived by intravenous (bolus) and oral (gavage) administration of
0.3 mg/kg in EtOH/PEG400/H2O.

b Calculated from concentration/time–curve after intravenous administration.
c Total plasma clearance.
d Total blood clearance.
e Mean residence time.
f Oral bioavailability.

Table 1 (continued)

Compd Het Rabbit aorta IC50
a (lM) Solubilityb (mg/L) Fmaxc (%) cLogDd

9 N
NHN

*

O
F

F
F

0.61 nde 91 2.56

a Values are means of three experiments. Relaxing effect on pre-contracted rabbit aortic rings.10

b Pseudo-thermodynamic solubility assay (at pH 6.5).
c Bioavailability determined from incubation in rat liver hepatocytes.
d Calculated logD (at pH 7.5).
e Solubility was not measurable.
f Bioavailability determined from incubation in rat liver microsomes.
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Scheme 1. Synthesis of 2, 3 and 4. Reagents and conditions: (a) LDA, ethyl
trifluoroacetate, THF, �75 �C, 4 h; (b) hydrazine hydrate, 70 �C, 6 h (55% over two
steps); (c) aq NH3, 140 �C lW, 0.2 h (90%); (d) 1-(bromomethyl)-2-fluorobenzene,
Cs2CO3, DMF, 16 h (81%); (e) hydroxylamine hydrochloride, NEt3, DMSO, 75 �C, 16 h
(quant.); (f) 1,10-thiocarbonyldiimidazole, 1,8-diazabicyclo[5.4.0]undec-7-ene
(DBU), MeCN, rt, 24 h (64%); (g) 1,10-thiocarbonyldiimidazole, THF, rt, 2 h; (h)
boron trifluoride etherate, THF, rt, 16 h (44% over two steps); (i) 2-ethylhexyl
carbonochloridate, pyridine, DMF, 0 �C, 0.5 h; (j) xylenes, rf, 32 h (48% over two
steps).
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Scheme 2. Reagents and conditions: (a) Hydrazine hydrate, MeOH, THF, 65 �C, 4 h;
(b) 1,10-carbonyldiimidazole, THF, rf, 1.5 h (49% over two steps); (c) 2,4-dime-
thoxybenzyl isocyanate (DMB–NCO), DCM, rt, 16 h (84%); (d) 2% aq NaOH, rf, 16 h
(36%); (e) MeI or EtI or 2,2,2-trifluoroethyl trichloromethanesulfonate, Cs2CO3,
DMF, rt or 60 �C, 16 h or 3 h, in case of R@H the step was not performed; (f) TsOH,
toluene, rf, 16 h.
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conditions yielded 1,2,4-oxadiazol-5-thione 2 and 1,2,4-thiadiazol-
5-one 3, respectively. Upon treatment with 2-ethylhexyl carbo-
nochloridate followed by cyclization in refluxing xylenes, 14 was
converted into the 1,2,4-oxadiazol-5-one 4.12

Starting from key intermediate 15, which has been described
earlier,4,5 compounds 5–9 were synthesized as outlined in
Scheme 2.
The ester 15 was converted to hydrazide 16 upon treatment
with hydrazine hydrate. Cyclization with 1,10-carbonyldiimidazole
provided 1,3,4-oxadiazol-2-one 5. Further elaboration of hydrazide
16 to the DMB-protected 1,2,4-triazole-3-one 18 was performed
via reaction with 2,4-dimethoxybenzyl isocyanate16 followed by
alkaline cyclization. N-Alkylation and acidic deprotection yielded
the target 1,2,4-triazole-3-ones 7, 8, and 9.17 In case of compound
6 the alkylation step was omitted.

Compared with the tetrazole derivative 1, the potency of ana-
logs 2–9 was 3- to 17-fold improved. Of the range of heterocycles
prepared, 1,2,4-thiadiazol-5(4H)-one 3 and 1,3,4-oxadiazol-2(3H)-
one 5 showed the best potencies of 0.52 lM and 0.61 lM, respec-
tively. Introduction of a second hydrogen bond donor, such as in
heterocycle 6 caused a significant loss of potency. Substitution of



Figure 2. 24-h profile of mean arterial blood pressure in conscious spontaneously
hypertensive rats (SHR) after a single oral dose of 4. Controls were treated with
vehicle. The substance was administered orally by gavage at 0 h. Shown are mean
values of 6–12 animals as a percentage of initial values (131–142 mmHg).5,12
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the nitrogen of 6 at the 2-position resulted in improved potency,
increasing with steric bulk and lipophilicity of the substituent
(see 7–9).

However, only 1,2,4-oxadiazol-5(2H)-thione 2 and the corre-
sponding 1,2,4-oxadiazol-5(2H)-one 4 were characterized by aque-
ous solubilities of ca. 300 mg/L. The oxadiazol-one 4 showed a
higher stability in rat liver hepatocytes than oxadiazolthione 2
(98% vs 69%). Thus, compound 4 was progressed further to phar-
macokinetic and pharmacological in vivo investigations. Compared
to BAY 41-8543 improved pharmacokinetics in rats were observed
regarding exposure, clearance, and oral bioavailability (Table 2).

In conscious spontaneously hypertensive rats, oral administra-
tion of 4 resulted in a long-lasting and dose-dependent blood pres-
sure decrease (Fig. 2).
In conclusion, we have synthesized a novel series of acidic het-
erocycle-substituted 1H-pyrazolo[3,4-b]pyridines. Lead optimiza-
tion resulted in the identification of oxadiazol-one 4, which
showed the expected profile of an sGC stimulator combined with
a favorable pharmacokinetic and physicochemical profile and im-
proved solubility. Further in vivo characterization of 4 will be re-
ported in due course.
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