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Enamination of a wide variety of primary amines was successfully described with excellent chemo-

selectivity in the presence of catalytic amounts of �-cyclodextrin in water under mild conditions. Aliphatic

amines also reacted efficiently to produce the corresponding enaminones.
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INTRODUCTION

�-Enaminones are of pharmacological relevance1 and

represent useful synthetic building blocks for the synthesis

of aminoacids,2 peptides,3 alkaloids4 and heterocyclic com-

pounds.5 In spite of their importance in organic synthesis as

intermediates and in pharmaceuticals, little attention has

been paid to synthesis of these compounds. The traditional

approach to the preparation of �-enaminones involves the

direct condensation of �-dicarbonyl compounds with amines

at reflux in an aromatic solvent with azeotropic removal

of water.6 Several catalysts like Al2O3,7 clay K-10/US,8

NaAuClO4,
9 silica/MW10 and Bi(TFA)3/TBAB11 have been

reported to effect this synthesis. In addition, the reactions

of �-dicarbonyl compounds with amines have been carried

out in water12 and solvent-free conditions.13 However,

some of these methods have limited synthetic scope due to

the use of toxic solvents, long reaction times, unsatisfac-

tory yields or low selectivity. Thus the development of a

simple and high yielding method for the preparation of

�-enaminones under mild conditions is desirable.

�-Cyclodextrins (�-CD) are important natural host

compounds due to their encapsulating ability of drugs and

bioactive substances.14 In addition, they have lipophilic

cavities, which bind substrates and catalyze chemical reac-

tions selectively. In fact, a substrate hidden inside the �-CD

cavity is less inclined to undergo transformation than a free

one. It has been shown that in many �-CD catalysis exam-

ples,15 formation of inclusion compounds may accelerate

the unexpected reaction. They catalyze reactions by revers-

ible formation of host-guest complexes by noncovalent

bonding as seen in enzymes.16 The size, shape and lipo-

philicity of the guest molecule have an affect on complexa-

tion. Rao and co-workers17 reported that ring opening of

epoxides and aziridines, conversion of oxiranes into thi-

iranes, allylation of aldehydes, synthesis of thiazoles, oxi-

dation of THP ethers, and sulfides can be catalyzed by �-

CD. Oxidation of alcohols with �-CD was also reported.18

RESULTS AND DISCUSSION

In this study, different types of primary amines were

subjected to reaction with �-dicarbonyl compounds to pre-

pare �-enaminones by �-CD in water (Scheme I).

The results are summarized in Table 1. The reactions

were completed at room temperature within 5-90 min. The

products were obtained in excellent yields and chemo-se-

lectivity to afford Z-�-enaminones, confirmed by 1H NMR

spectrum of the crude products (� = 7.5-12.8 for NH).

Probably, the reaction proceeds through the activa-

Journal of the Chinese Chemical Society, 2008, 55, 217-221 217

* Corresponding author. E-mail: mmkhoda@razi.ac.ir

Scheme I
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Table 1. Enamination reaction catalyzed with �-CD in water at room temperature

Entry R1 R2 R3 R4 Time (min) Yield (%) Product

119
CH3 H OC2H5 CH3(CH2)2CH2 5 99

CH3

CH3(CH2)2CH2NHC=CHCO2C2H5

212
CH3 H OC2H5 H2NCH2CH2 5 99

CH3

O

NH NH-C=CHCOC2H5

CH3

O

C2H5OCCH=C

312
CH3 H OC2H5 HOCH2CH2 5 95

HOCH2CH2NH-C=CHCO2C2H5

CH3

412
CH3 H OC2H5 C6H5CH2 8 97

CH2NH-C=CHCO2C2H5

CH3

520
CH3 H OC2H5 C6H5 10 85

NH-C=CHCO2C2H5

CH3

619
CH3 H OC2H5 4-CH3C6H4 13 90

NH-C=CHCO2C2H5

CH3

CH3

721
CH3 H OC2H5 4-ClC6H4 20 70

Cl NH-C=CHCO2C2H5

CH3

822
CH3 H OC2H5 �-naphthyl 15 80

NH-C=CHCO2C2H5

CH3

919
CH3 CH2CH2R O C6H5 90 90

O
O

H3C
NH

1013
CH3 CH2CH2R O 4-CH3C6H4 60 96

O
O

H3C
NH CH3

1123
CH3 CH2CH2R O 4-ClC6H4 20 95

Cl

O
O

NH
H3C

1213
CH3 CH2CH2R O C6H5CH2 90 96

O
O

H3C
NHCH2

1323
CH3 CH2CH2R O HOCH2CH2 80 95

O
O

H3C NHCH2CH2OH

1419
CH3 H CH3 CH3CH2CHCH2 40 91

CH3

CH3CH2CHNH

CH3

-CH=CHCOCH3



tion of the carbonyl group of the acetyl part by complexa-

tion with �-CD followed by nucleophilic addition of amines

to the carbonyl group and subsequently the enaminone for-

mation.

Although it was reported that the synthesis of �-en-

aminones is limited to soluble amines in water, we achieved

that in the presence of �-CD; water insoluble amines were

also converted efficiently to the corresponding enaminones

in high yields. However, anilines with strong electron with-

drawing groups such as 4-nitroaniline did not give any

product under the present reaction conditions. Aliphatic

amines also reacted efficiently to produce the correspond-

ing enaminones. This method was successfully applied to

linear (Table 1, entries 1-8), and cyclic �-ketoesters (Table

1, entries 9-13), and �-diketones (Table 1, entries 14-24).

The use of �-CD showed rate enhancements, high yields

and short reaction times. It was found that when one or two

equivalents of �-dicarbonyl compound reacted with one

equivalent of ethylene diamine, the diamination product

was produced as a sole product and no monoamination

product was observed (Scheme II).

However, the reaction of one equivalent of �-dicar-

bonyl compound with one equivalent of ethylene diamine

was not complete.

In conclusion, �-CD is a highly efficient catalyst for

enamination of �-dicarbonyl compounds. Short reaction

times, mild reaction conditions, high chemo-selectivity and

high yield products are noteworthy advantages of this pro-

cedure. Water insoluble amines were also converted effi-

ciently to the corresponding enaminones in high yields.

Moreover, stability and non-toxicity of the catalyst are the

other merits of this method.

EXPERIMENTAL SECTION

Products are known compounds and were character-
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1512
CH3 H CH3 H2NCH2CH2 30 90

CH3

O

NH NH-C=CHCCH3

CH3

O

CH3CCH=C-

1612
CH3 H CH3 HOCH2CH2 30 90

HOCH2CH2NH-C=CHCOCH3

CH3

1720
CH3 H CH3 C6H5 20 80

NH-C=CHCOCH3

CH3

18 CH3 H CH3 4-ClC6H4 20 78
Cl NH-C=CHCOCH3

CH3

1912
CH3 H Ph CH3CH2CHCH2 35 90

CH3

CH3CH2CHNH

CH3

-CH=CHCOC6H5

2023
CH3 H Ph 4-CH3C6H4 35 92 NH-C=CHCOC6H5

CH3

H3C

2123
CH3 H Ph H2NCH2CH2 30 92

CH3

NH-C=CHCC6H5

CH3

O

C6H5CCH=C-NH

O

2224
CH3 H Ph C6H5CH2 15 82

CH2NH-C=CHCOC6H5

CH3

2319
CH3 H Ph C6H5 20 75 NH-C=CHCOC6H5

CH3

2412
CH3 H Ph HOCH2CH2 30 88

HOCH2CH2NH-C=CHCOC6H5

CH3

a All products were identified by comparison of their physical or spectral data with those reported in the literature.
b Isolated yields.



ized by comparison of their spectral data (1H NMR, IR) or

melting points with those reported in the literature. Moni-

toring of the reactions was accomplished by TLC on pre-

coated silica gel 60 F254 sheets. All yields refer to isolated

products.

General experimental procedure for synthesis of

enaminones

In a 25 mL round bottomed flask �-cyclodextrin (0.5

mmol, 568 mg) in water (4 mL) was prepared. The mixture

was stirred at 50 �C for 10 min. Then �-dicarbonyl com-

pound (1 mmol) and primary amine (1 mmol) were added

to the solution. The mixture was stirred at room tempera-

ture for an appropriate time as indicated in Table 1. The

progress of the reaction was monitored with TLC. On com-

pletion of the reaction, water was added and the product

was extracted with dichloromethane (3 � 10 mL). The or-

ganic layer was dried and the solvent was evaporated. The

resulting crude material was purified on a silica gel plate

with n-heptane/ethyl acetate: 4/1 to afford the pure �-en-

aminones in 70-99% yields.

Spectroscopic data for entries 7 and 18. Entry 7: Liq-

uid, 1H NMR (200 MHz, CDCl3) � : 1.30 (t, J = 7.4 Hz, 3H),

2.05 (s, 3H), 4.12 (q, J = 7.4 Hz, 2H), 4.75 (s, 1H), 7.08 (d,

J = 8.2 Hz, 2H), 7.34 (d, J = 8.2 Hz, 2H), 10.38 (br, 1H,

NH). 13C NMR (50 MHz, CDCl3) �: 14.9, 20.8, 60.4, 88.5,

118.2, 119.4, 127.5, 133.2, 139.1, 158.8. IR (KBr) � : 3350,

2985, 1620, 1490, 1425, 1260, 1155, 820 cm-1. MS: m/z =

239 [M+], 167, 149, 111, 88, 71, 57, 45. Anal. Calcd for

C12H14NO2Cl: C, 60.24; H, 5.90; N, 5.85. Found: C, 60.50;

H, 5.93; N, 5.71. Entry 18: Mp 59-60 �C, 1H NMR (200

MHz, CDCl3) � : 1.97 (s, 3H), 2.17 (s, 3H), 5.2 (s, 1H), 7.12

(d, J = 8.3 Hz, 2H), 7.24 (d, J = 8.3 Hz, 2H), 12.3 (br, 1H,

NH). 13C NMR (50 MHz, CDCl3) �: 20.6, 29.8, 98.8, 118.7,

126.5, 132.7, 139.2, 160.2, 197.9. IR (KBr) �: 3382, 2980,

1606, 1462, 1264, 1180, 807 cm-1. MS: m/z = 209 [M+],

194, 152, 127, 111, 65, 43. Anal. Calcd for C11H12NOCl: C,

63.15; H, 5.30; N, 6.69. Found: C, 63.37; H, 5.39; N, 6.51.
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