

WILEY-VCH

10.1002/ejoc.201601503

Enantiospecific syntheses of hongoquercin A, B and chromazonarol

Dattatraya H. Dethe,*^[a] Ganesh M. Murhade,^[a] Balu D. Dherange^[a] and Susanta Kumar Sau^[a]

Dedication ((optional))

Abstract: Environmentally benign and highly atom economic catalytic Friedel-Crafts alkylation reaction and diastereoselective C-O bond formation reaction has been developed. The scope and generality of this reaction was amply illustrated by synthesis of chromazonarol, hongoquercin A and B and analogues thereof.

Introduction

Meroterpenoids are the natural products of mixed biosynthetic origin, partially derived from terpenoids.¹ This class of natural products displays a wide range of structural diversity and holds considerable promise as rich source of lead structures in drug discovery. In 1975 Cimino et al. isolated (+)-chromazonarol (1) from marine sponge Disidea pallescens.² Although the biological activity of this compound is not known, its structurally related molecule (+)-hongoquercin A (2) and B (3) exhibit antibacterial properties towards methicillin resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. (+)-Hongoquercin A (2) and B (3) were isolated by Roll et al. in 1998 from an unidentified terrestrial fungus.³ Other related metabolites such as Puupehediol (4), Puupehedione (5), 8-epi-Puupehedione (6), are angiogenesis inhibitor with potential antileukemic activity.⁴ Over last two decades, various metabolites of this family are shown to have a wide variety of biological properties, including antitumor, antiviral, antibiotic,

antituberculosis, antimalarial, antioxidant, insecticidal and

 [a] Dr. D. H. Dethe,* G. M. Murhade, B. D. Dherange, S. K. Sau Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur – 208016, India
 E-mail: <u>ddethe@iitk.ac.in</u>
 Homepage: <u>http://home.iitk.ac.in/~ddethe/ourlab_dethe.html</u>

Supporting information for this article is given via a link at the end of the document.

Figure 1. Representive examples of tetracyclic merosesquiterpenes.

Scheme 1. Various methods used for C-C bond formation in meroterpenoid natural product.

antifungal.⁵ Due to unique structural features and important biological activities, this class of natural products has attracted attention of many synthetic chemists worldwide. In year 2000, Mori and co-workers reported the synthesis of (+)-hongoguercin A (2) from (-)-sclareol and established its absolute configuration as 5R. 8R. 9R.10S.^{6a} In the same year, same group also reported the total synthesis of (+)-hongoguercin B (3).^{6b} In 2006 Hsung and co-workers reported the synthesis of $(\pm)/(+)$ hongoquercin A (2), using unusual polyene cyclization and cationic [2+2] cycloaddition reaction.7 Alvarez-Manzaneda and coworkers⁸ reported synthesis of puupehenone related bioactive metabolites using palladium (II)-mediated diastereoselective cyclization of a drimenylphenol. Same group also reported synthesis of (+)-chromazonarol (1), (+)-hongoguercin A (2), 8epi-puupehenol (6) and 8-epi-puupehedione (6) using Diels Alder cycloaddition reaction as a key step.9 In 2009, Alvarez-Manzaneda and coworkers reported cationic resin promoted Michael type Friedel-Crafts alkylation of alkoxyarenes with an α,β -unsaturated ketone¹⁰ (Scheme 1, eq. 2). Recently Barrett

and co-workers reported dual biomemetic route for synthesis of (+)-hongoquercin B (3) using a palladium catalyzed decarboxylative π-farnesyl rearrangement of a diketo-dioxinone ester, aromatization and cationic diene-epoxide cyclization as key steps.¹¹ Most of the earlier approaches have relied upon the addition of a suitably protected arene nucleophile generated using pyrophoric *t*-BuLi, to cyclic terpenoid moiety.^{8,12} Divergent strategies to synthesize this entire natural product family from a single building block are lacking¹³ with exception of one report. Baran and co-workers14 have reported scalable synthesis of bioactive meroterpenoids using borono-sclareolide, a terpenyl radical precursor as a single building block. In this manuscript we report diversity oriented synthesis of all above mentioned meroterpenoid natural products 1-3 and 6 (Fig. 1) and analogues thereof, using a highly regioselective Friedel-Crafts reaction and diastereoselective C-O bond formation reaction as key steps. Recently we have developed a protecting group free direct coupling of secondary allylic alcohol with electron rich aromatic compounds.¹⁵ Although primary hydroxyl group is considered to be less reactive compared to secondary alcohol, we were curious about the outcome of Friedel-Crats reaction¹⁶ between

HO OH	+OH 12	Conditions RT	HO HO HO HO HO HO HO HO HO HO HO HO HO H	$HO_{+}(F) = \frac{O_2Me}{OH_{+}(F)}$
Entry	catalyst	mol %	solvent	yield [%]
1	FeCl ₃	10	CH ₂ Cl ₂	CRM ^[a]
2	FeCl ₃	10	toluene	CRM ^[a]
3	Cu(OTf) ₂	10	CH ₂ Cl ₂	CRM ^[a]
4	Bi(OTf) ₃	10	CH ₂ Cl ₂	CRM ^[a]
5	Fe(OTf) ₃	10	CH ₂ Cl ₂	CRM ^[a]
6	Yb(OTf) ₃	10	CH ₂ Cl ₂	N. R. ^[b]
7	In(OTf) ₃	10	CH ₂ Cl ₂	N. R. ^[b]
8	AgOTf	10	CH ₂ Cl ₂	N. R. ^[b]
9	BF ₃ ·OEt ₂	10	THF	N. R. ^[b]
10	p-TSA	10	CH ₂ Cl ₂	56
11	Sc(OTf) ₃	10	CH ₂ Cl ₂	30
12	BF ₃ ·OEt ₂	10	CH ₂ Cl ₂	81

[a] CRM = Complex reaction mixture. [b] N.R. = No reaction

electron rich phenols and primary allylic alcohol, which could give access to diverse meroterpenoids such as hongoquercin A, B, chromazonarol and related meroterpenoids.

Results and Discussion

Scheme 2. Retrosynthetic plan for merosesquiterpenes.

According to our retrosynthetic plan, it was envisioned that meroterpenoids skeleton (7) could be prepared from compound 8 by diastereoselective C-O bond formation. Required compound 8 could be obtained by Friedel-Crafts reaction between suitably substituted aromatic ring 9 and primary allylic alcohol 10 (Scheme 2). To check the feasibility of our strategy, various Lewis acids were screened for Friedel-Crafts alkylation of easily and commercially available resorcinol derivative 11 with cyclogeraniol 12 (Table 1). A mixture of compounds 11 and 12 was treated with 10 mol% of FeCl₃ in CH₂Cl₂ or toluene as solvent at room temperature. To our disappointment, it resulted in formation of a complex reaction mixture (Table 1, Entry 1 and 2). Similar results were obtained when 10 mol% of Cu(OTf)₂, Bi(OTf)₃ and Fe(OTf)₃ were used in CH₂Cl₂ or toluene at room temperature (Table 1, Entry 3, 4 and 5). Among the catalysts tested Yb(OTf)₃, In(OTf)₃, AgOTf in CH₂Cl₂ and BF₃·OEt₂ in THF failed to generate any product and both starting materials were recovered (Table 1, entry 6, 7, 8 and 9). Interestingly, a mixture

Scheme 3. Synthesis of various meroterpenoid analogues.

of compounds **11** and **12** on treatment with 10 mol% *p*-TSA in CH_2Cl_2 afforded compound **13** exclusively, in 56% yield, while

10.1002/ejoc.201601503

WILEY-VCH

another possible regioisomer 13a was not observed at all. (Table 1, Entry 10). Use of Sc(OTf)₃ also afforded compound 13 in 30% yield (Table 1, entry 11). To our delight, a mixture of 11 and 12 on treatment with 10 mol% of BF3. OEt2 in CH2Cl2 at room temperature for 10 min afforded compound 13 in 81% yield (Table 1, Entry 12). More interestingly when 30 mol% of BF3·OEt2 was used and the reaction mixture was allowed to stir for 6 h, formation of a pyran ring was also observed yielding derivative 17 in good yield with excellent regioand diastereoselectivity^{12b} ($dr \ge 19:1$, confirmed by crude ¹H NMR) (Scheme 3). Excellent diastereoselectivity was observed possibly due to the formation of thermodynamically more stable trans decalin type system. To evaluate the scope and limitations of this reaction, various sesquiterpene derivatives were prepared using C-C and C-O bond formation reaction between various allylic alcohols and aromatic phenols (Scheme 3). Reaction of alcohol 12/15 with a variety of aromatic derivatives 14 using 30 mol% BF3·OEt2 in CH2Cl2 afforded compounds 16a-16d and 17a-17e in good yields (Scheme 3).

Scheme 4. Total synthesis of (+)-hongoquercin A (2) and B (3).

After finding appropriate condition for the C-C and C-O bond formation, next we directed our attention towards the total synthesis of various hongoguercin skeletal and meroterpenoids. Initially, we focused on total synthesis of (+)-hongoguercin A (2) and (+)-hongoquercin B (3). The required terpenoids 15 (for hongoquercin A) and 18 (for hongoquercin B) were prepared from (+)-sclareolide¹⁷ and 1,3-cyclohexanedione (see supporting information for preparation) respectively. Individual treatment of alcohol 15 and 18 with resorcinol derivative 11 as expected generated compound 19 (80%) and 20 (73%) respectively in highly regio- and diastereoselective manner. Compound 19 was subjected to ester hydrolysis using aq. NaOH in 1:1 mixture of methanol and THF to furnish (+)-hongoquercin A (2) in 95% yield, whose spectral data (IR, ¹H, ¹³C, and HRMS) were in complete agreement with those reported in literature^{14b} (Scheme 4). Compound 20 was transformed into (+)-hongoquercin B (3) after three steps. Thus, compound 20 was subjected to ester hydrolysis using aq. NaOH in 1:1 mixture of methanol and THF to give acid 21 in 91% yield. Acetylation of compound 21 using acetic anhydride, followed by selective hydrolysis of phenolic acetyl of the resultant diacetate compound using potassium carbonate in aq. methanol generated (+)-hongoquercin B (3) in 57.1% overall yield from known alcohol 18 (3 steps), whose spectral data (IR, ¹H, ¹³C, and HRMS) were in complete agreement with those reported in literature.³

After completion of total synthesis of (+)-hongoquercin A and B (3), next we targeted total synthesis of (+)-(2) chromazonarol (1) and 8-epi-puupehedione (6). It was envisioned that deprotection of methyl ether of previously prepared compound 17d could generate 8-epi-puupehedione (6) via 8-epi-puupehenol (22) and removal of extra hydroxyl group in 17d, through triflate formation, followed by demethylation of resultant compound could generate (+)-chromazonarol (1). Accordingly, compound 17d when subjected to reaction with BBr₃ in CH₂Cl₂, at 0 °C for 6 h, generated 8-epi-puupehediol (22). Without further purification, when this compound was subjected to reaction with DDQ in dioxane under reflux condition^{9a} for 12 h, afforded 8-epi-puupehedione (6) in 67% yield (Scheme 5). On the other hand, treatment of compound 17d with Tf2O and pyridine at 0 °C in CH₂Cl₂ for 30 min afforded triflate 23 in 90% yield. Palladium catalyzed reductive cleavage of triflate group in compound 23 furnished methyl chromazonarol 24 in 81% yield. Initially, demethylation of compound 24 was attempted using BBr₃ and BCl₃, but under these reaction conditions decomposition of 24 and formation of a complex reaction

Scheme 5. Synthesis of (+)-chromazonarol (1) and 8-epi-puupehedione (7).

mixture was observed. Later, two steps protocol was used for the demethylation of methyl chromazonarol **24**. Thus compound **24** on treatment with $B(C_6F_5)_3$ and Et_3SiH in hexane at room temperature for 2 h, followed by deprotection of resultant silyl ether using TBAF in THF at 0 °C for 30 min afforded (+)chromazonarol (1) in 96% yield. Structures of (+)-chromazonarol (1) and 8-*epi*-puupehedione (**6**) were further confirmed by comparing the spectral data (¹H and ¹³C) with that reported in the literature by Baran and co-workers.^{14a}

Conclusions

Lewis acid-catalyzed Friedel-Crafts alkylation and diastereoselective C-O bond formation reaction between resorcinol derivatives with primary allylic alcohol have been developed. Systematic study was performed to solve reactivity and regioselectivity problem by varying the substitution on

aromatic coupling partner and allylic alcohol. The developed method was applied for the highly atom economic syntheses of (+)-chromazonarol (1), (+)-hongoquercin A (2) and B (3).

Experimental Section

General: All reactions were carried out under nitrogen atmosphere with dry solvents under anhydrous conditions, unless otherwise mentioned. All the chemicals were purchased commercially, and used without further purification. Anhydrous THF and diethyl ether were distilled from sodiumbenzophenone and dichloromethane was distilled from calcium hydride. Yields refer to chromatographically pure material, unless otherwise stated. Reaction were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Merck silica gel plates (60F-254) using UV light as a visualizing agent and an p-anisaldehyde or ninhydrin stain, and heat as developing agents. Merck silica gel (particle size 100-200 and 230-400 mesh) was used for flash column chromatography. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. NMR spectra were recorded on Bruker Avance 500 (¹H: 500MHz, ¹³C: 125MHz) in CDCl₃ having TMS 0.03% as internal standard. Mass spectrometric data were obtained using WATERS-Q-T of Premier-ESI-MS.

General procedure A for the C–C bond formation.

A mixture of the corresponding phenol (1 equiv.) and alcohol (1 equiv.) in anhydrous CH_2Cl_2 was stirred at room temperature for 5 min. Then $BF_3 \cdot OEt_2$ (10 mol %) was added. The reaction mixture was stirred at room temperature for 15 min. When completion of the reaction was noted by TLC, a saturated solution of NaHCO₃ was added and the resultant reaction mixture was extracted with CH_2Cl_2 . The combined organic extracts were washed with brine and dried over Na_2SO_4 . Evaporation of solvent and purification of the residue on silica gel column chromatography using EtOAc/hexane as eluent afforded the monocouple product.

3-bromo-5-methoxy-2-((2,6,6-trimethylcyclohex-1-

enyl)methyl)benzene-1,4-diol (16a): brown oil (67 mg, 83%); IR (neat) ν_{max}/cm^{-1} 3380, 2925, 1610, 1488, 1450, 1020; ¹H NMR (400 MHz, CDCl₃) δ 1.00 (br s, 6H), 1.45–1.53 (m, 2H), 1.63–1.70 (m, 2H), 1.72 (s, 3H), 2.07 (t, *J* = 6.2 Hz, 2H), 3.62 (s, 2H), 3.83 (s, 3H), 5.55 (s, 1H), 6.33 (s, 1H), 6.87 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 18.9, 20.8, 28.1, 32.3, 33.0 (2 Carbon), 35.5, 39.6, 56.1, 99.7, 111.2, 115.6, 134.6, 136.0, 136.9, 145.4, 149.4; HRMS m/z calcd for C₁₇H₂₄BrO₃ [(M + H)⁺] 355.0909, found 355.0915.

$\label{eq:2-methoxy-5-(((4aS,8aS)-2,5,5,8a-tetramethyl-3,4,4a,5,6,7,8,8a-tetramethyl-3,4,4a-tetram$

octahydronaphthalen-1-yl)methyl)benzene-1,4-diol (16b): yellow oil (193 mg, 78%); [α] $_{D}^{30}$ = +42° (*c* 0.4, CHCl₃); IR (neat) υ_{max} /cm⁻¹ 2928, 1647, 1603, 1208, 1172; ¹H NMR (400 MHz, CDCl₃) δ 0.83 (s, 3 H), 0.90 (s, 3 H), 0.98 (s, 3 H), 1.57 (s, 3 H), 3.27 (s, 2 H), 3.83 (s, 3 H), 6.38 (s, 1

H), 6.61 (s, 1 H); ^{13}C NMR (100 MHz, CDCl₃) δ 18.6, 18.8, 20.0, 20.0, 21.5, 27.5, 29.4, 33.0, 33.1, 33.3, 36.1, 38.9, 41.4, 51.5, 55.8, 99.8, 114.8, 118.1, 129.9, 137.5, 138.9, 144.6, 146.9; HRMS m/z calcd for $C_{22}H_{33}O_3\left[(M + H)^{\star}\right]$ 345.2430, found 345.2436.

3-bromo-5-methoxy-2-(((4a S,8a S)-2,5,5,8a-tetramethyl-

3,4,4a,5,6,7,8,8a-octahydronaphthalen-1-yl)methyl)benzene-1,4-diol (**16c**): viscous oil (124 mg, 80%); [α]_D³⁰ = +37° (*c* 0.34, CHCl₃); IR (neat) ν_{max}/cm^{-1} 3380, 2925, 1580, 1488, 1020; ¹H NMR (400 MHz, CDCl₃) δ 0.85 (s, 3H), 0.90 (s, 3H), 1.10–1.20 (m, 3H), 1.37 (d, *J* = 12.7 Hz, 2H), 1.49–1.66 (m, 4H), 1.72 (s, 3H), 2.06–2.23 (m, 2H), 3.55 (br s, 2H), 3.83 (s, 3H), 5.54 (s, 1H), 6.33 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 18.7 (2 Carbon), 20.0, 20.6, 21.7 (2 Carbon), 31.8, 33.1, 33.3, 33.5, 39.5, 41.4, 51.3, 56.1, 99.8 (2 Carbon), 111.3, 136.8, 139.6 (2 Carbon), 145.3, 149.4; HRMS m/z calcd for C₂₂H₃₂BrO₃ [(M + H)⁺] 423.1535, found 423.1535.

4-methoxy-6-(((4aS,8aS)-2,5,5,8a-tetramethyl-3,4,4a,5,6,7,8,8a-

octahydronaphthalen-1-yl)methyl)benzene-1,3-diol (16d): (102 mg, 83%) as a yellow oil; $[\alpha]_D{}^{30} = +52^{\circ}$ (*c* 0.3, CHCl₃); IR (neat) υ_{max} /cm⁻¹ 3412, 2937, 1615, 1518, 1462, 1374, 1241, 1193; ¹H NMR (400 MHz, DMSO-d₆) δ 0.84 (s, 3H), 0.88–0.91 (m, 3H), 0.99 (s, 3H), 1.02–1.14 (m, 2H), 1.19 (dd, *J* = 12.6, 2.0 Hz, 1H), 1.33–1.40 (m, 2H), 1.48–1.57 (m, 2H), 1.58–1.60 (m, 3H), 1.65 (d, *J* = 4.4 Hz, 1H), 1.71–1.76 (m, 1H), 2.08–2.24 (m, 2H), 3.31 (s, 2H), 3.79 (s, 3H), 5.28 (br s, 1H), 5.49 (br s, 1H), 6.41 (s, 1H), 6.55 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 18.8, 19.0, 20.3, 20.3, 21.7, 27.7, 33.3, 33.3, 33.5, 36.3, 39.1, 41.6, 52.0, 56.8, 102.9, 112.6, 117.1, 130.0, 138.0, 140.5, 144.1, 148.2; HRMS m/z calcd for C₂₂H₃₃O₃ [(M + H)⁺] 345.2430, found 345.2433.

General procedure B for the C–C and C–O bond formation.

A mixture of the corresponding phenol (1 equiv) and alcohol (1 equiv) in anhydrous CH_2Cl_2 was stirred at room temperature for 5 min. Then BF_3 ·OEt₂ (30 mol %) was added. The reaction mixture was stirred for 6 h at room temperature. When completion of the reaction was noted by TLC a saturated solution of NaHCO₃ was added and the resultant reaction mixture was extracted with CH_2Cl_2 . The combined organic extracts were washed with brine and dried over Na₂SO₄. Evaporation of solvent and purification of the residue on a silica gel column chromatography using EtOAc/hexane as eluent furnished the cyclised product.

8-bromo-6-methoxy-1,1,4a-trimethyl-2,3,4,4a,9,9a-hexahydro-1H-

xanthen-7-ol (17a): brown oil (54 mg, 83%); IR (neat) υ_{max}/cm^{-1} 3513, 2925, 1619, 1585, 1491, 1446, 1377, 1270, 1191, 1128; ¹H NMR (400 MHz, CDCl₃) δ 0.93 (s, 3H), 1.03 (s, 3H), 1.17 (s, 3H), 1.32–1.37 (m, 1H), 1.47–1.51 (m, 1H), 1.53–1.59 (m, 2H), 1.62–1.68 (m, 2H), 1.91–1.98 (m, 1H), 2.33 (dd, *J* = 16.7, 13.2 Hz, 1H), 2.71 (dd, *J* = 16.8, 5.1 Hz, 1H), 3.82 (s, 3H), 5.50 (br s, 1H), 6.36 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 19.4, 19.7, 20.5, 24.2, 32.1, 33.4, 39.6, 41.5, 48.3, 56.1, 77.0, 99.9, 110.7, 114.2, 136.8, 145.8, 146.8; HRMS m/z calcd for C₁₇H₂₃BrO₃ [M]⁺ 354.0831, found 354.0844.

(4aS,6aR,12aR,12bS)-9-methoxy-4,4,6a,12b-tetramethyl-2,3,4,4a,5,6,6a,12,12a,12b-decahydro-1H-benzo[a]xanthen-10-ol

(17b): semi-solid (98 mg, 80%); $[a]_{D}^{30} = +35^{\circ}$ (*c* 0.4, CHCl₃); IR (neat) $\nu_{max/cm^{-1}}$ 3414, 2933, 1586, 1480, 1250, 1158; ¹H NMR (500 MHz, CDCl₃) δ 0.84 (s, 3H), 0.87 (s, 3H), 0.90 (s, 3H), 1.18 (s, 3H), 1.39–1.47 (m, 2H), 1.61 (dd, *J* = 18.9, 11.5 Hz, 4H), 1.70 (br s, 1H), 1.76 (br s, 1H), 1.9–2.05 (m, 1H), 2.46–2.52 (m, 2H), 3.80 (s, 3H), 5.14 (br s, 1H), 6.33 (s, 1H), 6.60 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.9, 18.5, 19.7, 20.6, 21.6, 21.7, 33.2, 33.4, 36.8, 39.2, 41.1, 41.8, 52.3, 55.9, 56.1, 76.7,

100.2, 113.8, 114.4, 138.9, 145.4, 146.1; HRMS: m/z calcd for $C_{22}H_{33}O_3$ [(M + H)*] 345.2430, found 345.2422.

(4a*S*,6a*R*,12a*R*,12b*S*)-11-bromo-9-methoxy-4,4,6a,12b-tetramethyl-2,3,4,4a,5,6,6a,12,12a,12b-decahydro-1H-benzo[a]xanthen-10-ol

(17c): brown oil (73 mg, 75%); $[\alpha]_D^{30} = +27^{\circ}$ (*c* 0.3, CHCl₃); IR (neat) υ_{max}/cm^{-1} 3513, 2925, 1619, 1491, 1446, 1377, 1270, 1191, 1128; ¹H NMR (400 MHz, CDCl₃) δ 0.85 (s, 3H), 0.91 (d, *J* = 2.06 Hz, 6H), 0.98–1.06 (m, 2H), 1.15 (s, 3H), 1.17–1.22 (m, 1H), 1.40–1.51 (m, 2H), 1.56–1.65 (m, 3H), 1.74–1.80 (m, 2H), 2.02–2.08 (m, 1H), 2.34 (dd, *J* = 16.8, 13.0 Hz, 1H), 2.63 (dd, *J* = 16.8, 5.3 Hz, 1H), 3.82 (s, 3H), 5.49 (br s, 1H), 6.36 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.8, 18.5, 19.7, 20.4 (2 Carbon), 21.6, 23.4, 33.2, 33.4, 36.8, 39.2, 40.7, 41.8, 52.3, 56.1, 76.8, 99.9, 110.9, 114.0, 136.7, 145.7, 146.7; HRMS (EI) m/z calcd for C₂₂H₃₁BrO₃ [M]⁺ 422.1457, found 422.1458.

(4aS,6aR,12aR,12bS)-10-methoxy-4,4,6a,12b-tetramethyl-

2,3,4,4a,5,6,6a,12,12a,12b-decahydro-1H-benzo[a]xanthen-9-ol (17d): semi-solid (204 mg, 83%); $[\alpha]_D{}^{30} = +30^{\circ}$ (*c* 0.72, CHCl₃); IR (neat) ν_{max}/cm^{-1} 3400, 2937, 1615, 1518, 1438, 1374, 1241, 1170, 1193, 1170, 1088, 1020; ¹H NMR (400 MHz, CDCl₃) δ 0.84 (s, 3H), 0.88 (s, 3H), 0.90 (s, 3H), 0.95–1.05 (m, 2H), 1.17 (s, 3H), 1.35–1.50 (m, 3H), 1.60–1.79 (m, 5H), 2.03 (dt, *J* = 12.4, 3.2 Hz, 1H), 2.50–2.56 (m, 2H), 3.81 (s, 3H), 6.38 (s, 1H), 6.53 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.9, 18.5, 19.7, 20.6, 21.6, 22.0, 33.2, 33.4, 36.8, 39.2, 41.0, 41.8, 52.3, 56.1, 56.5, 76.6, 103.5, 111.7, 112.6, 140.5, 144.6, 147.3; HRMS m/z calcd for C₂₂H₃₃O₃ [(M + H)⁺] 345.2430, found 345.2422.

Methyl 8-hydroxy-1,1,4a,6-tetramethyl-2,3,4,4a,9,9a-hexahydro-1H-

xanthene-7-carboxylate (17e): yellow oil (92 mg, 81%); IR (neat) ν_{max}/cm^{-1} 3330, 2830, 1644, 1620, 1560, 1150; ¹H NMR (400 MHz, CDCl₃) δ 0.93 (s, 3H), 1.03 (s, 3H), 1.21 (s, 3H), 1.32–1.36 (m, 1H), 1.48 (d, *J* = 1.8 Hz, 1H), 1.59–1.69 (m, 3H), 1.94–1.99 (m, 1H), 2.25–2.32 (m, 1H), 2.44 (s, 3H), 2.48 (d, *J* = 2.7 Hz, 1H), 2.74 (s, 1H), 2.80 (s, 1H), 3.91 (s, 3H), 6.18 (s, 1H), 12.13 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 17.6, 19.7 (2 Carbon), 20.6, 24.1, 32.1, 33.5, 39.7, 41.5, 47.6, 51.7, 78.4, 103.8, 108.2, 112.2, 140.0, 157.8, 162.7, 172.8; HRMS m/z calcd for C₁₉H₂₇O₄ [(M + H)⁺] 319.1909, found 319.1909.

(4aS,6aR,12aR,12bS)-methyl 11-hydroxy-4,4,6a,9,12b-pentamethyl-2,3,4,4a,5,6,6a,12,12a,12b-decahydro-1H-benzo[a]xanthene-10-

carboxylate (19): colourless oil (111 mg, 69%); $[\alpha]_D^{30} = +143^\circ$ (*c* 0.6, CHCl₃); IR (neat) ν_{max}/cm^{-1} 1931, 1646, 1578, 1406, 1453, 1318, 1281, 1189, 1156, 1124; ¹H NMR (500 MHz, CDCl₃) δ 0.84 (s, 3H), 0.90 (s, 3H), 0.97–1.03 (m, 2H), 1.12–1.16 (m, 1H), 1.40–1.50 (m, 3H), 1.64–1.70 (m, 2H), 1.75–1.82 (m, 2H), 2.05–2.08 (m, 1H), 2.26–2.32 (m, 1H), 2.44 (s, 3H), 2.66–2.71 (m, 1H), 3.91 (s, 3H), 6.17 (s, 1H), 12.11 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.9, 16.7, 18.5, 19.7, 20.7, 21.6, 24.1, 33.2, 33.4, 36.9, 39.2, 40.8, 41.8, 51.6, 51.7, 56.1, 78.1, 103.8, 107.9, 112.1, 139.9, 157.8, 162.9, 172.7; HRMS m/z calcd for C₂₄H₃₅O₄ [(M + H)⁺] 387.2535, found 387.2535.

(3*S*,4a*R*,6a*R*,12a*R*,12b*S*)-methyl 3,11-dihydroxy-4,4,6a,9,12bpentamethyl-2,3,4,4a,5,6,6a,12,12a,12b-decahydro-1H-

benzo[a]xanthene-10-carboxylate (20): white solid (161 mg, 73%); M.p. 184 – 186 °C; $[\alpha]_D^{30} = +98.8^{\circ}$ (*c* 0.28, CHCl₃); IR (neat): v_{max}/cm^{-1} 3415 (br), 2932, 1646, 1580, 1453, 1331, 1277, 1126, 806; ¹H NMR (400 MHz, CDCl₃): δ 0.80 (s, 3 H), 0.91 (s, 3 H), 0.97 (d, *J*=2.29 Hz, 1 H), 1.01 (s, 3 H), 1.12 (dd, *J*=12.36, 4.58 Hz, 1 H), 1.39 - 1.45 (m, 1 H), 1.50 (dd, *J*=13.28, 5.04 Hz, 1 H), 1.61 - 1.69 (m, 3 H), 1.74 - 1.79 (m, 1 H), 1.84 (dt, *J*=13.05, 3.55 Hz, 1 H), 2.07 (dt, *J*=12.36, 3.21 Hz, 1 H), 2.25 - 2.33 (dd, *J*=16.9, 13.3 Hz, 1 H), 2.42 (s, 3 H), 2.66 (dd, *J*=16.94, 5.04 Hz, 1 H), 3.23 (dd, *J*=11.22, 4.81 Hz, 1 H), 3.89 (s, 3 H), 6.16 (s, 1 H), 12.08 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 15.3, 15.9, 17.1, 19.8, 21.0, 24.4, 27.5,

28.5, 37.1, 37.8, 39.1, 41.1, 51.8, 52.0, 55.4, 78.2, 79.0, 104.3, 108.1, 112.5, 140.4, 158.0, 163.2, 173.1; HRMS: m/z calcd for $C_{24}H_{35}O_5\,[\text{M}+\text{H}]^{*}$: 403.2484; found: 403.2474.

(+)-Hongoquercin A (2): To a solution of 19 (30.0 mg, 0.078 mmol) in methanol (1 mL) and THF (1.5 mL) was added 6 M aq. NaOH (1.5 mL). The reaction mixture was refluxed for 2 h then it was acidified with 2% aq. HCl, and the resultant reaction mixture was extracted with CH₂Cl₂. The combined organic extracts were washed with brine and dried over Na₂SO₄. Evaporation of solvent and purification of the residue on a silica gel column chromatography using EtOAc/hexane as eluent afforded the product 2 (27 mg, 95%) as a white powder; M.p. 145 – 147 °C; $\left[\alpha\right]_D{}^{30}$ = +144° (c 0.6, MeOH); IR (neat) v_{max}/cm⁻¹2936, 2867, 1623, 1580, 1492, 1455, 1368, 1264, 1177, 1126, 1079, 1031; ^1H NMR (500 MHz, CDCl_3) δ 0.85 (s, 3H), 0.91 (s, 3H), 0.92 (s, 3H), 0.97 (ddd, J = 13.5, 3.1 Hz, 1H), 1.03 (dd, J = 12.2, 1.4 Hz, 1H), 1.17 (ddd, J = 13.5, 13.5, 3.7 Hz, 1H), 1.20 (s, 3H), 1.36 (ddd, J = 13.7, 13.7, 3.2 Hz, 1H), 1.42 (d, J = 12.4 Hz, 1H), 1.49 (m, 1H), 1.55 (dd, J = 13.2, 4.9 Hz, 1H), 1.62 (m, 1H), 1.67 (ddd, J = 13.2, 13.2, 4.1 Hz, 1H), 1.78 (m, 1H), 1.81 (m, 1H), 2.07 (ddd, J = 12.5, 3.0, 3.0 Hz, 1H), 2.28 (dd, J = 16.6, 13.3 Hz, 1H), 2.52 (s, 3H), 2.69 (dd, J = 16.8, 4.8 Hz, 1H), 6.21 (s, 1H), 11.81 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 15.2, 16.9, 18.7, 20.0, 21.0, 21.8 (2 Carbon), 24.4, 33.4, 33.7, 37.2, 39.4, 41.1, 42.1, 51.8, 56.4, 78.7, 108.3, 112.9, 141.7, 159.1, 164.1, 176.3; HRMS m/z calcd for $C_{23}H_{32}O_4$ [(M + H)⁺] 372.2301, found 372.2307.

(3*S*,4a*R*,6a*R*,12a*R*,12b*S*)-3,11-dihydroxy-4,4,6a,9,12b-pentamethyl-2,3,4,4a,5,6,6a,12,12a,12b-decahydro-1H-benzo[a]xanthene-10-

carboxylic acid (21): To a magnetically stirred solution of 20 (50 mg, 0.12 mmol) in a mixture of methanol (0.7 mL) and THF (1.5 mL) was added NaOH (10 mg, 0.25 mmol in 0.2 mL water) and the mixture was refluxed for 3 h. The reaction mixture was cooled and acidified to pH 2-3 followed by extraction with dichloromethane. The extract was washed with water and brine, dried with sodium sulphate. Evaporation of the solvent and purification of the residue on silica gel column using EtOAchexane (1:3) as eluent furnished the acid (+)-21 (44 mg, 91%) as a white solid; M.p. 149 – 151 °C; $[\alpha]_D^{30} = +138.2^\circ$ (*c* 0.14, MeOH); IR (neat): v_{max}/cm⁻¹ 3490 (br), 2927, 2854, 1620, 1579, 1452, 1376, 1262, 1177, 1126, 1038; ¹H NMR (400 MHz, Methanol-d₃): δ 0.81 (s, 3 H), 0.95 (s, 3 H), 1.00 (s, 3 H), 1.03 (dd, J=12, 1.8 Hz),1.10 - 1.15 (m, 1 H), 1.17 (s, 3 H), 1.45 (dd, J=12.4, 5.0 Hz, 1 H), 1.52 (dd, J=13.3, 4.6 Hz, 1 H), 1.59 -1.69 (m, 3 H), 1.79 (m, 2 H), 2.02 - 2.06 (dd, J= 12.0, 3.2 Hz, 1 H), 2.27 (dd, J=16.94, 13.40 Hz, 1 H), 2.44 (s, 3 H), 2.62 (dd, J=16.86, 5.01 Hz, 1 H), 3.19 (dd, J=11.02, 5.24 Hz, 1 H), 6.09 (s, 1 H); $^{13}\mathrm{C}$ NMR (100 MHz, Methanol-d₃): δ 15.4, 16.2, 17.8, 20.5, 21.0, 24.2, 27.9, 28.7, 37.8, 38.8, 39.9, 42.1, 53.0, 56.5, 78.8, 79.4, 105.0, 108.7, 112.8, 141.8, 158.8, 164.5, 175.6; HRMS: m/z calcd for C₂₃H₃₃O₅ [M+H]⁺: 389.2328; found: 389.2310.

(+)-Hongoquercin B (3): To a magnetically stirred solution of 21 (20 mg, 51 µmol) in pyridine (0.5 mL) was added acetic anhydride (24 µL, 0.26 mmol) at room temperature. After stirring for 24 h, the resulting solution was diluted with water (3 mL) and extracted with dichloromethane, washed with 1 N HCl, sat. CuSO₄ solution, water and brine, dried over sodium sulphate and concentrated under reduced pressure to afford diacetate. Crudre diacetate was dissolved in methanol (1 mL) and water (0.1 mL), followed by addition of K₂CO₃ (11 mg, 77 µmol) at room temperature. After stirring for 5 h, at same temperature, the resulting mixture was acidified to pH 2-3, and extracted with dichloromethane. The extract was washed with water and brine, dried with sodium sulphate. Evaporation of the solvent and purification of the residue on silica gel column using EtOAc-hexane (1:3) as eluent furnished (+)-Hongoquercin B (3) (19 mg, 86%) as a white solid; M.p. 156 – 158 °C; [α]_D³⁰ = +158.6° (c 0.14, MeOH); IR (neat): v_{max}/cm^{-1} 2928,1732, 1621, 1580, 1371, 1262,

1126, 1034; ¹H NMR (400 MHz, CDCl₃): δ 0.89 (s, 3 H), 0.91 (s, 3 H), 0.95 (s, 3 H), 1.10 (dd, *J*=12.0, 1.9 Hz, 1 H), 1.19 (br s, 1 H), 1.20 (s, 3 H), 1.42 - 1.47 (m, 1 H), 1.53 (dd, *J*=13, 4.9 Hz, 1 H), 1.66 (br. s., 2 H), 1.60 - 1.80 (m, 4 H), 1.86 (ddd, *J*=13.3, 3.3, 3.3 Hz, 1 H), 2.06 (s, 3 H), 2.09 (dt, *J*=12.6, 3.2 Hz, 1 H), 2.30 (dd, *J*=16.8, 13.2 Hz, 1 H), 2.51 (s, 3 H), 2.66 (dd, *J*=16.8, 4.9 Hz, 1 H), 4.51 (dd, *J*=11.4, 4.9 Hz, 1 H), 6.21 (s, 1 H), 1.87 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 15.2, 16.8, 16.9, 19.5, 20.8, 21.4, 23.7, 24.3, 28.3, 36.8, 37.3, 37.9, 40.8, 51.4, 55.3, 78.1, 80.6, 102.8, 107.9, 112.7, 141.7, 158.8, 164.0, 171.2, 175.6; HRMS: m/z calcd for C₂₅H₃₃O₆ [M-H]⁺: 429.2277; found: 429.2269.

(4aS,6aR,12aR,12bS)-10-methoxy-4,4,6a,12b-tetramethyl-2,3,4,4a,5,6,6a,12,12a,12b-decahydro-1H-benzo[a]xanthen-9-yl

trifluoromethanesulfonate (23): To a cold (0 °C), magnetically stirred solution of the 17d (57 mg, 0.16 mmol) and dry pyridine (0.017 mL, 0.20 mmol) in anhydrous CH₂Cl₂ (4 mL) was added slowly Tf₂O (0.033 mL, 0.20 mmol). The reaction mixture was stirred for 30 min. at 0 °C. The reaction mixture was then quenched with H₂O and the resultant reaction mixture was extracted with CH2Cl2. The combined organic extracts were washed with brine and dried over Na₂SO₄. Evaporation of solvent and purification of the residue on a silica gel column chromatography using EtOAc/hexane as eluent afforded the product 23 (71 mg, 90%) as a yellow oil: $R_{\rm f} = 0.4$ (EtOAc/hexane 1/9); $[\alpha]_{\rm D}^{30} = +45^{\circ}$ (c 0.32, CHCl₃); IR (neat) v_{max}/cm⁻¹2938, 1504, 1465, 1422, 1389, 1211, 1142, 1092, 1021; ¹H NMR (500 MHz, CDCl₃) δ 0.84 (s, 3H), 0.88 (s, 3H), 0.91 (s, 3H), 1.01-1.04 (m, 1H), 1.60-1.68 (m, 4H), 1.74-1.79 (m, 1H), 2.02-2.06 (m, 1H), 2.57–2.63 (m, 2H), 3.83 (s, 3H), 6.65 (s, 1H), 6.71 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.8 (2 Carbon), 18.5, 19.7, 20.7, 21.5, 22.5, 33.1, 33.4, 36.8, 39.1, 40.8, 41.7, 51.7, 56.0, 56.6, 77.3, 111.0, 114.0, 122.9, 137.1, 144.6, 146.9; HRMS m/z calcd for $C_{23}H_{31}F_3O_5S$ [M]⁺ 476.1844, found 476.1845.

(+)-8-epi-puupehedione (6): To a magnetically stirred solution of the 17d (50 mg, 0.14 mmol) in CH₂Cl₂ (5 mL) was added BBr₃ (72 mg, 0.29 mmol) at room temperature and reaction mixture was stirred for 6 h. Crushed ice was then added to the reaction mixture, extracted with CH_2CI_2 (7 mL x 3), washed with brine and dried over Na_2SO_4 . Evaporation of the solvent obtained as a crude product, which was used in the next step without further purification. Then 2,3-dichloro-5,6dicyano-1,4-benzoquinone (DDQ) (165 mg, 0.72 mmol) was added to a solution of epi-puupehediol (22) (c 0.14 mmol) in 1,4-dioxane (7 mL) and the mixture refluxed for 2 h. Then the solvent was evaporated under reduced pressure and the residue was diluted with ether (10 mL) and washed with sat. NaHCO $_3$ (3 x 7 mL) The organic phase was dried and the solvent was evaporated to yield a crude which after chromatography on silica gel furnish the product 6 (32 mg, 67%) as a red solid; $[\alpha]_D^{30} =$ +104° (c 0.5, CHCl₃); IR (neat) v_{max}/cm⁻¹ 2926, 1669, 1643, 1601, 1564, 1458, 1402, 1240, 1129; ¹H NMR (400 MHz, CDCl₃) δ 0.90 (s, 3H), 0.93 (s, 3H), 1.19 (s, 3H), 1.13–1.21 (m, 2H), 1.40–1.49 (m, 1H), 1.51–1.59 (m, 1H), 1.59 (s, 3H), 1.63-1.95 (m, 6H), 2.20-2.25 (m, 1H), 5.93 (s, 1H), 6.13 (s, 1H), 6.27 (s, 1H); 13 C NMR (100 MHz, CDCl₃) δ 18.7, 19.3, 21.8, 22.1, 30.8, 33.3, 34.2, 37.8, 40.4, 41.2, 41.3, 53.2, 83.1, 108.2, 114.5, 122.3, 137.9, 164.3, 166.4, 179.7, 181.2; HRMS m/z calcd for $C_{21}H_{27}O_3$ [(M + H)⁺] 327.1960, found 327.1964.

(4aS,6aR,12aR,12bS)-10-methoxy-4,4,6a,12b-tetramethyl-

2,3,4,4a,5,6,6a,12,12a,12b-decahydro-1H-benzo[a]xanthene (24): Compound 23 (50 mg, 0.10 mmol), dry sodium formate (9 mg, 0.13 mmol), dry TBAB (64 mg, 0.21 mmol) and TEA (0.03 mL, 0.23 mmol) was dissolve in DMF (3 mL). Resultant mixture was degassed by bubbling argon for 30 min. then added $Pd(PPh_3)_4$ (12 mg, 0.010 mmol) to this solution. The reaction mixture was heated for an additional 8 h at 80 °C. Upon cooling, the reaction mixture was diluted with Et₂O (100 mL) and filtered through a plug of celite. The mixture was poured into Et₂O (7 mL) and H₂O (7 mL) and the aqueous layer was thoroughly extracted with Et₂O (10 mL x 5). The combined organic layers were washed with 1 N HCl (5 mL), 1N NaOH, dried over Na₂SO₄. Evaporation of solvent and purification of the residue on a silica gel column chromatography using EtOAc/hexane as eluent furnish the product 24. (28 mg, 81%) as a colourless oil; $[\alpha]_D^{30} = +26^{\circ}$ (*c* 0.47, CHCl₃); IR (neat) ν_{max} /cm⁻¹ 2928, 2865, 1612, 1496, 1463, 1377, 1232; 1127, 1041; ¹H NMR (400 MHz, CDCl₃) δ 0.85 (s, 3H), 0.88 (s, 3H), 0.91 (s, 3H), 1.05 (s, 1H), 1.18 (s, 3H), 1.27–1.57 (m, 4H), 1.60–1.80 (m, 5H), 2.05 (dt, *J* = 12.4, 3.1 Hz, 1H), 2.51–2.69 (m, 2H), 3.74 (s, 3H), 6.61 (d, *J* = 2.0 Hz, 1H), 6.64–6.72 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.8, 18.5, 19.7, 20.7, 21.6, 22.6, 33.2, 33.4, 36.8, 39.2, 41.1, 41.8, 52.1, 55.7, 56.1, 76.6, 113.0, 114.3, 117.4, 122.9, 147.1, 152.9; HRMS m/z calcd for C₂₂H₃₃O₂ [(M + H)⁺] 329.2481, found 329.2471.

(+)-Chromazonarol (1): To a solution of 24 (25 mg, 0.076 mmol) in hexane (1 mL) was added a 0.2 M solution of $B(C_6F_5)_3$ in toluene (17 μ L, 0.0038 mmol) and HSiEt₃ (8 µL, 0.05 mmol) at room temperature. After stirring for one day, the reaction mixture was poured into brine and extracted with ether. The ether extracts were dried over MgSO4 and concentrated to obtain chromazonarol triethylsilyl ether as a crude product, which was used in the next step without further purification. To a solution of chromazonarol triethylsilyl ether (ca. 0.076 mmol) in THF (0.7 mL) was added a 1 M solution of tetrabutyl ammonium fluoride (TBAF) in THF (0.06 mL, 0.06 mmol) at 0 °C. After stirring for 30 min, THF was removed in vacuo and the residue was purified on a silica gel column using EtOAc/hexane to furnish the product 1 (23 mg, 96%) as a white powder; M.p. 126 – 129 °C; $[\alpha]_D^{30}$ = +41° (c 0.4, CHCl₃); IR (neat) υ_{max}/cm⁻¹ 3387, 2925, 1616, 1494, 1451, 1377, 1232, 1127; ¹H NMR (400 MHz, CDCl₃) δ 0.84 (s, 3H), 0.88 (s, 3H), 0.90 (s, 3H), 0.94-0.99 (m 1H), 1.02 (dd, J = 12.2, 2.2 Hz, 1H), 1.22-1.13 (m, 4H) 1.17 (s, 1H), 1.31-1.51 (m, 3H), 1.71-1.58 (m, 4H), 1.72-1.78 (m, 1H), 2.04 (dt, J = 12.4, 3.3 Hz, 1H), 2.5–2.58 (m, 2H), 6.55–6.57 (m, 2H), 6.63 (d, J = 7.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.9, 18.6, 19.8, 20.8, 21.7, 22.6, 33.3, 33.5, 36.9, 39.3, 41.2, 41.9, 52.1, 56.2, 76.8, 114.3, 115.9, 117.6, 123.4, 147.2, 148.7; HRMS m/z calcd for $C_{21}H_{30}O_2$ [(M + H)⁺] 314.2246, found 314.2247.

Acknowledgements

G. M. M., B. D. D. and S. K. S. thank CSIR, New Delhi, for the award of research fellowship. Financial support from IIT Kanpur, is gratefully acknowledged.

Keywords: Natural products • Friedel-Crafts alkylation • hongoquercin • total synthesis • meroterpenoids

- J. W. Cornforth, Chem. Ber. 1968, 4, 102; b) R. Geris, T. J. Simpson, Nat. Prod. Rep. 2009, 26, 1063.
- [2] G. Cimino, S. De Stefano, L. Minale, *Experientia* **1975**, *31*, 1117.
- a) D. M. Roll, J. K. Manning, G. T. Carter, *J. Antibiot.* **1998**, *51*, 635; b)
 D. A. Abbanat, M. P. Singh, M. Greenstein, *J. Antibiot.* **1998**, *51*, 708.
- [4] a) I. Mancini, G. Guella, A. Defant, *Mini-Rev. Med. Chem.* 2008, *8*, 1265; b) V. Armstrong, A. F. Barrero, E. J. Alvarez-Manzaneda, M. Cortes, B. Sepulveda, *J. Nat. Prod.* 2003, *66*, 1382; c) B. Martinez-Poveda, A. R. Quesada, M. A. Medina, *J. Cell. Mol. Med.* 2008, *12*, 701.
- [5] a) S. Kohmoto, O. J. McConnell, A. Wright, F. Koehn, W. Thompson, M. Lui, K. M. Snader, *J. Nat. Prod.* **1987**, *50*, 336; b) R. E. Longley, O. J. McConnel, E. Essich, D. Harmody, *J. Nat. Prod.* **1993**, *56*, 915; c) D. J. Faulkner, *Nat. Prod. Rep.* **1998**, *15*, 113; d) S. Takamatsu, T. W. Hodges, I. Rajbhandari, H. Gerwick, M. T. Hamann, D. G. Nagle, *J. Nat.*

Prod. **2003**, *66*, 605; e) G. A. Graus, T. Nguyen, J. Bae, J. Hostetter, E. Steadham, *Tetrahedron* **2004**, *60*, 4223.

- a) H. Tsujimori, M. Bando, K. Mori, *Eur. J. Org. Chem.* 2000, 297; b) H.
 Tsujimori, K. Mori, *Biosci. Biotechnol. Biochem.* 2000, 64, 1410-1415.
- [7] A. V. Kurdyumov, R. P. Hsung, J. Am. Chem. Soc. 2006, 128, 6272.
- [8] E. J. Alvarez-Manzaneda, R. Chahboun, I. B. Perez, E. Cabrera, E. Alvarez, R. Alvarez-Manzaneda, Org. Lett. 2005, 7, 1477.
- [9] a) E. J. Alvarez-Manzaneda, R. Chahboun, E. Cabrera, E. Alvarez, A. Haidour, J. M. Ramos, R. Alvarez-Manzaneda, M. Hmamouchi, H. Bouanou, J. Org. Chem. 2007, 72, 3332; b) A. Fernandez, E. Alvarez, R. Alvarez-Manzaneda, R. Chahboun, E. Alvarez-Manzaneda, Chem. Commun. 2014, 50, 13100. For synthesis of chromazonarol from other groups see a) H. Ishibashi, K. Ishihara, H. Yamamoto, J. Am. Chem. Soc. 2004, 126, 11122; b) J. H. Huang, X. G. Lei, Sci. China. Chem. 2013, 56, 349.
- [10] E. Alvarez-Manzaneda, R. Chahboun, E. Cabrera, E. Alvarez, A. Haidour, J. M. Ramos, R. Alvarez-Manzaneda, R. Tapia, H. Es-Samti, A. Fernández, I. Barranco, *Eur. J. Org. Chem.* **2009**, 1139-1143.
- [11] T. N. Barrett, A. G. M. Barrett, J. Am. Chem. Soc. 2014, 136, 17013.
- a) H. Akita, M. Nozawa, H. Shimizu, *Tetrahedron: Asymmetry* 1998, 9, 1789; b) A. F. Barrero, E. J. Alvarez-Manzaneda, R. Chahboun, M. Cortes, V. Armstrong, *Tetrahedron* 1999, 55, 15181-15208.
- [13] D. L. Boger, C. E. Brotherton, J. Org. Chem. 1984, 49, 4050. For some recent examples of divergent synthesis, see: a) J. M. Richter, Y. Ishihara, T. Masuda, B. W. Whitefield, T. Llamas, A. Pohjakallio, P. S. Baran, J. Am. Chem. Soc. 2008, 130, 17938; b) I. B. Seiple, S. Su, I. S.

Young, A. Nakamura, J. Yamaguchi, L. Jørgensen, R. A. Rodriguez, D. P. O'Malley, T. Gaich, M. Köck, P. S. Baran, *J. Am. Chem. Soc.* 2011, 133, 14710; c) S. A. Snyder, A. Gollner, M. I. Chiriac, *Nature* 2011, 474, 461.

- [14] a) D. D. Dixon, J. W. Lockner, Q. Zhou, P. S. Baran, *J. Am. Chem. Soc.* **2012**, *134*, 8432; b) B. R. Rosen, L. R. Simke, P. S. Thuy-Boun, D. D.
 Dixon, J.-Q. Yu, P. S. Baran, *Angew. Chem. Int. Ed.* **2013**, *52*, 7317.
- [15] a) D. H. Dethe, R. D. Erande, S. Mahapatra, S. Das, B. V. Kumar, *Chem. Commun.* 2015, *51*, 2871; b) D. H. Dethe, B. D. Dherange, *J. Org. Chem.* 2015, *80*, 4526; c) D. H. Dethe, S. Das, B. D. Dherange, S. Mahapatra, *Chem. Eur. J.* 2015, *21*, 8347; d) D. H. Dethe, B. D. Dherange, S. Ali, M. M. Parsutkar, *Org. Biomol. Chem.* 2016, *just accepted, doi.* 10.1039/C6OB02322C.
- [16] a) A. V. Malkov, S. L. Davis, I. R. Baxendale, W. L. Mitchell, P. Kocovsky, J. Org. Chem. 1999, 64, 2751; b) A. V. Malkov, P. Spoor, V. Vinader, P. Kocovsky, J. Org. Chem. 1999, 64, 2751; c) M. Rueping, B. J. Nachtsheim, Beilstein J. Org. Chem. 2010, 6, No. 6.
- [17] J. H. George, J. E. Baldwin, R. M. Adlington, Org. Lett. 2010, 12, 2394.

WILEY-VCH

Entry for the Table of Contents

FULL PAPER

Environmentally benign and highly atom economic catalytic Friedel-Crafts alkylation reaction and diastereoselective C-O bond formation reaction has been developed. The scope and generality of this reaction was amply illustrated by protecting group free total synthesis of chromazonarol, hongoquercin A and B and analogues thereof.

Dattatraya H. Dethe,* Ganesh M. Murhade, Balu D. Dherange and Susanta Kumar Sau

Page No. – Page No.

Enantiospecific Syntheses of Hongoquercin A, B and Chromazonarol