Studies towards the Synthesis of Alkyl *N*-(4-Nitrophenyl)-3/2-oxomorpholine-2/3-carboxylates

by Uroš Trstenjak, Janez Ilaš, and Danijel Kikelj*

Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana (fax: +386-1-4258-031; e-mail: danijel.kikelj@ffa.uni-lj.si)

The syntheses of methyl 4-(4-nitrophenyl)-3-oxomorpholine-2-carboxylate (**3a**) and ethyl 4-(4-nitrophenyl)-2-oxomorpholine-3-carboxylate (**5b**), important building blocks for the synthesis of factor Xa inhibitor rivaroxaban analogs with potential dual antithrombotic activity, *via* Rh₂(OAc)₄-catalyzed O–H and N–H carbene insertion reactions are described.

1. Introduction. – Development of efficient synthetic methodologies is frequently driven by the need of novel key intermediates for the synthesis of bioactive compounds of pharmaceutical interest. The morpholin-3-one (1) and morpholin-2-one (2) skeletons, and their derivatives are important synthons for the design of bioactive compounds and reagents [1]. In the course of our medicinal-chemistry program aimed at discovering dual antithrombotic compounds with highly overlapping factor Xa inhibitor and fibrinogen receptor antagonist pharmacophores [2], protected 4-(4-nitrophenyl)-3-oxomorpholine-2-carboxylates and 4-(4-nitrophenyl)-2-oxomorpholine-3-carboxylates, 3 and 5, respectively, were required in order to functionalize the parent oxomorpholin moiety of the lead compound with a negatively charged carboxylate group.

2,4-Disubstituted morpholin-3-ones had previously been prepared by either one- or two-bond cyclization reactions (formation of O(1)–C(2) bond, formation of O(1)–C(6) bond, or concurrent formation of O(1)–C(2) and C(3)–N(4) bonds) [1][3–7] or by direct functionalization of 4-substituted morpholin-3-ones at C(2), using strong bases and various electrophilic reagents [8–13] (*Scheme 1*). Ethyl 3-oxo-4-phenylmorpho-

line-2-carboxylate (4) [14] is the only known 4-phenylmorpholin-3-one derivative bearing a protected carboxylate group that closely resembles our target compounds 3. Although 3b and 4 differ solely in the *p*-NO₂ substituent on a Ph ring, a direct transfer of the methodology for synthesizing 4, comprising O(1)–C(2) bond-formation by intramolecular insertion of a carbene generated from α-diazo ester 6 into the O–H bond of the 4-(2-hydroxyethyl) moiety [14] (*Scheme* 2), proved to be useless for preparing 3b. We, therefore, explored alternative methods for the synthesis of this key intermediate and isomeric 2-oxomorpholine-3-carboxylates 5. This finally resulted in a four-step Rh₂(OAc)₄-catalyzed synthesis of the hitherto unknown methyl 4-(4-nitrophenyl)-3-oxomorpholine-2-carboxylate (3a) and in a simple Rh₂(OAc)₄-promoted preparation of ethyl 4-(4-nitrophenyl)-2-oxomorpholine-3-carboxylate group. A synthesis of closely related ethyl 4-[(benzyloxy)carbonyl]-2-oxomorpholine-3-carboxylate by Rh₂(OAc)₄-catalyzed N–H insertion has previously been unsuccessful [15].

Scheme 1

Formation of the O(1)-C(2) bond

Formation of the O(1)-C(6) bond

$$\begin{array}{cccc}
OH & & & & & \\
O & & & & & \\
N & & & & & \\
R^2 & & & & & \\
\end{array}$$

Formation of the O(1)-C(2) and C(3)-N(4) bonds

Direct functionalization

$$\begin{array}{c}
OH \\
NH \\
R^2
\end{array}$$

$$\begin{array}{c}
H \\
R^1
\end{array}$$

$$\begin{array}{c}
O \\
N \\
R^2
\end{array}$$

$$\begin{array}{c|c}
O & R^1 - R^3 \\
N & O \\
R^2 & R^2
\end{array}$$

Scheme 2. Rh₂(OAc)₄-Catalyzed Cyclization [14]

$$\begin{array}{c|c}
OH & O & O \\
N & N_2 & -N_2
\end{array}$$

$$\begin{array}{c|c}
OH & O & O \\
N & C & OEt
\end{array}$$

$$\begin{array}{c|c}
OEt
\end{array}$$

2. Results and Discussion. – We initially planned to synthesize **3a** by exploiting the strategy of O(1)–C(2) bond-formation by intramolecular nucleophilic substitution of Br in **7** (*cf. Scheme 3*). To this end, to prepare methyl 2-bromo-3-[(2-hydroxyethyl)(4-nitrophenyl)amino]-3-oxopropanoate (**7**), 2-[(4-nitrophenyl)amino]ethanol (**8**) [16] was reacted, in the presence of Et_3N in CH_2Cl_2 , with either methyl 2-bromo-3-chloro-3-

Scheme 3. Planned Synthesis of 3a by Intramolecular Nucleophilic Substitution

oxopropanoate (9)¹) or methyl 3-chloro-3-oxopropanoate (10; Scheme 4). Compound 9 was prepared by treating 10 with Br₂ in a mixture of CH₂Cl₂ and CCl₄ and these reaction conditions were also intended to be used in the synthesis of 7 from intermediate 11. However, after reacting 8 with 9 or 10, analysis of the reaction products revealed that the negative inductive and mesomeric effects of the p-NO₂ group in 8 decreased the nucleophilicity of the secondary amine N-atom to such an extent that O-acylation predominated over N-acylation, resulting in O-acylated compounds 12 and 13, and N,O-diacylated products 12a and 13a. N-Acylated products 7 and 11 were not detected in the mixtures (Scheme 4). In the attempt to obtain 12 from 13, bromination took place preferentially on the Ph ring to give products 14 and 14a (Scheme 5) in which the Br-atom entered into the position meta²) to the NO₂ group.

The unexpected access to 1-methyl 3-{2-[(4-nitrophenyl)amino]ethyl} 2-bromomalonate (12) offered us the opportunity to prepare, by its cyclization, methyl 4-(4-nitrophenyl)-2-oxo-morpholine-3-carboxylate (5a). To obtain 5a, compound 12 was refluxed with a base in THF, but intramolecular substitution of the Br-atom with the secondary amine did not take place.

In our next attempt to obtain ethyl 4-(4-nitrophenyl)-2-oxomorpholine-3-carboxylate (**5b**), we combined our earlier observation that O-acylation of 2-[(4-nitrophenyl)amino]ethanol (**8**) is preferred over N-acylation in the Rh^{II}-catalyzed approach for preparation of ethyl 3-oxo-4-phenylmorpholine-2-carboxylate (**4**) [14]. To our satisfaction, O-acylation of **8** with ethyl 3-chloro-2-diazo-3-oxopropanoate (**15**) [14] in the presence of Et₃N afforded 1-ethyl 3-{2-[(4-nitrophenyl)amino]ethyl}-2-diazomalonate (**16**) which, via subsequent Rh₂(OAc)₄-catalyzed intramolecular N–H carbene insertion, afforded **5b** [17] (*Scheme* 6).

Our attempts to prepare the isomeric alkyl 3-oxomorpholin-2-carboxylates 3 first relied on synthetic strategies of direct functionalization of N-substituted morpholin-3-one derivatives. This appeared feasible because of the acidic character of the H-atoms at C(2) in the morpholin-3-one ring [4][8][9]. Preparation of 4-(4-nitrophenyl)morpholin-3-one ring [4][8][9].

¹⁾ According to ¹H-NMR analysis, crude 9 could be a mixture of 2-bromo-3-chloro-3-oxopropanoate and 2-bromo-3-oxopropanoate, and was used without purification.

²⁾ The position of the Br-atom meta to the NO₂ group on Ph of compounds 14 and 14a was confirmed by ¹H, ¹³C-HMBC analysis.

Scheme 5

pholin-3-one (20) from 17 via 19 [18] was thus targeted by several attempts, in which reagents, bases, solvents, and reaction temperatures were varied, to introduce the ethoxycarbonyl moiety at C(2) of the morpholin-3-one moiety (*Scheme 7* and *Table*). Although the *N*-Me analog of 3b has been synthesized in this way, using CIHCOOEt and lithium diisopropylamide (LDA) as a base [8], our attempts to synthesize 3b under these conditions were not successful.

OH
$$N_2$$
 OEt N_2 OEt N_2 OET N_2 OET N_2 OET N_2 OET N_3 OET N_4 OET N_4 OET N_4 OET N_5 OET N_6 OET N

Scheme 7

Table. Reaction Conditions Applied in Attempted Synthesis of 3b from 20

Reagent	Base	Solvent	Temp. [°]
CICOOEt	LDA	THF	-80-20
ClCOOEt	NaH	THF/DMF	Reflux
(EtO) ₂ CO	NaH	THF	Reflux
(EtO) ₂ CO	NaOEt	EtOH	Reflux

The failure in synthesizing **7** (*Scheme 4*) and in attempts to introduce the 2-ethoxycarbonyl group to morpholin-3-one **20** (*Scheme 7*), coupled with the successful preparation of **5b**, stimulated us to consider the Rh₂(OAc)₄-catalyzed carbene insertion reaction also for preparing alkyl 4-(4-nitrophenyl)-3-oxomorpholine-2-carboxylates **3**. In our first attempt to exploit the Rh₂(OAc)₄-catalyzed intramolecular O–H insertion reaction, we planned to prepare **3b** by nitration of the known ethyl 3-oxo-4-phenylmorpholine-2-carboxylate (**4**) [14] obtained from ethyl 2-diazo-3-[(2-hydroxyethyl)(phenyl)amino]-3-oxopropanoate (**6**; *Scheme 8*). Although the synthesis of **4** has been described and could be repeated in low yields, we developed another synthetic pathway for its preparation. 2-(Phenylamino)ethanol (**17**) was *N*-acylated with ethyl 3-chloro-3-oxopropanoate (**21**) to afford ethyl 3-[(2-hydroxyethyl)(phenyl)amino]-3-oxopropanoate (**22**). In this case, stimulated by the NO₂ group, *N*-acylation took place rather than the *O*-acylation in case of the substrate **8**. In the next step, TsN₃ (**23**) was

used as a reagent to introduce the diazo group³) at C(2) of **22** to give **6**, which was cyclized to compound **4** using Rh₂(OAc)₄ catalysis. Compound **4** was then nitrated in HNO₃/H₂SO₄, but ¹H-NMR analysis of the crude product indicated nitration of the Ph ring in the *ortho*- and *para*-positions⁴), and absence of the COOEt group, rendering this last step unpromising for the synthesis of **3b**. Methyl 2-diazo-3-[(2-hydroxyethyl)(4-nitrophenyl)amino]-3-oxopropanoate (**28**), a *p*-NO₂ derivative of **6**, was, therefore, prepared (*Scheme 9*), and synthesis of the desired methyl 4-(4-nitrophenyl)-3-oxomorpholine-2-carboxylate (**3a**) attempted by analogy to the synthesis of **4** [14] (*cf. Scheme 2*).

To this end, 4-nitroaniline (**24**) was first *N*-acylated with **10**, and the resulting methyl 3-[(4-nitrophenyl)amino]-3-oxopropanoate (**25**) was subjected to diazotization with TsN₃ (**23**). The product was isolated from Et₂O as the Et₃NH⁺ salt **26**, which, due to the increased nucleophilicity of its amide N-atom, reacted smoothly in the nucleophilic substitution of 2-bromoethanol (**27**) to afford **28**. However, when **28** was treated with Rh₂(OAc)₄ in CH₂Cl₂ at room temperature, followed by refluxing in CH₂Cl₂, benzene, THF, or H₂O, intramolecular carbene insertion into the O–H bond did not take place, and **3a** could not be obtained by this strategy. To explore whether failure of cyclization was due to an unfavorable distance of the OH to the N₂ group of **28**, methyl 2-diazo-3-[(3-hydroxypropyl)(4-nitrophenyl)amino]-3-oxopropanoate (**31**) and methyl 2-diazo-

³⁾ Acylation of CH₂N₂ by the reaction of CH₂N₂ with acyl halides or anhydrides, and diazo transfer of an azide reagent to the C-atom adjacent to a C=O group are two basic methods for preparation of α-diazocarbonyl compounds.

⁴⁾ Chemical shifts and coupling constants of three aromatic H-atoms in the ¹H-NMR spectrum of the product: 8.86 (d, J_m = 2.5), 8.57 (dd, J_o = 8.7, J_m = 2.5), 7.70 (d, J_o = 8.7).

3-{[2-(hydroxymethyl)benzyl](4-nitrophenyl)amino}-3-oxopropanoate (32) were prepared from 26 (*Scheme 9*). They also could not be cyclized in the presence of Rh₂(OAc)₄, indicating that the synthetic pathway used to prepare 4 [14] is not generally applicable. Since synthesis of ethyl 4-(4-nitrophenyl)-2-oxomorpholine-3-carboxylate (5b; *Scheme 6*) was accomplished despite the presence of the NO₂ group, we concluded that the latter does not affect the activity of Rh₂(OAc)₄ as catalyst. Instead of an indepth analysis to explain these unsuccessful attempts at cyclization, we explored an alternative synthetic pathway for the construction of the 3-oxomorpholine skeleton. Methyl 3-[(4-nitrophenyl)amino]-3-oxopropanoate (25) was subjected to diazotization with TsN₃ (23) in the presence of 1,8-diazabicycloundec-7-ene (DBU) to give methyl 2-diazo-3-[(4-nitrophenyl)amino]-3-oxopropanoate (33), which could also be obtained by treating a CH₂Cl₂ solution of 26 with 10% citric acid. Compound 33 and 2-

bromoethanol (27), in the presence of $Rh_2(OAc)_4$, afforded methyl 2-(2-bromoethoxy)-3-[(4-nitrophenyl)amino]-3-oxopropanoate (34), which finally gave $3a^5$) [17] by intramolecular nucleophilic substitution (*Scheme 9*).

3. Conclusions. – As a result of in-depth studies of several feasible approaches towards the synthesis of alkyl *N*-(4-nitrophenyl)-3/2-oxomorpholine-2/3-carboxylates, we have developed successful strategies for Rh₂(OAc)₄-catalyzed preparation of methyl 4-(4-nitrophenyl)-3-oxomorpholine-2-carboxylate (**3a**) starting from 4-nitroaniline, and of ethyl 4-(4-nitrophenyl)-2-oxomorpholine-3-carboxylate (**5b**) starting from 2-[(4-nitrophenyl)amino]ethanol. Both compounds are important intermediates in the synthesis of compounds with potential cardiovascular activities and, in general, versatile building blocks for the synthesis of bioactive compounds of pharmaceutical interest.

Experimental Part

General. Chemicals obtained from Aldrich Chemical Co., Acros, and Alfa Aesar were used without purification. Anal. TLC: Merck silica gel (60 F_{254}) plates (0.25 mm); visualization with UV light and ninhydrin. Column chromatography (CC): silica gel 60 (SiO₂; particle size 240–400 mesh; Merck). M.p.: Reichert hot-stage microscope; uncorrected. IR Spectra: Perkin–Elmer FT-IR System Spectrum BX or Nicolet Nexus 470 FT-IR spectrometer. 1 H- and 1 C-NMR spectra: at 300 (400) and 75 (100) MHz, resp., on a Bruker AVANCE DPX300 or a Bruker AVANCE III spectrometer in (D₆)DMSO or CDCl₃ at 295K; spectra assigned by using gradient COSY, HSQC, and HMBC experiments. MS: VG Analytical Autospec Q mass spectrometer. Microanalyses: Perkin-Elmer C,H,N analyzer 240 C. All reported yields refer to purified products.

2-[(4-Nitrophenyl)amino]ethanol (8) [16]. 2-Aminoethanol (3.02 ml, 50 mmol) and 1-fluoro-4-nitrobenzene (7.76 g, 55 mmol) were dissolved in DMSO (75 ml). After addition of anh. K_2CO_3 (10.37 g, 75 mmol), the mixture was stirred for 15 h at 55°. The mixture was then poured into cold H_2O (500 ml) and extracted with AcOEt (3 × 100 ml), which was further dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was recrystallized from MeOH to yield 8 (7.32 g, 80%). M.p.108 – 111° ([16]: 108°). ¹H-NMR (300 MHz, CDCl₃): 8.12 (d, J = 9.2, H–C(3), H–C(5)); 6.60 (d, J = 9.2, H–C(2), H–C(6)); 4.87 (s, NH); 3.93 (q, J = 5.3, CH₂OH); 3.42 (q, J = 5.3, NHCH₂); 1.61 (t, J = 5.1, OH).

Methyl 2-[(4-Nitrophenyl)amino]ethyl 2-Bromopropanedioate (12) and 2-[(2-Bromo-3-methoxy-3-oxopropanoyl)(4-nitrophenyl)amino]ethyl Methyl 2-Bromopropanedioate (12a). A soln. of Br₂ (0.80 g, 5 mmol) in anh. CCl₄ (2.5 ml) was added dropwise to a stirred boiling soln. of methyl 3-chloro-3-oxopropanoate (0.68 g, 5 mmol) in the same solvent (10 ml). The mixture was then stirred for 15 h at r.t., and the solvent was removed under reduced pressure. Half of the crude product, which was according to the ¹H-NMR spectrum identified as a mixture [18] of methyl 2-bromo-3-chloro-3-oxopropanoate (9) and methyl 2,3-dibromo-3-oxopropanoate, was dissolved in THF (3 ml) and added to the soln. of 8 (0.45 g, 2.5 mmol) and K_2CO_3 (0.52 g, 3.75 mmol) in THF (10 ml) at 0°. The mixture was, after 2 h at 0°, poured into H₂O (15 ml) and extracted with AcOEt (3 × 15 ml). The org. phase was dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The residue was purified by flash CC (FCC; CH₂Cl₂/MeOH; 99:1) to afford 12 and 12a.

Data of **12**. Yield: 11%. Yellow oil. IR (neat): 3398, 2975, 1741, 1605, 1480, 1311, 1205, 1145, 1113, 1035, 911, 839, 753, 662, 628, 569, 492. ¹H-NMR (300 MHz, CDCl₃): 8.12 (*d*, *J* = 9.2, H–C(3), H–C(5));

Methyl 2-[(4-nitrophenyl)carbamoyl]oxetane-2-carboxylate was isolated as a by-product resulting from undesired intramolecular nucleophilic substitution of the Br-atom with the carbanion resulting from H-atom abstraction from malonic intermediate 34.

6.61 (d, J = 9.2, H–C(2), H–C(6)); 4.90 (s, CHBr); 4.85 (t, J = 9.1, NH); 4.47 – 4.53 (m, CH₂O); 3.85 (s, Me); 3.59 (dd, J = 5.9, CH₂N). ¹³C-NMR (75 MHz, CDCl₃): 41.3 (BrCH); 41.9 (NHCH₂); 54.2 (Me); 64.9 (CH₂O); 111.4 (C(2), C(6)); 126.5 (C(3), C(5)); 138.5 (C(4)); 152.8 (C(1)); 164.6 (CH₂OCO); 165.4 (COOMe). ESI-MS: 362 (f, f = f

Data of **12a**. Yield: 6%. Yellow oil. IR (neat): 2958, 1744, 1676, 1594, 1525, 1436, 1348, 1310, 1151, 1014, 856, 756, 700. 1 H-NMR (300 MHz, CDCl₃): 8.38 (d, J = 8.9, H–C(3), H–C(5)); 7.62 (d, J = 8.9, H–C(2), H–C(6)); 4.81 (s, BrCH); 4.73 (s, BrCH); 4.45 (t, J = 4.8, CH₂O); 4.10 (t, J = 4.8, CH₂N); 3.84 (s, Me); 3.82 (d, J = 2.3, Me). ESI-MS: 542 (0.15, $[M+H]^+$ for 81 Br), 540 (0.3, $[M+H]^+$ for 81 Br), 538 (0.15, $[M+H]^+$ for 79 Br), 151 (100). HR-ESI-MS: 537.9238 ($[M+H]^+$, C_{16} H₁₆Br₂N₂O $_{9}^+$; calc. 537.9222).

Methyl 2-[(4-Nitrophenyl)amino]ethyl Propanedioate (13) and 2-[(3-Methoxy-3-oxopropanoyl)(4-nitrophenyl)amino]ethyl Methyl Propanedioate (13a). Compound 10 (1.37 g, 10 mmol) was diluted with THF (5 ml) and added to the soln. of 8 (1.81 g, 10 mmol) and K_2CO_3 (1.86 g, 13.5 mmol) in THF (15 ml) at 0° . The mixture was, after 2 h at 0° , poured into H_2O (25 ml) and extracted with AcOEt (3 × 25 ml). The org. phase was dried (Na₂SO₄), filtered, and concentrated under reduced pressure. Residue was purified by FCC (CH₂Cl₂/MeOH, 49:1) to furnish 13 and 13a.

Data of **13**. Yield: 29%. Yellow oil. IR (neat): 3349, 1758, 1604, 1551, 1472, 1436, 1286, 1036, 905, 833, 753, 697, 680, 573. 1 H-NMR (300 MHz, CDCl₃): 8.08 (d, J = 9.2, H–C(3), H–C(5)); 6.59 (d, J = 9.2, H–C(2), H–C(6)); 4.73 (s, NH); 4.41 (t, J = 5.4, CH₂O); 3.75 (s, Me); 3.54 (t, J = 5.4, CH₂N); 3.43 (s, COCH₂CO). 13 C-NMR (75 MHz, CDCl₃): 41.2 (COCH₂CO); 42.1 (NHCH₂); 52.8 (Me); 63.3 (CH₂O); 111.3 (C(2), C(6)); 126.4 (C(3), C(5)); 138.4 (C(4)); 152.9 (C(1)); 166.5 (CH₂OCOCH₂); 167.3 (COOMe). ESI-MS: 283 (18, $[M+H]^+$), 165 (100). HR-ESI-MS: 283.0930 ($[M+H]^+$, C₁₂H₁₅N₂O₆; calc. 283.0930). Anal. calc. for C₁₂H₁₄N₂O₆ (282.09): C 51.06, H 5.00, N 9.93; found: C 51.28, H 4.92, N 9.89.

Data of **13a**. Yield: 18%. Yellow oil. IR (neat): 2956, 1740, 1670, 1594, 1347, 1155, 1015, 856, 757, 702.

¹H-NMR (300 MHz, CDCl₃): 8.32 (d, J = 9.0, H−C(3), H−C(5)); 7.52 (d, J = 9.0, H−C(2), H−C(6)); 4.34 (t, J = 5.3, CH₂O); 4.07 (t, J = 5.3, CH₂N); 3.74 (t, Me); 3.69 (t, Me); 3.33 (t, COCH₂CO); 3.26 (t, COCH₂CO). ESI-MS: 383 (5, $[M+H]^+$), 265 (100). HR-ESI-MS: 383.1086 ($[M+H]^+$, C₁₆H₁₉N₂O⅓; calc. 383.1091). Anal. calc. for C₁₆H₁₈N₂O₃ (382.10): C 50.26, H 4.75, N 7.33; found: C 50.44, H 4.90, N 7.41

2-[(2-Bromo-4-nitrophenyl)amino]ethyl Methyl Propanedioate (14) and 2-[(2-Bromo-4-nitrophenyl)amino]ethyl Methyl 2-Bromopropanedioate (14a). A soln. of Br₂ (1.36 g, 8.5 mmol) in anh. CCl₄ (5 ml) was added dropwise to a stirred boiling soln. of 13 (1.74 g, 6.17 mmol) in CH₂Cl₂/CCl₄ (15 ml). The mixture was then stirred for 15 h at r.t., and the solvent was removed under reduced pressure. The residue was purified by FCC (CH₂Cl₂/MeOH (99:1) to give 14 and 14a.

Data of **14.** Yield: 55%. Yellow oil. IR (neat): 3383, 2956, 1736, 1593, 1502, 1327, 1154, 1119, 1031, 897, 747, 689. 1 H-NMR (300 MHz, CDCl₃): 8.39 (d, J = 2.6, H–C(3)); 8.13 (dd, J = 9.1, 2.5, H–C(5)); 6.66 (d, J = 9.1, H–C(6)); 5.41 (t, NH); 4.45 (t, J = 5.5, CH₂O); 3.76 (t, Me); 3.62 (t, t = 11.0, 5.6, CH₂N); 3.45 (t, COCH₂CO). ESI-MS: 363 (10, [t + H]+ for t for t = 100, 361 (10, [t + H]+ for t for t = 100, 243 (100), 245 (100). HR-ESI-MS: 361.0036 ([t + H]+, C₁₂H₁₄BrN₂O $_{t}$; calc. 361.0035). Anal. calc. for C₁₂H₁₃BrN₂O₆ (360.00): C 39.91, H 3.63, N 7.76; found: C 40.18, H 3.48, N 7.76.

Data of **14a**. Yield: 17%. Yellow oil. IR (neat): 3390, 3087, 2957, 2641, 2443, 2229, 1744, 1593, 1501, 1450, 1394, 1324, 1155, 1120, 1029, 897, 814, 746, 647. 1 H-NMR (300 MHz, CDCl₃): 8.34 (d, J = 2.5, H–C(3)); 8.09 (dd, J = 9.1, 2.5, H–C(5)); 6.66 (d, J = 9.1, H–C(6)); 5.39 (t, J = 5.3, NH); 4.91 (s, BrCH); 3.82 (s, Me); 4.50 (m, CH₂O); 3.65 (dd, J = 11.1, 5.7, CH₂N). ESI-MS: 443 (22, [M + H] $^{+}$) for 81 Br, 441 (45, [M + H] $^{+}$ for 81 Br), 439 (22, [M + H] $^{+}$ for 79 Br), 243 (100). HR-ESI-MS: 438.1330 ([M + H] $^{+}$, C₁₂H₁₃Br₂N₂O $_{6}^{+}$; calc. 438.9140).

Ethyl 3-Chloro-2-diazo-3-oxopropanoate (15) [14]. To a stirred soln. of triphosgene (6.50 g, 21.9 mmol) in anh. benzene (30 ml) at 0° , anh. pyridine (200 μ l) was added causing the formation of a white precipitate. To this suspension, diazoacetate (5.70 ml, 54.3 mmol) was added at such a rate that the temp. of the mixture did not rise above 10° . After 20 h at r.t., the soln. was filtered through *Celite* and concentrated under reduced pressure. Bulb-to-bulb distillation of residue provided 15 (3.05 g, 79%).

Yellow oil. B.p. $90-95^{\circ}$ (<1 mbar). 1 H-NMR (300 MHz, CDCl₃): 4.30 (q, J = 7.2, CH₂); 1.29 (t, J = 7.2, Me).

Ethyl 2-[(4-Nitrophenyl)amino]ethyl 2-Diazopropanedioate (**16**). A soln. of **15** (353 mg, 2 mmol) in CH₂Cl₂ (3 ml) was added dropwise to a stirred soln. of **8** (364 mg, 2 mmol) and Et₃N (306 μl, 2.2 mmol) in CH₂Cl₂ (10 ml) at 0°. After 20 h at r.t., the solvent was evaporated under reduced pressure. The residue was purified by FCC (AcOEt/hexane, 2:1) to afford **16** (390 mg, 61%). Yellow crystals. M.p. $105-108^\circ$. IR (ATR): 3358, 2961, 2136, 1746, 1593, 1531, 1463, 1337, 1295, 1184, 1146, 1072, 834, 750, 698, 599. ¹H-NMR (300 MHz, CDCl₃): 8.09 (d, J = 9.2, H-C(3), H-C(5)); 6.60 (d, J = 9.2, H-C(2), H-C(6)); 5.08 (s, NH); 4.50 (t, J = 5.4, CH₂O); 4.32 (q, J = 7.1, MeCH₂); 3.57 (dd, J = 11.0, 5.6, NHCH₂); 1.33 (t, J = 7.1, Me). ¹H-NMR (300 MHz, (D₆)DMSO): 8.00 (d, J = 9.3, H-C(3), H-C(5)); 7.35 (t, J = 5.9, NH); 6.70 (d, J = 9.3, H-C(2), H-C(6)); 4.31 (t, J = 5.5, CH₂O); 4.20 (q, J = 7.2, MeCH₂); 3.50 (dd, J = 11.1, 5.6, NHCH₂); 1.21 (t, J = 7.1, Me). ¹³C-NMR (75 MHz, (D₆)DMSO): 14.1 (Me); 41.0 (CH₂N); 61.1 (MeCH₂); 63.3 (CH₂O); 64.8 (CN₂); 110.9 (C(2), C(6)); 126.2 (C(3), C(5)); 135.9 (C(4)); 154.4 (C(1)); 156.0 (CH₂CH₂OCO); 160.2 (COO). ESI-MS: 323.1 (58, [M + H]⁺), 165.1 (100). HR-ESI-MS: 323.0991 ([M + H]⁺, C₁₃H₁₅N₄O_{ϕ}⁺; calc. 323.0992).

Ethyl 4-(4-Nitrophenyl)-2-oxomorpholine-3-carboxylate (**5b**). To a stirred soln. of **16** (0.97 g, 3 mmol) in CH₂Cl₂ (30 ml), Rh₂(OAc)₄ (7 mol-%) was added, and the mixture was stirred for 4 d at r.t. The solvent was evaporated under reduced pressure, and residue was purified by FCC (AcOEt/hexane; 2:1) to furnish **5b** (354 mg, 40%). Yellow oil. IR (ATR): 3380, 2922, 1751, 1594, 1497, 1465, 1376, 1322, 1277, 1227, 1194, 1110, 1065, 1015, 980, 944, 831, 752, 712, 693, 655, 629, 579. 1 H-NMR (300 MHz, CDCl₃): 8.20 (d, J = 9.5, H–C(3), H–C(5)); 6.73 (d, J = 9.4, H–C(2), H–C(6)); 5.19 (s, CH); 4.59 –4.77 (m, CH₂O); 4.36 (ddd, J = 14.3, 7.1, 2.1, MeCH₂); 3.75 – 3.80 (m, CH₂N); 1.36 (t, J = 7.2, Me). 13 C-NMR (75 MHz, CDCl₃): 14.0 (Me); 42.8 (CH₂N); 62.3 (CH); 63.6 (MeCH₂); 65.1 (CH₂O); 111.2 (C(2), C(6)); 126.1 (C(3), C(5)); 139.6 (C(4)); 151.0 (C(1)); 163.0 (CH₂CH₂OCO); 166.6 (COO). ESI-MS: 295.1 (100, $[M+H]^+$). HR-ESI-MS: 295.0941 ($[M+H]^+$, C₁₃H₁₅N₂O₆; calc. 295.0930).

4-Phenylmorpholin-3-one (19) [18]. To a stirred soln. of 17 (12.54 ml, 100 mmol) in EtOH (12.75 ml) and H₂O (38.25 ml), 18 (23.88 ml, 300 mmol) and 45% soln. of NaOH (6.2 equiv.) were added concurrently at such a rate that the temp. remained between 35° and 45°, and pH between 12 and 12.5. After 1 h at r.t., the mixture was stirred on an ice bath for 30 min. The precipitate was filtered off, washed with H₂O, and dried to constant mass at 50° to yield 19 (11.87 g, 67%). White crystals. M.p. $113-115^{\circ}$ ([18]: 114°). ¹H-NMR (300 MHz, (D₆)DMSO): 7.38-7.40 (m, H-C(2), H-C(3), H-C(5), H-C(6)); 7.26-7.30 (m, H-C(4)); 4.21 (s, CH₂CO); 3.98 (t, t = 5.1, CH₂O); 3.74 (t, t = 5.1, CH₂N).

4-(4-Nitrophenyl)morpholin-3-one (20) [18]. Conc. HNO₃ (4 ml) was added dropwise to a stirred soln. of 19 (10 g, 56.5 mmol) in conc. H_2SO_4 (24 ml) at −5° over 1 h. The mixture was stirred at −5° for another h and then diluted with brine (75 ml). The obtained soln. was neutralized with 25% NH₃ soln., diluted with acetone (150 ml), and heated to 40°. The org. phase was separated in separatory funnel, concentrated to *ca.* 25% of its volume under reduced pressure and cooled to 5−10°. The precipitate was filtered off, washed with cold acetone, and dried to afford 20 (5.25 g, 42%). Light-brown crystals. M.p. 148−151° ([18]: 152°). 1 H-NMR (300 MHz, CDCl₃): 8.27 (d, J = 9.2, H−C(3), H−C(5)); 7.77 (d, J = 9.2, H−C(2), H−C(6)); 4.28 (s, CH₂CO); 4.00−4.03 (m, CH₂O); 3.84−3.88 (m, CH₂N).

Ethyl 3-[(2-Hydroxyethyl)(phenyl)amino]-3-oxopropanoate (22). A soln. of 21 (5.79 ml, 45 mmol) in CH₂Cl₂ (10 ml) was added dropwise to a stirred soln. of 17 (5.01 ml, 40 mmol) and Et₃N (6.68 ml, 48 mmol) in CH₂Cl₂ (80 ml) at 0°. After 24 h at r.t., the mixture was washed successively with 1M HCl (2 × 50 ml) and brine (1 × 50 ml). The org. phase was dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The residue was purified by FCC (AcOEt/hexane; 3:1) to yield 22 (3.41 g, 34%). Colorless oil. IR (ATR): 3397, 2983, 1735, 1643, 1593, 1494, 1401, 1368, 1321, 1242, 1154, 1074, 1052, 1027, 946, 849, 771, 701, 663, 558. ¹H-NMR (400 MHz, (D₆)DMSO): 7.34 – 7.48 (m, H–C(2), H–C(3), H–C(4), H–C(5), H–C(6)); 4.73 (t, t = 5.6, OH); 3.98 (t = 7.1, MeCH₂); 3.69 (t , t = 6.5, CH₂N); 3.46 (t = 6.2, CH₂OH); 3.12 (t , COCH₂CO); 1.11 (t , t = 7.1, Me). ¹³C-NMR (100 MHz, (D₆)DMSO): 13.9 (Me); 41.8 (COCH₂CO); 51.1 (CH₂N); 57.7 (CH₂OH); 60.4 (MeCH₂); 128.0 (C(4)); 128.3 (C(2), C(6)); 129.6 (C(3), C(5)); 142.1 (C(1)); 165.3 (NCO); 167.3 (COO). ESI-MS: 252.1 (100, [t + H]⁺). HR-ESI-MS: 252.1232 ([t + H]⁺, C₁₃H₁₈NO₄⁺; calc. 252.1236).

Ethyl 2-Diazo-3-[(2-hydroxyethyl)(phenyl)amino]-3-oxopropanoate (6). To a soln. of **22** (2.84 g, 11.3 mmol) and Et₃N (1.57 ml, 11.3 mmol) in MeCN (30 ml) TsN₃ (**23** [19]; 2.40 g, 11.3 mmol) was added dropwise, and the mixture was stirred for 15 h at r.t. The solvent was evaporated under reduced pressure. The residue was purified by FCC (AcOEt/hexane; 2:1) to, yield **6** (1.38 g, 44%). Yellow oil. IR (ATR): 3434, 2982, 2115, 1717, 1628, 1591, 1493, 1436, 1387, 1287, 1171, 1115, 1075, 1033, 896, 845, 748, 698, 680, 618, 595, 574, 528. ¹H-NMR (400 MHz, (D₆)DMSO): 7.37 – 7.42 (m, H–C(2), H–C(3), H–C(5), H–C(6)); 7.25 – 7.29 (m, H–C(4)); 4.79 (t, t = 5.6, OH); 3.92 (t = 7.1, MeCt = 7.1, MeCt = 7.1, MeCt = 7.1, MeCt = 8.2, CH₂OH); 1.03 (t = 7.1, Me). ¹³C-NMR (100 MHz, (D₆)DMSO): 14.0 (CH₂t = 5.6, CH₂N); 57.8 (CH₂OH); 60.9 (MeCt = 6.54 (CN₂); 126.5 (C(2), C(6)); 126.6 (C(4)); 129.1 (C(3), C(5)); 142.6 (C(1)); 159.4 (NCO); 161.4 (COO). ESI-MS: 278.1 (100, [t + H]t + 1. HR-ESI-MS: 278.1136 ([t + H]t + 1. C₁₃H₁₆N₃Ot + calc. 278.1141).

Ethyl 3-Oxo-4-phenylmorpholine-2-carboxylate (4) [14]. Compound 6 (985 mg, 3.55 mmol) was dissolved in CH₂Cl₂ (35 ml). Rh₂(OAc)₄ (12 mol-%) was added, and the mixture was stirred for 48 h at r.t. The residue obtained after solvent removal was purified by FCC (CH₂Cl₂/MeOH; 49:1) to furnish 4 (541 mg, 61%). Colorless oil. IR (ATR): 2982, 1740, 1663, 1595, 1494, 1470, 1427, 1376, 1316, 1257, 1191, 1150, 1123, 1098, 1025, 949, 852, 761, 695, 609, 561. 1 H-NMR (400 MHz, (D₆)DMSO): 7.38 – 7.46 (m, H–C(2), H–C(3), H–C(5), H–C(6)); 7.28 – 7.32 (m, H–C(4)); 4.94 (s, CH); 4.17 – 4.25 (m, MeC H_2 , 1 H of CH₂N); 4.06 (td, J = 12.0, 5.1, 1 H of CH₂N); 3.81 (t, J = 5.1, CH₂O); 1.23 (t, J = 7.1, Me). 13 C-NMR (100 MHz, (D₆)DMSO): 13.9 (CH2 Me); 48.9 (CH₂O); 61.3 (CH2 Me); 62.1 (CH₂N); 76.7 (CH); 125.3 (C(2), C(6)); 126.7 (C(4)); 128.9 (C(3), C(5)); 141.3 (C(1)); 162.6 (NCO); 167.3 (COO). ESI-MS: 250.1 (100, [M + H] $^+$). HR-ESI-MS: 250.1071 ([M + H] $^+$, C_{13} H₁₆NO $_4^+$; calc. 250.1079).

Methyl 3-[(4-Nitrophenyl)amino]-3-oxopropanoate (**25**). A soln. of **10** (3.22 ml, 30 mmol) in CH₂Cl₂ (10 ml) was added dropwise to a stirred soln. of **24** (4.14 g, 30 mmol) and Et₃N (5.01 ml, 36 mmol) in CH₂Cl₂ (80 ml) at 0°. After 24 h at r.t., the mixture was washed successively with 1m HCl (2 × 30 ml) and brine (2 × 30 ml). The org. phase was dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was taken up in 100 ml of Et₂O and filtered to afford **25** (5.28 g, 74%). Beige crystals. M.p. 147−150°. IR (ATR): 3314, 3094, 1721, 1665, 1618, 1596, 1570, 1507, 1426, 1337, 1246, 1197, 1171, 1112, 1000, 971, 906, 857, 826, 790, 751, 692, 614, 583, 533. ¹H-NMR (400 MHz, (D₆)DMSO): 10.79 (*s*, NH); 8.23 (*d*, J = 9.2, H−C(3), H−C(5)); 7.82 (*d*, J = 9.2, H−C(2), H−C(6)); 3.68 (*s*, Me); 3.57 (*s*, COCH₂CO). ¹³C-NMR (100 MHz, (D₆)DMSO): 43.6 (CH₂); 52.1 (Me); 118.8 (C(2), C(6)); 125.0 (C(3), C(5)); 142.4, 144.8 (C(1), C(4)); 165.0 (NCO); 167.7 (COO). ESI-MS: 239.0664 ([M + H] $^+$), 139.0 (100). HR-ESI-MS: 239.0664 ([M + H] $^+$, C₁₀H₁₁N₂O $_5$; calc. 239.0668).

N,N-Diethylethanaminium (2-Diazo-3-methoxy-3-oxopropanoyl)(4-nitrophenyl)azanide (26). To a soln. of 25 (5.24 g, 22 mmol) and Et₃N (3.06 ml, 22 mmol) in MeCN (50 ml), 23 [19] (4.69 g, 22 mmol) was added dropwise, and the mixture was stirred for 15 h at r.t. The mixture was concentrated under reduced pressure. The crude product was recrystallized from MeOH/Et₂O to give 26 (4.74 g, (59%). Yellow crystals. M.p. 115 – 117°. IR (ATR): 2993, 2952, 2601, 2440, 2361, 1693, 1604, 1514, 1498, 1452, 1404, 1337, 1307, 1287, 1181, 1111, 1059, 975, 941, 901, 854, 837, 817, 783, 763, 750, 726, 690. 1 H-NMR (400 MHz, (D₆)DMSO): 9.00 (s, (MeCH₂)₃NH⁺); 8.42 (d, J = 9.4, H–C(3), H–C(5)); 8.30 (d, J = 9.4, H–C(2), H–C(6)); 3.64 (s, Me); 3.11 (q, J = 7.3, (MeCH₂)₃NH⁺); 1.17 (t, J = 7.3, (MeCH₂)₃NH⁺). 13 C-NMR (100 MHz, (D₆)DMSO): 8.6 (Me); 45.7 (CH₂); 49.5 (Me); 116.6 (CN₂); 117.2 (C(3), C(5)); 124.9 (C(2), C(6)); 143.1 (C(1)); 143.4 (C(4)); 159.7 ($^{-}$ NCO); 162.7 (COO). ESI-MS: 265.1 (100, [M + H]⁺). ESI-MS (neg.): 263.0 (100, [M - H]⁻). HR-ESI-MS: 265.0581 ([M + H]⁺, C₁₀H₉N₄O₅; calc. 265.0573). HR-ESI-MS (neg.): 263.0409 ([M - H]⁻, C₁₀H₇N₄O₅; calc. 263.0416).

General Procedure for the Preparation of Compounds 28, 31, and 32. To a soln. of 26 in THF (0.1M), the corresponding alcohol (5 equiv. of 27 or 1.5 equiv. of 29, or 1.25 equiv. of 30) was added. The mixture was stirred for 2-3 d at 66° , and then the solvent was evaporated under reduced pressure. The residue was purified by FCC (CH₂Cl₂/MeOH, 49:1) to afford 28 and 31, or, recrystallized from MeOH, 32.

Methyl 2-Diazo-3-[(2-hydroxyethyl)(4-nitrophenyl)amino]-3-oxopropanoate **(28)**. Yield: 734 mg (36%). Pale-yellow crystals. M.p. 173–177°. IR (ATR): 3449, 3115, 3079, 1703, 1671, 1594, 1523, 1476, 1434, 1384, 1345, 1264, 1234, 1200, 1146, 1117, 1072, 1051, 963, 934, 884, 855, 808, 772, 749, 728, 694, 626, 604, 544. ¹H-NMR (400 MHz, (D₆)DMSO): 8.45 (*d*, *J* = 9.2, H–C(3), H–C(5)); 8.27 (*d*, *J* = 9.2, H–C(2), H–C(6)); 5.01 (*t*, *J* = 6.2, OH); 4.76 (*t*, *J* = 5.2, CH₂N); 3.88 (*dd*, *J* = 10.7, 5.8, CH₂OH); 3.82 (*s*, Me).

¹³C-NMR (100 MHz, (D_6)DMSO): 51.5 (Me); 57.5 (CH₂N); 58.9 (CH₂OH); 108.6 (CN₂); 120.9 (C(2), C(6)); 125.2 (C(3), C(5)); 139.8 and 146.0 (C(1), C(4)); 155.3 (NCO); 158.8 (COO). ESI-MS: 309.1 (100, $[M+H]^+$). HR-ESI-MS: 309.0831 ($[M+H]^+$, $C_{12}H_{13}N_4O_6^+$; calc. 309.0835).

Methyl 2-Diazo-3-{[2-(hydroxymethyl)benzyl](4-nitrophenyl)amino}-3-oxopropanoate (**32**). Yield: 184 mg (24%). Pale-yellow crystals. M.p. 215 − 217°. IR (ATR): 3374, 3051, 2957, 2879, 1704, 1666, 1593, 1512, 1469, 1383, 1345, 1204, 1147, 1109, 1061, 1016, 939, 856, 748, 690, 620, 582. ¹H-NMR (400 MHz, (D₆)DMSO): 8.45 (*d*, J = 9.3, H−C(3), H−C(5)); 8.25 (*d*, J = 9.3, H−C(2), H−C(6)); 7.46 (*d*, J = 7.5, H−C(3')); 7.35 (*dt*, J = 7.5, 1.5, 1 H of H−C(4')/H−C(5')); 7.27 (*dt*, J = 7.4, 1.4, 1 H of H−C(4')/H−C(5')); 7.10 (*d*, J = 7.6, H−C(6')); 6.02 (*s*, CH₂N); 5.29 (*t*, J = 5.4, OH); 4.68 (*d*, J = 5.3, CH₂OH); 3.76 (*s*, Me). ¹³C-NMR (100 MHz, (D₆)DMSO): 51.6 (Me); 54.7 (CH₂N); 61.0 (CH₂OH); 109.0 (CN₂); 121.0 (C(2), C(6)); 125.1 (C(3), C(5)); 126.9, 127.5, 127.8, 128.1 (C(3'), C(4'), C(5'), C(6')); 131.5, 139.8 (C(1'), C(2')); 139.9 (C(1)); 146.0 (C(4)); 155.1 (NCO); 158.6 (COO). ESI-MS: 385.1 (100, [M + H] $^+$). HR-ESI-MS: 385.1138 ([M + H] $^+$, C₁₈H₁₇N₄O $^+$; calc. 385.1148).

Methyl 2-Diazo-3-[(4-nitrophenyl)amino]-3-oxopropanoate (**33**). To a soln. of **25** (2.38 g, 10 mmol) and **23** [19] (2.13 g, 10 mmol) in MeCN (50 ml), DBU (2.25 ml, 15 mmol) was added dropwise, and the mixture was stirred for 15 h at r.t. The solvent was evaporated under reduced pressure. The residue was dissolved in CH₂Cl₂ (75 ml) and washed with 10% citric acid soln. (3 × 50 ml). The org. phase was dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was recrystallized from MeOH to afford **33** (1.92, 73%). Pale-yellow crystals (stored in closed container at 2−8°!). M.p. 178−180°. IR (ATR): 3274, 3220, 3087, 2963, 2144, 1683, 1655, 1608, 1601, 1553, 1503, 1440, 1410, 1329, 1278, 1247, 1200, 1172, 1110, 949, 854, 819, 783, 751, 726, 685, 535. ¹H-NMR (400 MHz, (D₆)DMSO): 9.98 (s, NH); 8.24 (d, J = 9.2, H−C(3), H−C(5)); 7.88 (d, J = 9.3, H−C(2), H−C(6)); 3.87 (s, Me). ¹³C-NMR (100 MHz, (D₆)DMSO): 52.9 (Me); 68.7 (CN₂); 119.5 (C(2), C(6)); 125.0 (C(3), C(5)); 142.7 and 143.8 (C(1), C(4)); 159.0 (NCO); 163.7 (COO). ESI-MS: 265.1 (68, [M+H]⁺). HR-ESI-MS: 265.0566 ([M+H]⁺, C₁₀H₉N₄O⁺; calc. 265.0573).

Methyl 2-(2-Bromoethoxy)-3-[(4-nitrophenyl)amino]-3-oxopropanoate (**34**). Compound **33** and 2-bromoethanol (**27**; 1 equiv.) were dissolved in CH₂Cl₂ (0.065M). Rh₂(OAc)₄ (7 mol-%) was added, and the mixture was stirred for 15 h at r.t. After removal of undissolved Rh₂(OAc)₄, which was dried and successfully reused, the solvent was evaporated under reduced pressure. The residue was purified by FCC (AcOEt/hexane; 1:2) to afford **34** (1.05 g, 46%). Pale-yellow crystals. M.p. 128−133°. IR (ATR): 3295, 3108, 1744, 1696, 1618, 1596, 1559, 1507, 1437, 1410, 1377, 1344, 1293, 1255, 1231, 1169, 1109, 1065, 978, 941, 918, 857, 841, 774, 749, 688, 628, 610, 567. ¹H-NMR (400 MHz, (D₆)DMSO): 10.73 (s, NH); 8.25 (d, J = 9.3, H−C(3), H−C(5)); 7.92 (d, J = 9.3, H−C(2), H−C(6)); 4.90 (s, CH); 3.97 (t, J = 5.8, CH₂O); 3.74 (s, Me); 3.68 (t, J = 5.8, BrCH₂). ¹³C-NMR (100 MHz, (D₆)DMSO): 31.4 (CH₂Br); 52.5 (Me); 70.5 (CH₂O); 7.7 (CH); 119.7 (C(2), C(6)); 124.9 (C(3), C(5)); 142.9, 144.1 (C(1), C(4)); 165.0 (NCO); 167.3 (COO). ESI-MS: 363.0 (92, $[M+H]^+$ for ⁸¹Br), 361.0 (100, $[M+H]^+$ for ⁷⁹Br). HR-ESI-MS: 361.0045 ($[M+H]^+$, C₁₂H₁₄BrN₂O[±]₆; calc. 361.0035).

Methyl 4-(4-Nitrophenyl)-3-oxomorpholine-2-carboxylate (3a). To a soln. of 34 (964 mg, 2.67 mmol) in MeCN (30 ml), K_2CO_3 (368 mg, 2.67 mmol) was added, and the resulting suspension was heated at 82° for 2 h. After solvent removal, the residue was dissolved in CH_2Cl_2 (60 ml) and washed with H_2O (2 × 30 ml). The org. phase was dried (Na_2SO_4), filtered, and concentrated under reduced pressure. The residue was purified by FCC ($CH_2Cl_2/AcOEt$; 19:1) to yield 3a and a side-product⁵). Prolongation of reaction time did not give 3a. Yield: 195 mg (26%). Yellow crystals. M.p. $132-135^\circ$. IR (ATR): 3111, 2957, 1743, 1660, 1607, 1590, 1513, 1490, 1472, 1432, 1377, 1343, 1319, 1291, 1255, 1225, 1201, 1151, 1126, 1103, 1032, 984, 968, 938, 856, 815, 752, 700, 606, 534. 1 H-NMR (400 MHz, (D_6)DMSO): 8.30 (d, J = 9.2,

H–C(3), H–C(5)); 7.75 (d, J = 9.2, H–C(2), H–C(6)); 5.07 (s, CH); 4.21 – 4.26 (m, CH₂N); 4.08 – 4.13 (m, CH₂N); 3.92 – 3.95 (m, CH₂O); 3.75 (s, Me). ¹³C-NMR (100 MHz, (D₆)DMSO): 48.2 (CH₂O); 52.6 (Me); 62.0 (CH₂N); 76.6 (CH); 124.2 (C(3), C(5)); 125.3 (C(2), C(6)); 144.8, 146.8 (C(1), C(4)); 163.1 (NCO); 167.6 (COO). ESI-MS: 281.1 (100, [M + H] $^+$). HR-ESI-MS: 281.0775 ([M + H] $^+$, C₁₂H₁₃N₂O $^+$; calc. 281.0774).

REFERENCES

- [1] U. Trstenjak, J. Ilaš, D. Kikelj, Synthesis 2012, 44, 3551.
- [2] U. Trstenjak, J. Ilaš, D. Kikelj, Eur. J. Med. Chem. 2013, 64, 302.
- [3] D. M. Aparicio, J. L. Terán, L. F. Roa, D. Gnecco, J. R. Juárez, M. L. Orea, A. Mendoza, M. S. Flores-Alamo, L. Micouin, Synthesis 2011, 2310.
- [4] H. Nisihida, F. Saitoh, T. Hirabayashi, S. Chackalamannil, T. Y. Chan, M. Chelliah, M. Clasby, M. P. Dwyer, W. J. Greenlee, Y. Xia, WO 2010065717, 2010; *Chem. Abstr.* 2010, 153, 62269.
- [5] C. Kashima, K. Harada, J. Chem. Soc., Perkin Trans. 1 1988, 1521.
- [6] T. D. Nelson, J. D. Rosen, K. M. J. Brands, B. Craig, M. A. Huffman, J. M. McNamara, Tetrahedron Lett. 2004, 45, 8917.
- [7] O.-Y. Zhang, J.-M. Xu, W.-Q. Chen, O. Wu, X.-F. Lin, Synlett 2008, 679.
- [8] L. V. Nechev, A. Dobrev, C. Ivanov, Bulg. Chem. Commun. 1992, 25, 509.
- [9] T. Yamanaka, H. Ohki, J. Ishida, A. Toda, Y. Harayama, T. Makino, S. Kunikawa, H. Mizuno, H. Ohtake, WO 2010139986, 2008; Chem. Abstr. 2008, 149, 576837.
- [10] A. J. Allen, S. Hemrick-Luecke, C. R. Sumner, O. B. Wallace, WO 2005060949, 2005; Chem. Abstr. 2005, 143, 115550.
- [11] D. R. Owen, D. J. Bull, M. E. Bunnage, M. S. Glossop, R. J. Maguire, R. S. Strang, Bioorg. Med. Chem. Lett. 2010, 20, 92.
- [12] A. Dobrev, L. Nechev, C. Ivanov, M. Bon, J. Chem. Res., Synop. 1999, 188.
- [13] S. Roehrig, M. Jeske, M. Akbaba, U. Rosentreter, S. Boyer, K. Fischer, J. Pohlmann, A. Tuch, E. Perzborn, C. Gerdes, K. H. Schlemmer, N. Burkhardt, S. Allerheiligen, P. Nell, S. Arndt, M. Lobell, WO 2006061116, 2006; *Chem. Abstr.* 2006, 145, 62922.
- [14] D. S. Brown, M. C. Elliott, C. J. Moody, T. J. Mowlem, J. P. Marino Jr., A. Padwa, J. Org. Chem. 1994, 59, 2447.
- [15] M. P. Moyer, P. L. Feldman, H. Rapoport, J. Org. Chem. 1985, 50, 5223.
- [16] P. Lo Meo, F. D'Anna, M. Gruttadauria, S. Riela, R. Noto, Tetrahedron 2004, 60, 9099.
- [17] U. Trstenjak, J. Ilaš, D. Kikelj, Tetrahedron Lett. 2013, 54, 3341.
- [18] C. Thomas, M. Berwe, A. Straub, WO 2005026135, 2005; Chem. Abstr. 2005, 142, 316848.
- [19] J. Waser, B. Gaspar, H. Nambu, E. M. Carreira, J. Am. Chem. Soc. 2006, 128, 11693.

Received February 13, 2013