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ABSTRACT: A green method for the sulfination of allenic
carbonyl compounds to access a wide variety of vinylic sulfones
is developed. This reaction works in aqueous media under very
mild conditions. This reaction is atom economic. A wide variety of
vinylic sulfones could be obtained in moderate to excellent yields
with wide functional group tolerance. The efficiency of this method
is demonstrated in some reactions where the desired products can
be isolated by filtration.

The development of truly green and practical synthetic
methods is of utmost importance in the chemical and

pharmaceutical industries. The need to use metals and
flammable toxic organic solvents both in the reactions as
well as for workup and purification makes many of the organic
reactions unsafe and environmentally unfriendly. Therefore,
there has been much effort directed toward the development of
new methods that work in water under very mild reaction
conditions, are atom economic in nature, and avoid the use of
metal or/and toxic flammable organic solvent. If successful,
this metal-free approach can be employed for protein
bioconjugation since metals are also known to destroy the
tertiary structures of proteins. In this paper, we demonstrate
the feasibility of this strategy with a green and practical
synthesis of vinylic sulfones.
Vinylic sulfones are chosen as the targets as they are

important moieties featured widely in many biologically and
pharmaceutically1 active molecules (such as anticancer agents,
cysteine protease inhibitors, antibacterial agents, and TSH
receptor antagonists). They are useful building blocks in
organic synthesis2 and have also been widely used as linkers in
protein3 and material science (Figure 1). Traditionally, vinylic
sulfones are synthesized via processes such as addition−
elimination4 and the Peterson reaction.5 Other strategies
including the use of acetylenic sulfones6 and organometallic
reagents7 have also been reported. Jiang’s group investigated
the Cu(I)-catalyzed oxidative reaction of sulfonyl hydrazides8

to couple with alkenes to form vinylic sulfones (Figure 2a). In
addition, sulfonylation of carbon−carbon π bonds, such as
alkenes and alkynes, have been extensively reported.9 More
recently, vinylic sulfones synthesized from allenes were also
reported.10 However, many of these methods suffer from
various setbacks including the need to use toxic reagents/
solvents, metal catalysts, and harsh reaction conditions and
their poor atom-economy. For this reason, the establishment of

coherent methodologies for the synthesis of these classes of
compounds in a green manner is imperative. A well-developed
green synthetic methodology to synthesize vinylic sulfones can
potentially supplement or replace existing strategies, thereby
reducing chemical waste and offering an alternative approach
to access this crucial class of compounds.
In our group, we have developed a number of metal-free

water-based green synthetic methods. These methods include
the Mukaiyama−aldol C−C bond formation reaction involving
reactive aldehdyes,11 C−S bond formation involving cysteine
bioconjugation with allenic amides12 and C−SO2R/C-
phosphorus reactions13 with reactive allylic alcohols. More
recently, we have successfully employed 2H-azirines as a linker
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Figure 1. Applications of molecules containing the sulfone moiety.
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for disulfide bionconjugation under biocompatible condi-
tions.14 In this investigation, we envision a highly efficient
atom-economical cross-coupling between electron-deficient
allenic carbonyl compounds and sulfinic acids for the
construction of the carbon−sulfur bond to afford the desired
vinylic sulfones (Figure 2b).
1-Phenylbuta-2,3-dien-1-one (1a) and benzene sulfinic acid

(2a) were chosen as model substrates for the cross-coupling
reaction (Table 1). The reaction was initially screened using a

variety of nonpolar organic solvents (refer to the SI), resulting
in poor yields of the desired product 3a. The yield of 3a was
improved when polar aprotic solvents were employed (refer to
the SI). Inspired by this result, we started to screen polar protic
solvents and observed that the yields were increased
dramatically (Table 1, entries 5−7). The yield of 3a can be
improved by employing EtOH as a cosolvent along with H2O
as a 1:1 mixture (Table 1, entry 9), affording the product in
99% yield. It is important to note that the reaction conducted
in either water or buffer pH 7 (Table 1, entries 6 and 7)
afforded the desired vinylic sulfone in comparable yields.
These results suggest the possibilities of using this method for

bioconjugation with biomolecules such as proteins. We also
found that continuous and intense stirring to ensure
interaction between the organic substrates are useful; this
observation is also in line with other reported “in water” or “on
water” reactions.15−19

With the optimized reaction conditions in hand, the
substrate scope of the sulfinic acids was investigated in an
ethanol/water solvent system. A variety of aryl and alkyl
sulfinic acids were investigated under this protocol as shown in
Scheme 1. Aryl sulfinic acids bearing electron-donating groups

(3b−3h) reacted smoothly to afford the corresponding vinylic
sulfones in good yields. Even an electron-deficient sulfinic acid
(3f) worked well under these conditions. More interestingly,
vinylic sulfones 3d−3f can be easily isolated by a simple
filtration in this transformation. In addition, aliphatic sulfinic
acids (3i−3l) also undergo this transformation to give the
vinylic sulfones in good to excellent yields.
Subsequently, the substrate scope of the electron-deficient

allenes was explored. As depicted in Scheme 2, it is evident that
a wide diversity of allenic carbonyl compounds (allenic
ketones/esters/amides) undergo a smooth transformation to
afford the desired vinylic sulfones in modest to excellent yields.
Aryl rings bearing electron-donating groups (3m−3p) reacted
smoothly under these conditions to give the corresponding
products in good yields. However, the yield of 3q is
significantly diminished when the aryl ring bears an electron-
withdrawing nitro substituent. Heterocylic allenic ketones (3s

Figure 2. Vinylic sulfone synthesis

Table 1. Optimization of the Sulfa-Michael Reaction
Conditionsa

entry solvent time (h) convb (%) yieldb (%)

1 PhMe 12 100 13
2 Et2O 12 100 7
3 cyclohexane 12 100 18
4 1,2-DCE 12 100 30
5 EtOH 12 100 75
6 H2O 12 100 76
7 PBS buffer (pH 7.0) 12 100 75
8c H2O:EtOH 1 91 58
9 H2O:EtOH 1 100 98(99)d

10e H2O:EtOH 1 100 98
aExperimental conditions: 1a (0.15 mmol) and 2a (0.23 mmol) in the
specified solvent (1 mL) at room temperature. bConversions and
yields were determined by 1H NMR using CH2I2 as the internal
standard. c1.0 equiv of 2a was used. dIsolated yield. e2.0 equiv of 2a
was used.

Scheme 1. Substrate Scope of the Sulfinic Acidsa

aExperimental conditions: 1a (0.15 mmol) and 2 (0.23 mmol) in
H2O/EtOH (1:1) (1 mL) at room temperature for 1 h. Isolated
yields. bGram-scale reaction

Organic Letters pubs.acs.org/OrgLett Letter

https://dx.doi.org/10.1021/acs.orglett.0c04257
Org. Lett. 2021, 23, 1060−1065

1061

http://pubs.acs.org/doi/suppl/10.1021/acs.orglett.0c04257/suppl_file/ol0c04257_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.orglett.0c04257/suppl_file/ol0c04257_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c04257?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c04257?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c04257?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c04257?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c04257?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c04257?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c04257?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c04257?fig=sch1&ref=pdf
pubs.acs.org/OrgLett?ref=pdf
https://dx.doi.org/10.1021/acs.orglett.0c04257?ref=pdf


and 3t) also worked well under this protocol. Even aliphatic
allenic ketones (3v−3z) reacted with ease to give the vinylic
sulfones in modest to good yields. Allenic esters and amides
(3aa−3ae), which are inherently less reactive than the ketone
variants, also provided the vinylic sulfones in excellent to near
quantitative yields. The menthol (3ac) allene derivative also
reacted smoothly under these conditions to afford the
corresponding vinylic sulfone in 68% yield.
Thereafter, we carried out a competitive study between the

three electron-deficient allene variants (i.e., allenic ketone/
amide/ester). The reactions were carried out under the same
conditions and stopped in 1 h. The yields were determined
using NMR analyses (based on CH2I2 as the internal
standard). Based on our initial investigation, it is conclusive
that the allenic ketone is the most reactive under the reaction
conditions; the starting material was fully converted to afford
the corresponding vinylic sulfone with a 1H NMR yield of
98%. Under the same conditions, the allenic amide provided a
conversion of 91% with an NMR yield of 88%, whereas the
allenic ester was found to be the least reactive under this
protocol; only 41% of the substrate was converted, obtaining a

modest yield of 38% of the desired product. To our surprise, it
was observed that the allenic amide was more reactive than
allenic ester. We postulated that the increased reactivity of
allenic amides as compared to allenic esters is due to the result
of hydrogen bonding with the aqueous based medium. On the
basis of the results of the competitive study (Scheme 3), the

reactivity of the different allenic carbonyl species are as follows:
allenic ketones are the most reactive followed by allenic amides
and, finally, allenic esters. This is evident based on the longer
reaction time required for allenic esters as compared to allenic
ketones or amides (Scheme 3).
In order to demonstrate the versatility of this protocol, a

handful of synthetic transformations (Figure 3) of the obtained

products was evaluated. Interestingly, benzyl amine displaced
the sulfonyl group under the optimized conditions to give
enaminone 4 in 80% yield. Functionalization of vinylic sulfone
3a by a Zn/CuI-mediated Michael reaction20 with tert-butyl
iodide gave the corresponding alkylated sulfone 5 in 66% yield.
Vinylic sulfone 3a can also undergo protection of the ketone
with 1,2-bis(trimethylsiloxy)ethane to afford the protected
vinylic sulfone 6 in 32% yield.21 Treating vinylic sulfone 3ab

Scheme 2. Substrate Scope of the Allenesa

aExperimental conditions: 1 (0.15 mmol) and 2a (0.23 mmol) in
H2O/EtOH (1:1) (1 mL) at room temperature for 1 h. Isolated
yields. bReaction was stirred for 72 h. cReaction was stirred overnight.

Scheme 3. Competitive Study between Various Allenesa,b

aExperimental conditions: 1 (0.15 mmol) and 2a (0.23 mmol) in
H2O/EtOH (1:1, 1 mL) at room temperature for 1 h. bConversions
and yields were determined by 1H NMR using CH2I2 as the internal
standard.

Figure 3. Synthetic transformations and functionalization of vinylic
sulfones.
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with benzylamine afforded γ-lactam 7 in 62% yield.22 Vinylic
sulfone 3r can conveniently participate in a click reaction23

with the antiviral drug, Zidovudine,24 affording the corre-
sponding compound 8 in 51% yield.
The feasibility of this synthetic protocol can be demon-

strated by isolating solid products obtained after a reaction, in
some cases, by a simple filtration without the need for
extraction and column chromatography (Figure 4). It is

noteworthy to highlight that the reaction also proceeds with
1.0 equiv of sulfinic acid (Table 1, entry 8). We postulated that
water plays two important roles in this reaction. First, water
enhances the rate of the reaction via the hydrophobic effect.25

In addition, water could also possibly activate13a the sulfinic
acid as described by Loh’s group.
The proposed mechanism of the sulfination is depicted in

Scheme 4 below. Nucleophilic attack by the sulfinic acid

selectively on the β-position via a Michael reaction afforded the
enol tautomer, which readily tautomerizes to give the vinylic
sulfone product. It is important to note that this reaction works
under neutral pH 7 conditions, showing that the reactions may
even work without the need to add excess sulfinic acid (Table
1, entries 7 and 8).
In summary, we have developed an efficient method to effect

vinylic sulfination of allenic carbonyl compounds in an
environmentally friendly manner. Remarkably, the reaction
can be performed in water/ethanol solvent mixture under
metal-free conditions where solid vinylic sulfones can be
isolated without chromatography. In this protocol, an excess
amount of sulfinic acid improves the yield of the reaction. With
this newfound protocol, we have increased the reactions in the
toolbox of green synthetic methods developed by our group.
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