Novel Syntheses of Variably Substituted Pyrrolo[2,3-d]thiazoles

Hannes Koolman,*^{a,b} Timo Heinrich,^a Michael Reggelin^b

- ^a Merck Serono, Frankfurter Str. 250, 64293 Darmstadt, Germany E-mail: hannes.koolman@merck.de
- ^b Clemens-Schöpf-Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, Petersenstr. 22, 64287 Darmstadt, Germany

Fax +49(6151)165531; E-mail: re@punk.oc.chemie.tu-darmstadt.de Received 12 March 2010; revised 10 May 2010

Abstract: Pyrrolo[2,3-*d*]thiazoles are conveniently derived from the corresponding *o*-aminoalkynylthiazoles via microwave assisted 5-*endo*-dig cyclization. Methylene-bridged substituents in the 6-position are directly obtained from 5-*exo*-Heck cyclization based on the same iodoaminothiazole precursor. Further structural variety is accessible via Suzuki reaction of 2-chloroaminothiazoles prior to cyclization or post-cyclization modifications.

Key words: thiazoles, pyrroles, heterocycles, microwave irradiation

Pyrrolothiazoles represent an important class of heterocyles,¹ particularly useful for new materials,² dyes,³ and pharmacological applications.⁴ The rarely described pyrrolo[2,3-*d*]thiazoles **1** are interesting scaffolds suitable even for novel drugs. Until now, their syntheses have always been based on two approaches differing in the construction of the second cycle: formation of the pyrrole moiety by thermally-induced cyclizations of azides⁵ or the construction of the thiazole residue by bromine-induced cyclization of pyrrolylthioureas⁶ (Scheme 1).

Scheme 1 Currently known synthetic routes to pyrrolo[2,3-*d*]thiazoles

Both approaches yield the bicyclic scaffolds bearing functional groups, either required for further transformations or merely present on account of the synthetic accessibility

SYNTHESIS 2010, No. 18, pp 3152–3162 Advanced online publication: 12.07.2010 DOI: 10.1055/s-0030-1258159; Art ID: T07810SS © Georg Thieme Verlag Stuttgart · New York of the precursors. The functional groups in the latter case need to be removed subsequently, if they are unwanted within the target structure. Therefore, it would be desirable to develop a novel protocol without these drawbacks.

We herein present a straightforward protocol for the construction of variably substituted pyrrolo[2,3-*d*]thiazoles **1** based on palladium-mediated coupling prior to microwave enhanced base-induced 5-*endo*-dig cyclization of the intermediate *o*-aminoalkynylthiazoles. Based on our experiences with the synthesis of pyrrole-fused heterocycles⁷ and inspired by numerous publications in the field of indoles⁸ we first aimed to build up the pyrrole moiety in a one-step alkynylation/cyclization reaction based on the corresponding *o*-iodoaminothiazoles **2** and alkynes **3**, respectively (Scheme 2).

Scheme 2 Retrosynthesis of pyrrolo[2,3-*d*]thiazoles via alkynylation/cyclization reaction

Due to the common instability of comparable unprotected aminoimidazoles⁹ we considered Boc-protected iodoaminothiazoles **2** to be viable precursors with sufficient stability¹⁰ to fulfil the aforementioned task. Their syntheses were based on commercially available thiazole-4-carboxylic acids **4** (Scheme 3).

2a R¹ = H, 85% **2b** R¹ = pyridin-4-yl, 85% **2c** R¹ = Cl, 61%

Scheme 3 Synthesis of precursors 2

N الم 2a	$ \begin{array}{c} Boc \\ NH \\ H \end{array} + = - \begin{array}{c} R \\ H \end{array} + \begin{array}{c} Boc \\ H \\ H \end{array} + \begin{array}{c} R \\ H \\ H \end{array} + \begin{array}{c} R \\ H \\ H \end{array} + \begin{array}{c} R \\ H \\ H \\ H \end{array} + \begin{array}{c} R \\ H \\ H \\ H \end{array} + \begin{array}{c} R \\ H \\ H \\ H \end{array} + \begin{array}{c} R \\ H \\ H \\ H \end{array} + \begin{array}{c} R \\ H \\ H \\ H \\ H \end{array} + \begin{array}{c} R \\ H \\ H \\ H \\ H \\ H \end{array} + \begin{array}{c} R \\ H \\$	not detected:		
Entry	Conditions	Yield	$\frac{1}{1} (\%)^{a} \text{ or ratio}^{b} \text{ of } \mathbf{6a}, \mathbf{6b}, \text{ and}$	
1	Pd(OAc) ₂ (5 mol%), Ph ₃ P (5 mol%), Na ₂ CO ₃ (5 equiv), DMF, 100 °C, 3 h	19%:	:5%:n.d.	
2	Pd(OAc) ₂ (5 mol%), PB-PPh ₃ ^c (10 mol%), Na ₂ CO ₃ (3 equiv), DMF, 60 °C, 2	20 h 38%:	38%:0%:10%	
3	Pd(OAc) ₂ (5 mol%), Bu ₄ NOAc (2.5 equiv), MeCN, reflux, 17 h	5:1:7	5:1:7	
4	Pd(PPh ₃) ₂ Cl ₂ (10 mol%), CuI (10 mol%), Et ₃ N-MeCN (1:1), r.t., 18 h ^d	1:0:1	1:0:1	
5	Pd(PPh ₃) ₂ Cl ₂ (10 mol%), CuI (10 mol%), TBAF (3 equiv), THF, r.t., 18 h ^d	1:20:	1	
6	Pd(PPh ₃) ₂ Cl ₂ (10 mol%), CuI (10 mol%), TBAF (3 equiv), THF, 70 °C mW	, 90 min 1:16:	3	
7	Pd(dppf)Cl ₂ ×CH ₂ Cl ₂ (5 mol%), CuI (10 mol%), THF, 50 °C, 6 h ^e	85%:	:0%:trace	

 Table 1
 Tested Reaction Conditions for the Attempted Direct Synthesis of Pyrrolo[2,3-d]thiazoles

^a Isolated yield.

^c Polymer-bound (PB) Ph₃P was used (diphenylphosphino-polystyrene).

^d Conversion of 2a was to an extent of 75%.

^e Alkyne **3a** used: 1.1 equiv.

Thiazol-4-carboxylic acids **4** were subjected to Curtius conditions with diphenylphosphoryl azide (DPPA) in *tert*-butyl alcohol directly yielding the corresponding carbamates **5** in high yields.¹¹ The desired iodothiazoles **2** were thereupon obtained in good yields by treatment with *N*-io-dosuccinimide in dichloroethane (DCE).¹²

In a model reaction the Boc-protected iodoaminothiazole 2a was reacted under various conditions with 4-fluorophenylacetylene (3a) to study a putative alkynylation/ cyclization reaction (Table 1). However, under the tested reaction conditions, the only products beside the dehalogenated starting material 7 were those derived from alkyne-coupling **6a** and subsequent cleavage of the Boc group **6b**. In a preliminary experiment, standard Pd-catalyzed coupling conditions were used counting on an aminopalladation/reductive elimination mechanism^{8g} without addition of a distinct base. The Boc-protected product 6a was therein obtained in low yields (38% at 60 °C, Table 1, entry 2), beside minor amounts of deprotected product 6b at higher temperatures (entry 1). When a phosphine ligand was omitted and tetrabutylammonium acetate was employed as base^{8b} dehalogenation drastically increased (entry 3). Applying typical Sonogashira conditions (entry $(4)^{8e}$ dehalogenation to the thiazole 7 remained a major side reaction. The use of tetrabutylammonium fluoride (TBAF)^{8f} as base, thus expecting an in situ 5-endo-dig cyclization, led to a nearly quantitatively deprotected alkyne **6b** (entry 5). Even under harsher conditions (entry 6) this side product did not cyclize in situ into the desired pyrrolothiazole 1b.

Disappointed by these results, we then turned to a directed base-induced 5-*endo*-dig cyclization of the now readily available *o*-aminoalkynylthiazoles **6**. Therefore, their synthesis was finally optimized under previously employed⁷ Sonogashira coupling conditions using Pd(dppf)Cl₂/CuI as catalyst system yielding **6a** in 85% with only marginal dehalogenation and without any Boc-group cleavage as side reaction (Table 1, entry 7). *O*-Aminoalkynylthiazole **6a** was then subjected to different cyclization conditions (Table 2).

First attempts for the base-induced cyclization were performed with TBAF^{8b} in tetrahydrofuran (Table 2, entries 1 and 2) leading to entire deprotection of the starting material. Even under harsh microwave conditions (entry 2) the base strength was insufficient to induce cyclization of the amine 6b, which happened under these reaction conattempts ditions. Further with 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) in different solvent systems¹³ led to rapid decomposition of the reaction mixture (entries 3 and 4), whereas application of sodium hydroxide in N,N-dimethylformamide¹⁴ resulted in no reaction at 60 °C (entry 5). We then unsuccessfully examined the stronger base t-BuOK, first in t-BuOH, but outright under microwave irradiation conditions to take advantage of temperature conditions above boiling point (entry 6). Finally, in combination with a polar aprotic solvent, the use of t-BuOK¹⁵ led to the formation of 35% of the desired product **1b** after prolonged conventional heating of 46 hours (entry 7). An extension of the reaction time to 62 hours led to full conversion of the starting material 6a and an increased yield of 53% of 1b (entry 8). As this long reaction

7

^b Product ratio determined by HPLC.

Table 2 Base-Induced Cyclization of o-Aminoalkynylthiazole 6a to the Corresponding Pyrrolo[2,3-d]thiazole 1

Entry	Conditions	Yield (%) ^a
1	TBAF (3 equiv), THF, reflux, 1.5 h	deprotect. (6b)
2	TBAF (3 equiv), THF, 120 °C, mW, 20 min	deprotect. (6b)
3	DBN (5 equiv), DMF, 60 °C, 1 h	dec.
4	DBN (5 equiv), MeOH–H ₂ O, 65 °C, 1 h	dec.
5	NaOH (5 equiv), DMF, 60 °C, 2 h	no reaction
6	t-BuOK (1.7 equiv), t-BuOH, 110 °C, mW, 20 min	no reaction
7	t-BuOK (1.7 equiv), NMP, 90 °C, 46 h	1a : 0%; 1b : 35% ^b
8	<i>t</i> -BuOK (1.7 equiv), NMP, 90 °C, 62 h	1a : 0%; 1b : 53%
9	t-BuOK (1.7 equiv), NMP, 90 °C, mW, 15 min ^c	1a : 0%; 1b : 55% ^b
10	t-BuOK (1.7 equiv), NMP, 90 °C, mW, 20 min ^c	1a : 0%; 1b : 66%

^a Isolated yield.

^b Starting material was partially recovered.

^c Advanced microwave settings were used: 90 ^oC in combination with constant cooling led to an irradiation of 75 W (see experimental sections for details and the Supporting Information for a full reaction parameter diagram).

time possibly accounted for decomposition processes of either starting material or product, the reaction was conducted with the same reagents in the presence of microwaves. To take full advantage of a high irradiation without risking unwanted side reactions due to overheating, a constant temperature of 90 °C with concurrent nitrogen flow to cool the reaction vessel was tested. This resulted in an irradiation power of approximately 75 W.¹⁶ After 20 minutes, full conversion was achieved and the deprotected pyrrolo[2,3-*d*]thiazole **1b** was isolated in 66% yield as a single product (entry 10).

The methodology was then applied to the synthesis of novel pyrrolo[2,3-d]thiazoles 1c-m (Table 3, entries 2-12). Alkynylation of **2a** with benzylalkyne **3b** smoothly led to the benzylated pyrrolo[2,3-d]thiazole 1c. Triethylsilvlacetylene was chosen for the alkynylation of 2a to test the lability of trialkylsilyl groups under the basic cyclization conditions. As anticipated, full cleavage of the triethylsilyl group occurred and 1d was obtained in 44% (Table 3, entry 3). This is the first reported facile synthesis of an entirely unsubstituted pyrrolo[2,3-d]thiazole.¹⁷ 3-Anilinyl- and 4-pyridinylpyrrolothiazoles 1e and 1f, respectively, were obtained from commercially available alkynes, under the stated conditions. The 3-hydroxyphenylacetylene (6g) could not be cyclized under these conditions: a deprotonation of the more acidic hydroxy group led to a charged species, which appeared to be insusceptible for an intramolecular nucleophilic cyclization. For the synthesis of the benzylated analogue of 1e and 1h, an excess of base and a prolonged reaction time were necessary to achieve full conversion (entry 7). The aminopyridinylsubstituted derivative 1i was derived from the corresponding Boc-protected alkyne 6i. Treatment of the reaction mixture for 60 minutes under microwave conditions led to a quantitative cleavage of the Boc group within the target molecule (entry 8).¹⁸ Attempts to synthesize the furthermore unsubstituted 2-chloropyrrolothiazole 1j led to decomposition of the starting material,¹⁹ whereas the 5-(4fluorophenyl) derivative 1k proved to be stable and could be isolated in 45% yield (entries 9 and 10). The method further tolerates additional heterocyclic substituents in the 2-position (11 and 1m, entries 11 and 12). Their precursor synthesis is based on Suzuki couplings using commercially available boronic acids (see Scheme 5, vide infra).

Mechanistically, the pyrrole formation most likely involves the deprotonation of the carbamate nitrogen¹⁵ in **6a** and cyclization to the corresponding *N*-Boc-pyrrole derivative **1a**, which can be observed via mass spectrometry of the crude reaction mixtures, but was not isolated due to concomitant deprotection to the desired pyrrolothiazole **1b** (Scheme 4). To verify, whether the carbamate group was essential for an effective cyclization, **6a** was deprotected²⁰ to **6b** and subjected to the same conditions. As pyrrolothiazole **1b** was isolated in comparable yields from this reaction it could be shown that cyclization is in fact independent of any influence of a carbamate group.

R ¹ —	NH NH S I 2a-c	R ² Pd(dppf)Cl; C: 3a−i (1.1 equiv)	₂ (5 mol%), Cul (10 mo s ₂ CO ₃ (3 equiv), "HF, 50 °C, 6 h	ol%) ──► R ¹ ──	Boc NH S 6a,c-j R ² t-BuOK (1.7 equiv) NMP, 90 °C, MW 20 min	R ¹	∕—R²
Entry	Thiazole 2	Alkyne 3	Amino alkyne 6	Yield (%) ^a	Pyrrolo[2,3- <i>d</i>]thiazole 1		Yield (%) ^b
1	2a	≡∕-F 3a	6a	85	$\langle \mathbf{x} $	1b	66
2	2a	3h	6с	92		1c	69
3	2a	$= SiEt_3$ 3d	6d	92	$\langle s \downarrow \downarrow \rangle$	1d	44 ^c
4	2a		6e	66 ^d	S NH2	1e	69
5	2a	Ste N HCI	6f	97		1f	40
6	2a	≡-{~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	бд	80	_	1g	0
7	2a	3g NH Sh	6h	92°	S NH	1h	52 ^f
8	2a		6i	30		1i	20 ^g
9	2c	3i ==-SiEt ₃ 3d	6j	53	-	1j	0
10	2a	See Scheme 5	6k			1k	45 ^h
11	2a	See Scheme 5	61			F 11	37 ⁱ

 Table 3
 Synthesis of Novel Pyrrolo[2,3-d]thiazoles 1c-m by Sonogashira Alkynylation of Thiazoles 2 Followed by 5-endo-dig Cyclization

Synthesis 2010, No. 18, 3152-3162 © Thieme Stuttgart · New York

Table 3 Synthesis of Novel Pyrrolo[2,3-d]thiazoles 1c-m by Sonogashira Alkynylation of Thiazoles 2 Followed by 5-endo-dig Cyclization

^a Reactions were performed with 1.5 mmol of thiazole 2 in 15 mL of THF; isolated yield.

h Reactions were performed with 0.75 mmol of aminoalkyne 6 in 4.5 mL of NMP; isolated yield.

- ^d Reaction carried out at r.t. for 18 h.
- ^e Reaction carried out at 50 °C for 24 h.
- ^f Reaction carried out with *t*-BuOK (3 equiv) at 90 °C for 60 min.
- ^g Reaction run on a 0.25 mmol scale; 90 °C, 30 min.

^h Reaction run on a 2 mmol scale; 90 °C, 15 min.

ⁱ Reaction run on a 0.25 mmol scale; 90 °C, 15 min.

^j Reaction run on a 0.5 mmol scale; 90 °C, 15 min.

Scheme 4 Influence of the carbamate group on the cyclization

Due to the activated 2-position within the 2-chloro-5-iodothiazole moiety, the alkynylation of 2c as putative cyclization precursor for 1k resulted in mono- 6k and disubstituted 6p derivatives under various conditions. We therefore introduced the 2-chloro substituent after the alkynylation reaction (Scheme 5). This was achieved in 78% yield by reaction with *N*-chlorosuccinimide (NCS) after lithiation at -78 °C.²¹

A further derivatization prior or after the cyclization reaction then allowed a variable introduction of substituents. For example aryl moieties were introduced in $6k^{22}$ by Suzuki coupling and the resulting alkynes 6l,n cyclized to the corresponding pyrrolo[2,3-*d*]thiazoles 11 and 1m in 37 and 47%, respectively. Furthermore, secondary amines were introduced into the 2-position of pyrrolo[2,3-*d*]thiazole 1k via nucleophilic substitution to give 1n,o (Scheme 5).

To further access substitutions in the 6-position of the pyrrolo[2,3-*d*]thiazole core a methodology, which was recently published for the synthesis of thieno[2,3-*b*]pyrroles,²³ was adapted to yield benzyl-substituted derivatives **8a,b** (Table 4). For this purpose the iodothiazoles **2a** and **2b** were allylated with cinnamyl bromide employing Cs_2CO_3 as base. The reaction mixture was subsequently treated with Pd(OAc)₂/PPh₃ to induce 5-*exo*-Heck cyclization²⁴ followed by rearrangement²³ to the corresponding Boc-protected pyrrolothiazoles. After aqueous workup, the crude mixture was evaporated together with silica gel and heated in vacuo for the indicated time to cleave the Boc group, conveniently yielding **8a,b** after subsequent flash chromatography in this overall one-pot procedure in 49 and 53% yield, respectively.

In summary, we have developed a novel synthesis of pyrrolo[2,3-d]thiazoles. Employing a base-induced 5-endodig cyclization or intramolecular Heck reaction as key steps, variable substituents in all positions can be introduced. Particularly, the introduction of residues in the 2position are easily accessible after expedient halogenation, thus enabling a synthesis of highly functionalized novel heterocycles without the need for potentially dispensable groups due to the synthesis routine. Further studies towards Larock-type reactions of o-iodoaminothiazoles with alkynes are currently in progress in our group.

All reagents obtained commercially were used without further purification. DMF and THF were obtained from Aldrich in septumsealed bottles over molecular sieves under N_2 and handled using syringe/Schlenk techniques. Petroleum ether (PE) used refers to the fraction boiling in the range 50–70 °C. NMP was obtained from

[°] Reaction carried out at 90 °C for 10 min.

Scheme 5 Derivatization in 2-position of thiazoles and pyrrolo[2,3*d*]thiazoles

Merck and used without further purification or distillation. TLC analyses were run on precoated silica gel plates (Merck $60F_{254}$) and the spots were visualized using a UV lamp. Flash and gravity chromatography were carried out on columns using silica gel 60 Merck (63–200 µm) as the stationary phase. Microwave-assisted syntheses were carried out in septum-capped glass vials, which were flushed with N₂ prior to closing. Irradiation was carried out in a monomode Biotage EmrysOptimizer microwave with temperature and pressure monitoring. The N₂ cooling stream featured a pressure of 3 bar. NMR spectra were recorded in DMSO-d₆ at 300 K on a Bruker Avance 300 (300 MHz and 75 MHz spectra), Bruker Avance II 400 (400 MHz and 100 MHz spectra) and Bruker Avance DRX 500 (500 MHz spectra), respectively. Chemical shifts are given in ppm relative to TMS as internal standard. EI-MS spectra were obtained

Table 4 Synthesis of 6-Substituted Pyrrolo[2,3-d]thiazoles 8

^a Isolated yield.

with a VG Autospec sector field mass spectrometer. EI-HRMS spectra were acquired with a GCT Premier 95 whereas ESI-HRMS spectra were obtained from a Thermo LTQ XL Orbitrap with ESI interface. ESI-MS spectra were recorded using an Agilent 6110 Quadrupole LC/MS with ESI interface G1946 (positive or negative ionization). The APCI-MS data was acquired with a Finnigan LCQ Deca. Melting points were taken on samples in open capillary tubes employing a HWS SGV500 melting point apparatus and are uncorrected.

tert-Butyl *N*-(1,3-Thiazol-4-yl)carbamates 5; General Procedure

To a solution of the corresponding 4-thiazolecarboxylic acid 4 (37.55 mmol) in *t*-BuOH (180 mL) was added Et₃N (5.80 mL, 41.84 mmol) followed by diphenylphosphoroyl azide (9.10 mL, 42.19 mmol) at 0 °C (ice-bath). The mixture was then stirred for 16 h at reflux. After cooling to r.t., the solvent was evaporated in vacuo, the crude residue redissolved in CH_2Cl_2 (100 mL), and washed with brine (2 × 100 mL). The organic layer was dried (Na_2SO_4) and the solvent removed in vacuo. The product was purified by column chromatography on silica gel (cyclohexane–EtOAc).

tert-Butyl *N*-(1,3-Thiazol-4-yl)carbamate (5a) Yield: 94%; beige crystals; mp 153–155 °C.

¹H NMR (300 MHz, DMSO- d_6): δ = 1.47 (s, 9 H), 7.23 (d, J = 2.0 Hz, 1 H), 8.89 (d, J = 2.2 Hz, 1 H), 10.15 (s, 1 H).

¹³C NMR (75 MHz, DMSO- d_6): δ = 28.0, 79.3, 98.3, 149.4, 151.7, 152.7.

MS (ESI): m/z (%) = 145 (100, [M - t-Bu + 2 H]⁺), 201 (5, [M + H]⁺).

Anal. Calcd for $C_8H_{12}N_2O_2S$: C, 47.98; H, 6.04; N, 13.99; S, 16.01. Found: C, 47.90; H, 6.10; N, 14.00; S, 16.60.

tert-Butyl *N*-(2-Pyridin-1,3-thiazol-4-yl)carbamate (5b) Yield: 80%; white-grey crystals; mp 192–193 °C (PE).

¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.49$ (s, 9 H), 7.45 (s, 1 H), 7.81 (dd, J = 4.5, 1.6 Hz, 2 H), 8.70 (dd, J = 4.5, 1.6 Hz, 2 H), 10.38 (s, 1 H).

¹³C NMR (75 MHz, DMSO- d_6): δ = 28.0, 79.7, 101.6, 119.5, 139.3, 150.0, 150.7, 152.8, 161.2.

MS (EI, 70eV): m/z (%) = 57 (100, [CCH₃]⁺), 177 (80, [M – Boc]⁺), 277 (10, [M]⁺).

MS (ESI): m/z (%) = 278 (100, [M + H]⁺).

Anal. Calcd for $C_{13}H_{15}N_3O_2S$: C, 56.30; H, 5.45; N, 5.15; S, 11.56. Found: C, 56.30; H, 5.50; N, 5.10; S, 12.10.

tert-Butyl *N*-(2-Chloro-1,3-thiazol-4-yl)carbamate (5c) Yield: 71%; white crystals; mp 118–119 °C (Et₂O).

¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.46$ (s, 9 H), 7.17 (s, 1 H), 10.26 (s, 1 H).

¹³C NMR (75 MHz, DMSO- d_6): δ = 28.0, 79.7, 101.3, 146.5, 148.5, 152.5.

MS (ESI): m/z (%) = 179 (100, [M - t-Bu + 2 H]⁺).

HRMS (ESI): m/z [M + H]⁺ calcd for C₈H₁₁CIN₂O₂S: 235.0308; found: 234.9027.

tert-Butyl *N*-(5-Iodo-1,3-thiazol-4-yl)carbamates 2; General Procedure

To a solution of the corresponding carbamate **5** (3.99 mmol) in DCE (40 mL) was added *N*-iodosuccinimide (1033 mg, 4.59 mmol) and the reaction mixture was heated to reflux for 2 h. After cooling to r.t., the organic layer was washed with H_2O (2 × 50 mL) and sat. aq $Na_2S_2O_3$ (50 mL), dried (Na_2SO_4), and the solvent removed in vacuo. The product was purified by flash chromatography on silica gel (cyclohexane–EtOAc, 8:2 to 1:1).

tert-Butyl N-(5-Iodo-1,3-thiazol-4-yl)carbamate (2a)

Yield: 85%; white crystals; mp 119-120 °C (Et₂O).

¹H NMR (300 MHz, DMSO- d_6): δ = 1.44 (s, 9 H), 8.99 (s, 1 H), 9.12 (s, 1 H).

¹³C NMR (75 MHz, DMSO-*d*₆): δ = 28.0, 79.0, 152.2 (2 ×), 152.9, 157.2.

MS (EI, 70 eV): m/z (%) = 57 (95, [CCH₃]⁺), 226 (100, [M – Boc]⁺), 326 (17, [M]⁺).

HRMS (ESI): m/z [M + H]⁺ calcd for C₈H₁₁IN₂O₂S: 326.9664; found: 326.9658.

tert-Butyl *N*-(2-Pyridin-5-iodo-1,3-thiazol-4-yl)carbamate (2b) Yield: 85%; pink solid; mp 197–198 °C.

¹H NMR (400 MHz, DMSO- d_6): $\delta = 1.46$ (s, 9 H), 7.80 (dd, J = 4.5, 1.6 Hz, 2 H), 8.72 (dd, J = 5.9, 1.5 Hz, 2 H), 9.27 (s, 1 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 27.5, 73.1, 78.9, 118.9, 138.2, 150.3, 152.3, 152.3, 165.4.

MS (EI, 70 eV): m/z (%) = 57 (100, [CCH₃]⁺), 303 (80, [M – Boc]⁺), 403 (10, [M]⁺).

Anal. Calcd for $C_{13}H_{14}N_3O_2S$: C, 38.72; H, 3.50; N, 10.42; S, 7.95. Found: C, 39.10; H, 3.50; N, 10.40; S, 7.80.

tert-Butyl *N*-(2-Chloro-5-iodo-1,3-thiazol-4-yl)carbamate (2c) Yield: 61%; pale-yellow crystals; mp 77–78 °C (Et₂O).

¹H NMR (300 MHz, DMSO- d_6): $\delta = 1.44$ (s, 9 H), 9.15 (s, 1 H).

¹³C NMR (75 MHz, DMSO-*d*₆): δ = 28.0, 71.7, 79.5, 149.7, 151.8, 152.7.

MS (ESI): m/z (%) = 304 (100, [M - t-Bu + 2 H]⁺).

HRMS (ESI): m/z [M + H]⁺ calcd for C₈H₁₀ClIN₂O₂S: 360.9274; found: 360.9269.

tert-Butyl *N*-[5-(2-Alkynyl)-1,3-thiazol-4-yl]carbamates 6; General Procedure

 Cs_2CO_3 (2.93 g, 9 mmol) was dried in a Schlenk tube and suspended in anhyd THF (50 mL) under N₂. The corresponding carbamate **2** (3 mmol) followed by the corresponding alkyne **3** (3.30 mmol), Pd(dppf)Cl₂·CH₂Cl₂ (122 mg, 0.15 mmol), and CuI (57 mg, 0.30 mmol) were added under N₂. The reaction mixture was heated to 50 °C for

Synthesis 2010, No. 18, 3152-3162 © Thieme Stuttgart · New York

6 h. After cooling to r.t. and filtering over Celite, the solvent was removed in vacuo. The crude residue was redissolved in EtOAc (50 mL) and washed with brine (2×50 mL). The organic layer was dried (Na₂SO₄) and the solvent removed in vacuo. The product was purified by column chromatography or flash chromatography on silica gel (cyclohexane–EtOAc).

tert-Butyl *N*-{5-[2-(4-Fluorophenyl)ethynyl]-1,3-thiazol-4-yl}carbamate (6a)

Yield: 85%; pale-yellow solid; mp 139–144 °C (Et₂O).

¹H NMR (400 MHz, DMSO- d_6): δ = 1.45 (s, 9 H), 7.22–7.39 (m, 2 H), 7.50–7.68 (m, 2 H), 8.98 (s, 1 H), 9.62 (s, 1 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 27.4, 78.9, 96.3, 105.6, 115.3 (d, ${}^{2}J_{C,F}$ = 22 Hz), 117.9, 117.9, 132.9 (d, ${}^{3}J_{C,F}$ = 8 Hz), 150.6, 151.8, 152.1, 161.6 (d, ${}^{1}J_{C,F}$ = 246 Hz).

MS (ESI): m/z (%) = 319 (100, [M + H]⁺).

Anal. Calcd for $C_{16}H_{15}FN_2S$: C, 60.36; H, 4.75; N, 8.80; S, 10.07. Found: C, 60.20; H, 4.70; N, 8.78; S, 10.19.

tert-Butyl *N*-[5-(3-Phenylprop-1-ynyl)-1,3-thiazol-4-yl]carbamate (6c)

Yield: 92%; pale-yellow solid; mp 121-122 °C.

¹H NMR (300 MHz, DMSO- d_6): δ = 1.41 (s, 9 H), 3.93 (s, 2 H), 7.15–7.45 (m, 5 H), 8.88 (s, 1 H), 9.33 (s, 1 H).

¹³C NMR (75 MHz, DMSO-*d*₆): δ = 25.1, 27.9, 71.6, 79.1, 97.5, 126.6, 127.8, 128.4, 136.0, 150.5, 2 × 151.3, 152.6.

MS (ESI): m/z (%) = 259 (100, [M – *t*-Bu + 2 H]⁺), 314 (68, [M]⁺), 315 (10, [M + H]⁺).

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₇H₁₈N₂O₂S: 315.1167; found: 315.1161.

tert-Butyl *N*-{5-[(Triethylsilyl)ethynyl]-1,3-thiazol-4-yl}carbamate (6d)

Yield: 92%; pale-beige solid; mp 88–90 °C (Et₂O).

¹H NMR (300 MHz, DMSO- d_6): δ = 0.62 (dt, J = 8.3, 4.2 Hz, 6 H), 0.98 (t, J = 7.8 Hz, 9 H), 1.43 (s, 9 H), 8.91 (s, 1 H), 9.39 (s, 1 H).

¹³C NMR (75 MHz, DMSO-*d*₆): δ = 3.7, 7.3, 27.9, 79.1, 94.9, 101.4, 107.6, 151.4, 152.3, 152.4.

MS (APCI): m/z (%) = 239 (40, [M - Boc + H]⁺), 282 (100, [M - *t*-Bu + 2 H]⁺), 338 (17, [M]⁺).

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₆H₂₆N₂O₂SSi: 339.1562; found: 339.1032.

tert-Butyl *N*-{5-[(3-Aminophenyl]ethynyl]-1,3-thiazol-4-yl}carbamate (6e)

Yield: 66%; dark-white solid; mp 166–177 °C (MeOH).

¹H NMR (400 MHz, DMSO- d_6): δ = 1.45 (s, 9 H), 5.27 (s, 2 H), 6.57–6.71 (m, 3 H), 7.05 (t, *J* = 7.8 Hz, 1 H), 8.95 (s, 1 H), 9.50 (s, 1 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 27.4, 77.1, 78.8, 98.4, 106.7, 114.3, 115.3, 118.0, 121.6, 128.7, 148.3, 150.1, 151.6, 151.9.

MS (EI, 70 eV): m/z (%) = 215 (100, [M – Boc]⁺), 315 (20, [M]⁺).

MS (ESI): m/z (%) = 316 (100, [M + H]⁺).

Anal. Calcd for $C_{16}H_{17}N_3O_2S;\,C,\,60.93;\,H,\,5.43;\,N,\,13.32;\,S,\,10.17.$ Found: C, 60.90; H, 5.30; N, 13.10; S, 10.10.

tert-Butyl *N*-{5-[(Pyridin-4-yl]ethynyl]-1,3-thiazol-4-yl}carbamate (6f)

Yield: 97%; yellow solid; mp 160–165 °C (Et₂O).

¹H NMR (400 MHz, DMSO- d_6): $\delta = 1.46$ (s, 9 H), 7.45 (dd, J = 4.4, 1.6 Hz, 2 H), 8.63 (dd, J = 4.4, 1.6 Hz, 2 H), 9.05 (s, 1 H), 9.83 (s, 1 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 27.4, 79.0, 83.3, 94.8, 103.8, 124.2, 129.4, 149.4, 151.6, 151.7, 153.5.

MS (EI, 70 eV): m/z (%) = 57 (90, [CCH₃]⁺), 201 (80, [M – Boc]⁺), 301 (10, [M]⁺).

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₅H₁₅N₃O₂S: 302.0963; found: 302.0959.

tert-Butyl *N*-{5-[(3-Hydroxyphenyl)ethynyl]-1,3-thiazol-4-yl}carbamate (6g)

Yield: 80%; beige solid; mp 170–171 °C (Et₂O).

¹H NMR (300 MHz, DMSO- d_6): δ = 1.44 (s, 9 H), 6.77–6.97 (m, 3 H), 7.21 (t, *J* = 7.9 Hz, 1 H), 8.96 (s, 1 H), 9.53 (s, 1 H), 9.71 (br s, 1 H).

¹³C NMR (75 MHz, DMSO-*d*₆): δ = 27.9, 78.5, 79.3, 98.0, 106.7, 116.5, 117.4, 121.9, 122.8, 129.8, 151.0, 152.4 (2 ×), 157.3.

MS (EI, 70 eV): m/z (%) = 57 (55, [CCH₃]⁺), 216 (100, [M – Boc]⁺), 316 (17, [M]⁺).

Anal. Calcd for $C_{16}H_{16}N_2O_3S;\,C,\,60.74;\,H,\,5.10;\,N,\,8.85;\,S,\,10.14.$ Found: C, $60.03;\,H,\,5.10;\,N,\,8.66;\,S,\,10.07.$

tert-Butyl *N*-(5-{3-[(Benzylamino)phenyl]ethynyl}-1,3-thiazol-4-yl)carbamate (6h)

Yield: 92%; yellow solid; mp 126-129 °C (Et₂O).

¹H NMR (400 MHz, DMSO- d_6): $\delta = 1.43$ (s, 9 H), 4.28 (d, J = 6.0 Hz, 2 H), 6.47 (t, J = 6.1 Hz, 1 H), 6.61–6.70 (m, 3 H), 7.04–7.13 (m, 1 H), 7.18–7.31 (m, 1 H), 7.31–7.45 (m, 4 H), 8.94 (s, 1 H), 9.49 (s, 1 H).

¹³C NMR (100 MHz, DMSO- d_6): $\delta = 27.4, 45.6, 77.3, 78.8, 98.4, 106.6, 113.1, 113.2, 118.2, 121.7, 126.1, 126.5, 127.8, 128.7, 139.2, 148.2, 150.2, 151.7, 151.9.$

MS (ESI): m/z (%) = 250 (100, [M - t-Bu + 2 H]⁺), 406 (20, [M + H]⁺).

Anal. Calcd for C₂₃H₂₃N₃O₂S: C, 68.12; H, 5.72; N, 10.36; S, 7.91. Found: C, 67.63; H, 5.80; N, 10.14; S, 8.00.

tert-Butyl *N*-(5-{3-[2-(Boc)-aminopyridin-4-ylphenyl]ethynyl}-1,3-thiazol-4-yl)carbamate (6i)

Yield: 30%; beige solid; mp 250 °C (dec.).

¹H NMR (400 MHz, DMSO- d_6): δ = 1.44 (s, 9 H), 1.48 (s, 9 H), 7.79–7.87 (m, 2 H), 8.37 (d, *J* = 1.1 Hz, 1 H), 8.97 (s, 1 H), 9.62 (s, 1 H), 10.09 (s, 1 H).

MS (ESI): m/z (%) = 417 (100, [M + H]⁺).

HRMS (ESI): $m/z \ [M + H]^+$ calcd for $C_{20}H_{24}N_4O_4S$: 417.1596; found: 417.1589.

tert-Butyl *N*-{2-Chloro-5-[3-(triethylsilyl)ethynyl]-1,3-thiazol-4-yl}carbamate (6j)

Yield: 53%; pale-yellow oil.

¹H NMR (300 MHz, DMSO- d_6): $\delta = 0.58-0.67$ (m, 6 H), 0.98 (t, J = 7.8 Hz, 9 H), 1.43 (s, 9 H), 9.59 (s, 1 H).

¹³C NMR (75 MHz, DMSO- d_6): δ = 3.6, 7.2, 27.8, 79.6, 93.4, 102.9, 109.5, 147.3, 149.0, 152.0.

MS (ESI): m/z (%) = 317 (100, $[M - t-Bu + 2H]^+$).

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{16}H_{25}CIN_2O_2SSi$: 373.1172; found: 373.1165.

tert-Butyl *N*-{2-Chloro-5-[2-(4-fluorophenyl)ethynyl]-1,3-thiazol-4-yl}carbamate (6k)

A dried Schlenk tube was charged with **6a** (2.63 g, 8.26 mmol) under N₂. After addition of anhyd THF (100 mL), the reaction mixture was cooled to -78 °C and *n*-BuLi (15% in *n*-hexane, 11 mL, 17.34 mmol, 2.1 equiv) was added slowly. After stirring for 20 min at -78 °C, *N*-chlorosuccinimide (1.12 g mg, 8.38 mmol) dissolved in anhyd THF (3 mL) under N₂ was added via a syringe. After stirring for 15 min at -78 °C, the mixture was quenched with *n*-BuOH (10 mL) and warmed to r.t. The solvent was then removed in vacuo and the crude product directly purified via column chromatography on silica gel (cyclohexane–EtOAc, 99:1). After removing the solvent in vacuo, the product was crystallized from PE to yield **6k** (2.3 g, 78%) as a pale beige solid; mp 133–134 °C.

¹H NMR (400 MHz, DMSO- d_6): δ = 1.44 (s, 9 H), 7.25–7.42 (m, 2 H), 7.52–7.62 (m, 2 H), 9.80 (s, 1 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 27.4, 77.2, 79.3, 97.2, 107.4, 115.6 (d, ²*J*_{C,F} = 22 Hz), 117.4, 133.1 (d, ³*J*_{C,F} = 9 Hz), 147.2, 148.1, 151.5, 161.8 (d, ¹*J*_{C,F} = 246 Hz).

MS (ESI): m/z (%) = 296 (100, [M – t-Bu + 2 H]⁺).

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₆H₁₄ClFN₂O₂S: 353.0526; found: 353.0522.

tert-Butyl *N*-{2-Heteroaryl-5-[2-(4-fluorophenyl)ethynyl]-1,3-thiazol-4-yl}carbamates 6l and 6m; General Procedure

To a solution of **6k** (705 mg, 2.00 mmol) and the corresponding boronic acid (3 mmol) or the corresponding boronic acid ester, respectively, in DMF (4 mL), H₂O (2 mL) and ethylene glycol dimethyl ether (DME, 8 mL) were added K₂CO₃ (829 mg, 6 mmol) and Pd(dppf)Cl₂·CH₂Cl₂ (81 mg, 0.10 mmol). After passing argon through the reaction mixture for 10 min, the reaction vessel was sealed and heated to 85 °C (44 h for 6l; 24 h for 6m). After cooling to r.t., the mixture was extracted with brine (2 × 25 mL) and the combined aqueous layers were extracted with EtOAc (25 mL). The organic layer was dried (Na₂SO₄) and the solvent removed in vacuo. The product was purified by flash chromatography on silica gel (cyclohexane–EtOAc, 1:2; 1% Et₃N).

tert-Butyl *N*-{2-(2-Aminopyrimidin-5-yl)-5-[2-(4-fluorophenyl)ethynyl]-1,3-thiazol-4-yl}carbamate (6l) Yield: 24%; yellow solid; mp 201–203 °C.

¹H NMR (300 MHz, DMSO- d_6): δ = 1.46 (s, 9 H), 7.23–7.49 (m, 4 H), 7.51–7.70 (m, 2 H), 8.72 (s, 2 H), 9.63 (s, 1 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 27.4, 78.7, 79.0, 96.8, 103.4, 115.6 (d, ²*J*_{C,F} = 22 Hz), 118.0, 132.8 (d, ³*J*_{C,F} = 9 Hz), 150.4, 151.7, 155.2, 155.5, 159.5, 161.6 (d, ¹*J*_{C,F} = 247 Hz), 163.4.

MS (ESI): m/z (%) = 356 (60, [M - *t*-Bu + 2 H]⁺), 412 (100, [M + H]⁺).

HRMS (ESI): m/z [M + H]⁺ calcd for C₂₀H₁₈FN₅O₂S: 412.1243; found: 412.1242.

tert-Butyl *N*-{2-(2-Aminopyridin-3-yl)-5-[2-(4-fluorophenyl)ethynyl]-1,3-thiazol-4-yl}carbamate (6m) Viald: 50%: bright vallow solid: pp 170–172 °C

Yield: 50%; bright-yellow solid; mp 170-172 °C.

¹H NMR (400 MHz, DMSO- d_6): δ = 1.48 (s, 9 H), 6.67 (dd, J = 7.7, 4.7 Hz, 1 H), 7.35–7.25 (m, 2 H), 7.58–7.67 (m, 4 H), 7.90 (dd, J = 7.7, 1.7 Hz, 1 H), 8.13 (dd, J = 4.7, 1.7 Hz, 1 H), 9.89 (s, 1 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 27.4, 78.4, 79.3, 97.2, 100.8, 108.2, 111.7, 115.5 (d, ${}^{2}J_{C,F}$ = 23 Hz), 118.0, 132.9 (d, ${}^{3}J_{C,F}$ = 8 Hz), 135.6, 149.3, 150.6, 151.4, 155.1, 161.6 (d, ${}^{1}J_{C,F}$ = 247 Hz), 163.0.

MS (ESI): m/z (%) = 411 (100, [M + H]⁺).

HRMS (ESI): m/z [M + H]⁺ calcd for C₂₁H₁₉FN₄O₂S: 411.1291; found: 411.1282.

4H-Pyrrolo[2,3-d]thiazoles 1; General Procedure

The corresponding alkyne **6** (0.75 mmol) was dissolved in NMP (4.5 mL) in a microwave flask and treated with *t*-BuOK (143 mg, 1.27 mmol) under a blanket of N₂. The vessel was sealed under N₂ and irradiated with microwaves for 20 min at 90 °C (employing a constant stream of N₂). After cooling to r.t., the slurry mixture was diluted with Et₂O (50 mL) and washed with brine (2×50 mL). The aqueous layer was extracted with Et₂O (50 mL) and the combined organic layers were dried (Na₂SO₄), and the solvent removed in vacuo. The crude product, which may partially contain remaining traces of NMP, was purified by column chromatography on silica gel (cyclohexane–EtOAc, 1:1).

5-(4-Fluorophenyl)-4H-pyrrolo[2,3-d]thiazole (1b)

Yield: 66%; grey-white solid; mp 244-245 °C.

¹H NMR (300 MHz, DMSO- d_6): δ = 6.87 (d, J = 2.0 Hz, 1 H), 7.20–7.29 (m, 2 H), 7.75–7.83 (m, 2 H), 8.77 (s, 1 H), 12.33 (br s, 1 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 96.6, 114.6, 115.8 (d, ²*J*_{C,F} = 19 Hz), 126.0 (d, ³*J*_{C,F} = 7 Hz), 129.2, 135.2, 150.8, 153.0, 161.0 (d, ¹*J*_{C,F} = 250 Hz).

MS (ESI): m/z (%) = 219 (100, [M + H]⁺).

HRMS (EI): m/z [M]⁺ calcd for C₁₁H₇FN₂S: 218.0314; found: 218.0312.

5-Benzyl-4*H*-pyrrolo[2,3-*d*]thiazole (1c)

Yield: 69%; brown crystals; mp 117–122 °C (Et₂O).

¹H NMR (400 MHz, DMSO- d_6): δ = 3.99 (s, 2 H), 6.13 (br s, 1 H), 7.17–7.32 (m, 5 H), 8.62 (s, 1 H), 11.78 (br s, 1 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 33.9, 96.5, 112.3, 125.6, 127.8, 127.9, 136.0, 139.3, 148.1, 150.9.

MS (APCI): m/z (%) = 215 (100, [M + H]⁺).

HRMS (EI): m/z [M]⁺ calcd for C₁₂H₁₀N₂S: 214.0564; found: 214.0637.

4H-Pyrrolo[2,3-d]thiazole (1d)

Yield: 44%; dark-white solid; mp 150-151 °C.

¹H NMR (300 MHz, DMSO- d_6): δ = 6.39 (dd, J = 3.1, 1.8 Hz, 1 H), 7.11–7.13 (m, 1 H), 8.73 (d, J = 1.3 Hz, 1 H), 11.79 (s, 1 H).

¹³C NMR (75 MHz, DMSO- d_6): δ = 98.8, 112.9, 122.9, 150.4, 151.9.

MS (APCI): m/z (%) = 125 (100, [M + H]⁺).

HRMS (EI): m/z [M]⁺ calcd for C₅H₄N₂S: 124.0095; found: 124.0080.

3-(4H-Pyrrolo[2,3-d]thiazol-5-yl)phenylamine (1e)

Yield: 69%; pale-yellow solid; mp 160–161 °C (Et₂O).

¹H NMR (300 MHz, DMSO- d_6): $\delta = 5.10$ (s, 2 H), 6.49 (d, J = 7.5 Hz, 1 H), 6.69 (d, J = 1.6 Hz, 1 H), 6.98–6.83 (m, 3 H), 7.05 (t, J = 8.0 Hz, 1 H), 8.73 (s, 1 H), 12.15 (s, 1 H).

¹³C NMR (75 MHz, DMSO-*d*₆): δ = 95.8, 109.7, 112.3, 112.9, 114.3, 129.2, 133.2, 137.1, 148.8, 150.0, 152.7.

MS (ESI): m/z (%) = 216 (100, [M + H]⁺).

HRMS (EI): m/z [M]⁺ calcd for C₁₁H₉N₃S: 215.0517; found: 215.0520.

5-(Pyridin-4-yl)-4*H*-pyrrolo[2,3-*d*]thiazole (1f)

Yield: 40%; dark crystals; mp 185–187 °C.

¹H NMR (300 MHz, DMSO- d_6): δ = 7.21 (d, *J* = 1.9 Hz, 1 H), 7.73 (dd, *J* = 4.6, 1.6 Hz, 2 H), 8.54 (d, *J* = 6.2 Hz, 2 H), 8.91 (s, 1 H), 12.66 (s, 1 H).

¹³C NMR (75 MHz, DMSO-*d*₆): δ = 99.6, 115.0, 117.9, 113.0, 139.3, 150.0, 153.3, 154.0.

Benzyl[3-(4H-pyrrolo[2,3-d]thiazol-5-yl)phenyl]amine (1h) Yield: 52%; yellow solid; mp 169–170 °C.

¹H NMR (400 MHz, DMSO- d_6): $\delta = 4.34$ (d, J = 6.1 Hz, 2 H), 6.27 (t, J = 6.1 Hz, 1 H), 6.51 (dd, J = 8.0, 1.5 Hz, 1 H), 6.71 (d, J = 1.9 Hz, 1 H), 6.88–7.01 (m, 2 H), 7.07 (t, J = 7.8 Hz, 1 H), 7.22 (t, J = 7.3 Hz, 1 H), 7.33 (t, J = 7.6 Hz, 2 H), 7.41 (d, J = 7.6 Hz, 2 H), 8.74 (s, 1 H), 12.20 (s, 1 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 45.8, 95.4, 107.0, 111.1, 111.7, 113.8, 126.0, 126.7, 127.7, 128.7, 132.6, 136.6, 139.8, 148.4, 149.7, 152.1.

MS (ESI): m/z (%) = 306 (100, [M + H]⁺).

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{18}H_{15}N_3S$: 305.0986; found: 306.1051.

4-(4H-Pyrrolo[2,3-d]thiazol-5-yl)pyridin-2-ylamine (1i)

Yield: 20%; yellow solid; mp 175 $^{\circ}\text{C}$ (Et_2O–MeOH, 99:1; dec.).

¹H NMR (500 MHz, DMSO- d_6): δ = 6.05 (s, 2 H), 6.51 (d, J = 8.6 Hz, 1 H), 6.66 (d, J = 1.9 Hz, 1 H), 7.75 (dd, J = 8.6, 2.4 Hz, 1 H), 8.35 (d, J = 2.2 Hz, 1 H), 8.68 (d, J = 3.5 Hz, 1 H), 12.09 (s, 1 H).

MS (ESI): m/z (%) = 217 (100, [M + H]⁺).

2-Chloro-5-(4-fluorophenyl)-4*H*-pyrrolo[2,3-*d*]thiazole (1k)

Yield: 45%; beige solid; mp 150 °C (Et₂O; dec.).

¹H NMR (300 MHz, DMSO- d_6): δ = 6.83 (s, 1 H), 7.13–7.35 (m, 2 H), 7.66–7.90 (m, 2 H), 12.48 (s, 1 H).

¹³C NMR (75 MHz, DMSO-*d*₆): δ = 97.2, 115.8 (d, ${}^{2}J_{C,F}$ = 21 Hz), 126.1 (d, ${}^{3}J_{C,F}$ = 7 Hz), 128.8, 134.4, 145.9, 147.2, 150.1, 161.2 (d, ${}^{1}J_{C,F}$ = 243 Hz).

MS (ESI, –): m/z (%) = 250 (100, [M – 2 H]⁻), 251 (20, [M – 1 H]⁻), 252 (45, [M]⁻).

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₁H₆ClFN₂S: 253.0002; found: 252.9998.

5-[5-(4-Fluorophenyl)-4*H*-pyrrolo[2,3-*d*]thiazol-2-yl]pyrimidin-2-ylamine (11)

Yield: 37%; orange solid; mp 220 °C (PE; dec.).

¹H NMR (400 MHz, DMSO- d_6): δ = 6.89 (d, J = 1.9 Hz, 1 H), 7.20 (s, 2 H), 7.21–7.30 (m, 4 H), 8.74 (s, 2 H), 12.37 (s, 1 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 96.6, 113.7, 115.2 (d, ${}^{2}J_{CF}$ = 18 Hz), 117.5, 125.3 (d, ${}^{3}J_{CF}$ = 8 Hz), 128.6, 132.1, 133.9, 154.7, 155.2, 160.3 (d, ${}^{1}J_{CF}$ = 266 Hz), 162.9.

MS (ESI): m/z (%) = 312 (100, [M + H]⁺).

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{15}H_{10}FN_5S$: 312.0719; found: 312.0713.

3-[5-(4-Fluorophenyl)-4*H*-pyrrolo[2,3-*d*]thiazol-2-yl]pyridin-2-ylamine (1m)

Yield: 47%; orange solid; mp 300–301 °C (PE–Et₂O, 1:3).

¹H NMR (300 MHz, DMSO- d_6): $\delta = 6.63-6.74$ (m, 1 H), 6.92 (s, 1 H), 7.19–7.35 (m, 2 H), 7.53 (s, 2 H), 7.80 (dd, J = 8.8, 5.4 Hz, 2 H), 7.93 (dd, J = 7.7, 1.6 Hz, 1 H), 8.06 (dd, J = 4.7, 1.6 Hz, 1 H), 12.39 (s, 1 H).

¹³C NMR (75 MHz, DMSO-*d*₆): δ = 97.2, 111.1, 112.3, 114.0, 115.7 (d, ${}^{2}J_{C,F}$ = 28 Hz), 125.9, 126.0, 129.0 (2 ×), 134.9, 135.0, 149.1, 151.4, 155.0, 161.0 (d, ${}^{1}J_{C,F}$ = 242 Hz), 163.4 (${}^{3}J_{C,F}$ not observed).

MS (ESI): m/z (%) = 311 (100, [M + H]⁺).

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{16}H_{11}FN_4S$: 311.0766; found: 311.0757.

5-(4-Fluorophenyl)-2-morpholin-4-yl-4*H*-pyrrolo[2,3-*d*]thia-zole (1n)

A microwave flask was charged with 1k (126 mg, 0.50 mmol), followed by morpholine (2 mL), sealed with a septum, and irradiated with microwaves at 130 °C for 2 h. After cooling to r.t., the reaction mixture was directly purified via column chromatography (cyclohexane–EtOAc, 1:1) to yield 1n (139 mg, 91%) as beige crystals; mp 240–248 °C.

¹H NMR (300 MHz, DMSO- d_6): δ = 3.35–3.51 (m, 4 H), 3.66–3.81 (m, 4 H), 6.65 (d, J = 1.3 Hz, 1 H), 7.16 (t, J = 8.9 Hz, 2 H), 7.55–7.69 (m, 2 H), 11.78 (s, 1 H).

¹³C NMR (75 MHz, DMSO-*d*₆): δ = 48.0, 65.3, 97.2, 105.4, 115.5 (d, ${}^{2}J_{C,F}$ = 21 Hz), 124.5 (d, ${}^{3}J_{C,F}$ = 7 Hz), 128.8, 129.9, 148.6, 160.1 (d, ${}^{1}J_{C,F}$ = 240 Hz), 170.6.

MS (ESI): m/z (%) = 304 (100, [M + H]⁺).

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₅H₁₄FN₃OS: 304.0920; found: 304.0911.

5-(4-Fluorophenyl)-2-(4-pyridin-4-ylmethylpiperazin-1-yl)-4*H*-pyrrolo[2,3-*d*]thiazole (10)

A microwave flask was charged with **1k** (63 mg, 0.25 mmol), followed by 1-(4-pyridylmethyl)piperazine (443 mg, 2.50 mmol), EtN(*i*-Pr)₂ (85 μ L, 0.5 mmol), and *i*-PrOH (2 mL). The vessel was sealed and irradiated with microwaves for 1 h at 130 °C, followed by heating to 130 °C for 18 h in an oil bath. After cooling to r.t., the mixture was directly purified by flash chromatography (EtOAc to EtOAc–MeOH, 98:2; 1% Et₃N) to yield **1o** (41 mg, 41%), which was recrystallized as a beige solid (Et₂O–PE); mp 170 °C (dec.).

¹H NMR (400 MHz, DMSO- d_6): δ = 2.52–2.56 (m, 4 H), 3.42–3.49 (m, 5 H), 3.59 (s, 2 H), 6.65 (d, J = 1.9 Hz, 1 H), 7.16 (t, J = 8.9, 2 H), 7.37 (d, J = 5.6 Hz, 2 H), 7.62 (dd, J = 8.8, 5.4 Hz, 2 H), 8.53 (d, J = 5.3 Hz, 2 H), 11.77 (s, 1 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 47.4, 51.2, 59.9, 96.7, 105.0, 115.0 (d, ${}^{2}J_{C,F}$ = 22 Hz), 120.5, 123.2, 123.9 (d, ${}^{3}J_{C,F}$ = 8 Hz), 128.1, 129.4, 147.6 (d, ${}^{1}J_{C,F}$ = 220 Hz), 148.2, 149.1, 169.8.

MS (ESI): m/z (%) = 394 (100, [M + H]⁺).

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{21}H_{20}FN_5S$: 394.1501; found: 394.1447.

6-(Arylmethyl)-4*H*-pyrrolo[2,3-*d*]thiazoles 8; General Procedure

The corresponding *o*-iodocarbamate **2a,b** (2 mmol) and 2.6 g (8 mmol) Cs_2CO_3 was dissolved in anhyd DMF (10 mL) in a dried Schlenk tube under N₂ and treated with cinnamyl bromide (622 mg, 3 mmol). After stirring for 2 h at r.t. (TLC monitoring), Pd(OAc)₂ (22 mg, 0.10 mmol) and Ph₃P (52 mg, 0.20 mmol) were added and the mixture was stirred for 19 h at 100 °C. After cooling to r.t., the mixture was diluted with brine (50 mL) and extracted with EtOAc (3 × 50 mL). The combined organic layers were dried (Na₂SO₄) and the solvent removed in vacuo together with SiO₂ (2 g). The solid was heated in vacuo (10 mbar) at the indicated temperature and time. Subsequently, the product was purified by flash chromatography on silica gel (cyclohexane–EtOAc, 1:1).

6-Benzyl-4*H*-pyrrolo[2,3-*d*]thiazole (8a)

Yield: 49%; white solid; mp 133-135 °C (H₂O-MeCN).

¹H NMR (400 MHz, DMSO- d_6): δ = 3.90 (s, 2 H), 7.01 (dd, J = 2.3, 1.3 Hz, 1 H), 7.14–7.34 (m, 5 H), 8.65 (d, J = 1.3 Hz, 1 H), 11.58 (s, 1 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 32.1, 111.8, 113.0, 119.8, 125.4, 127.8, 128.0, 140.0, 149.7, 151.3.

MS (APCI): m/z (%) = 215 (100, [M + H]⁺).

HRMS (EI): m/z [M]⁺ calcd for C₁₂H₁₀N₂S: 214.0565; found: 214.0584.

6-Benzyl-2-pyridin-4-yl-4*H***-pyrrolo[2,3-***d***]thiazole (8b) Yield: 53%; beige solid; mp 185–187 °C (MeOH).**

¹H NMR (400 MHz, DMSO- d_6): δ = 3.94 (s, 2 H), 7.08–7.39 (m, 6 H), 7.75 (dd, J = 4.5, 1.6 Hz, 2 H), 8.61 (dd, J = 4.5, 1.6 Hz, 2 H), 11.86 (s, 1 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 31.9, 113.7, 114.4, 118.5, 122.0, 125.6, 127.9, 128.0, 139.7, 140.4, 150.0, 151.1, 159.1.

MS (ESI): m/z (%) = 292 (100, [M + H]⁺).

HRMS (EI): m/z [M]⁺ calcd for C₁₇H₁₃N₃S: 291.0830; found: 291.0819.

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.

References

- For a review of pyrrolo[2,1-b]thiazoles, see: Tverdokhlebov, A. V. *Heterocycles* 2007, *71*, 761.
- (2) Nakamura, T.; Hioki, T.; Ohzeki, K.; Hanaki, N. US Patent Appl. US 20020058216, **2002**; *Chem. Abstr.* **2002**, *136*, 393179.
- (3) Dekhtyar, M. L. Dyes Pigm. 2007, 74, 744.
- (4) For examples of 2-acylpyrrole derivatives including pyrrolo[2,3-*d*]thiazoles, see: (a) Heffernan, M. L. R.; Dorsey, J. M.; Fang, Q. K.; Foglesong, R. J.; Hopkins, S. C.; Jones, M. L.; Jones, S. W.; Ogbu, C. O.; Perales, J. B.; Soukri, M.; Spear, K. L.; Varney, M. A. PCT Int. Appl. US 20080058395, **2008**; *Chem. Abstr.* **2008**, *148*, 278900.
 (b) See also: Barker, A. J.; Kettle, J. G.; Faull, A. W. PCT Int. Appl. WO 199940914, **1999**; *Chem. Abstr.* **1999**, *131*, 170342.
- (5) For the original synthesis of pyrrolo[3,2-d]thiazoles, see:
 (a) Shafiee, A.; Mazloumi, A.; Cohen, V. I. J. Heterocycl. Chem. 1979, 16, 1563. (b) Athmani, S.; Farhat, M. F.; Iddon, B. J. Chem. Soc., Perkin Trans. 1 1992, 973.
 (c) Sparey, T.; Abeywickrema, P.; Almond, S.; Brandon, N.; Byrne, N.; Campbell, A.; Hutson, P. H.; Jacobson, M.; Jones, B.; Munshi, S.; Pascarella, D.; Pike, A.; Prasad, G. S.; Sachs, N.; Sakatis, M.; Sardana, V.; Venkatramane, S.; Young, M. B. Bioorg. Med. Chem. Lett. 2008, 18, 3386.
- (6) (a) Grehn, L. Chem. Scr. 1978, 13, 78. (b) Rao, K. E.;
 Padmanabhan, S.; Lown, J. W. Actual. Chim. Ther. 1993, 20, 159.
- (7) Koolman, H.; Heinrich, T.; Böttcher, H.; Rautenberg, W.; Reggelin, M. *Bioorg. Med. Chem. Lett.* 2009, 19, 1879.
- (8) For examples of indole syntheses, see: (a) Mackmann, R. L.; Katz, B. A.; Breitenbucher, J. G.; Hui, H. C.; Verner, E.; Luong, C.; Liu, L.; Sprengeler, A. J. Med. Chem. 2001, 44, 3856. (b) Palimkar, S. S.; Kumar, P. H.; Lahoti, R. J.; Srinivasan, K. V. Tetrahedron 2006, 62, 5109.
 (c) Saejueng, P.; Bates, C. G.; Venkataraman, D. Synthesis 2005, 1706. (d) Lu, B. Z.; Zhao, W.; Wei, H.-X.; Dufour, M.; Farina, V.; Senanayake, C. H. Org. Lett. 2006, 8, 3271.
 (e) Gomtsyan, A.; Didomenico, S.; Lee, C.-H.; Stewart, A. O.; Bhagwat, S. S.; Kowaluk, E. A.; Jarvis, M. F. Bioorg. Med. Chem. Lett. 2004, 14, 4165. (f) For an explicit example of a Boc-protected iodoaniline being cyclized to the corresponding indole after Sonogashira coupling employing

Synthesis 2010, No. 18, 3152–3162 © Thieme Stuttgart · New York

TBAF as base in a one-pot procedure, see: Suzuki, N.; Yasaki, S.; Yasuhara, A.; Sakamoto, T. *Chem. Pharm. Bull.* **2003**, *51*, 1170. (g) For a discussion of aminopalladation/ reductive elimination reactions for the syntheses of indoles, see: Arcadi, A.; Cacchi, S.; Marinelli, F. *Tetrahedron Lett.* **1992**, *33*, 3915. (h) See also: Tyrell, E.; Whiteman, L.; Williams, N. *Synthesis* **2009**, 829.

- (9) Al-Shaar, A. H. M.; Gilmour, D. W.; Lythgoe, D. J.; McClenaghan, I.; Ramsden, C. A. J. Chem. Soc., Perkin Trans. 1 1992, 2779.
- (10) The yields of 4- and 5-aminothiazoles are low and rapid decomposition to a black solid is particularly mentioned for the 4-aminothiazole, see: Diener, H.; Zollinger, H. *Can. J. Chem.* **1986**, *64*, 1102.
- (11) Yang, Y.; Hörnfeldt, A.-B.; Gronowitz, S. *Chem. Scr.* **1988**, 28, 275.
- (12) The 2,5-diiodothiazole as a side-product in the synthesis of thiazole 2a could only be observed in traces via mass spectrometry. When scaling this reaction up to a 35 mmol, CH₂Cl₂ as solvent and a reaction time of 18 h at r.t. were used to achieve comparable yields.
- (13) The syntheses of azaindoles via DBN-mediated cyclization of Boc-protected *o*-aminoalkynylpyridines are reported in:
 (a) Choi-Sledeski, Y.-M.; Kearney, R.; Poli, G.; Pauls, H.; Gardner, C.; Gong, Y.; Becker, M.; Davis, R.; Spada, A.; Liang, G.; Chu, V.; Brown, K.; Collussi, D.; Leadley, R.; Rebello, S.; Moxey, P.; Morgan, S.; Bentley, R.; Kasiewski, C.; Maignan, S.; Guilloteau, J.-P.; Mikol, V. *J. Med. Chem.* **2003**, *46*, 681. (b) Harcken, C.; Ward, Y.; Thomson, D.; Riether, D. *Synlett* **2005**, 3121.
- (14) Sanz, R.; Guilarte, V.; Castraviejo, M. P. Synlett 2009, 3006.
- (15) Knochel and co-workers mention the importance of NMP as solvent in combination with *t*-BuOK to induce cyclization to the pyrrole moiety: Rodriguez, A. L.; Koradin, C.; Dohle,

W.; Knochel, P. Angew. Chem. Int. Ed. 2000, 39, 2488; Angew. Chem. 2000, 112, 2607.

- (16) See supporting information for a detailed reaction parameter diagram.
- (17) Pyrrolo[3,2-d]thiazole as a keratin dyeing compound is claimed, but its synthesis is not explicitly stated, see: Murphy, B. P.; Glenn, R. W. Jr.; Lim, M. I.; Gardlik, J. M.; Jones, S. D.; Laidig, W. D.; Shaffer, J. D. PCT Int. Appl. WO 2005077324, **2005**; *Chem. Abstr.* **2005**, *143*, 234964.
- (18) The low yield can be attributed to decomposition processes due to the considerably intense and long-lasting irradiation of the reaction mixture.
- (19) The formation of a black slurry residue is observed, probably due to polymerization..
- (20) Several conditions were tested for the Boc cleavage of **6a**: TFA in CH_2Cl_2 , ethanolic HCl in CH_2Cl_2 and heating with SiO₂, with the latter being the superior method. In all cases partial decomposition occurred and oxidation of the alkyne appeared as the major side reaction.
- (21) All tried standard halogenation conditions for thiazoles affected the alkyne, or led to decomposition: iodination with NIS in CH₂Cl₂, DME, or MeCN with or without addition of K₂CO₃ at ambient or elevated temperatures. Best yields were obtained with *N*-chlorosuccinimide as electrophile compared to CCl₄ and quenching the reaction mixture with *n*-BuOH compared to H₂O, respectively.
- (22) Attempted Suzuki-couplings after cyclization to the unprotected pyrrolothiazoles only led to traces of product after prolonged reaction times, probably due to the influence of the free pyrrole NH group.
- (23) Wensbo, D.; Gronowitz, S. Tetrahedron 1995, 51, 10323.
- (24) Products resulting from 6-*endo*-cyclization could not be detected in any case.