Date: 11-07-12 15:33:42

Ag^I-Catalyzed Cascade Strategy: Regioselective Access to Diversely Substituted Fused Benzimidazo[2,1-*a*]isoquinolines, Naphthyridines, Thienopyridines, and Quinoxalines in Water

Pages: 14

Vineeta Rustagi,^[a] Rakesh Tiwari,^[a,b] and Akhilesh Kumar Verma*^[a]

Keywords: Electrophilic substitution / Domino reactions / Cyclization / Polycycles / Silver

An environmentally benign and operationally simple one-pot approach to the regioselective tandem synthesis of diversely substituted fused benzimidazo[2,1-*a*]isoquinolines, naphthyridines, thienopyridines, and quinoxalines from *o*-alkynylaldehydes and arylamines with tethered nucleophiles using Ag^I as catalyst in water is described. The reaction showed selective N–C bond formation on the more electrophilic alkynyl carbon, resulting in the regioselective *6-endo-dig* cyclized products in good to excellent yields. The proposed mechanistic pathway for the synthesis of fused heterocycles proceeding through formation of ring A prior to ring B, which formed through a second intramolecular attack of the nitrogen onto the alkynyl carbon, was supported by mechanistic experiments and X-ray crystallographic studies of isolated intermediate U and cyclized product **5a**. Comparative experiments showed the viability of intramolecular nucleophilic attack over intermolecular attack of an external nucleophile. This catalytic, green protocol has been efficiently applied for the bis-tandem cyclization in water.

Introduction

Immense and rapid advances in medicinal chemistry continue to underscore the need for practical and environmentally benign routes for the synthesis of small heterocyclic molecules because the majority of drugs and drug-like compounds contain heterocycles at their core.^[1] Recently, transition-metal-catalyzed tandem processes have furnished a promising algorithm to address this requirement to swiftly assemble complex molecules from simple starting materials in an iterative manner.^[2a–2c] This strategy is ideally suited to access diverse skeletal complexity.^[2d,2e] Among the various transition metals, silver-catalyzed tandem sequences have gained substantial attention because of their ability to activate various π -systems under mild conditions at low-catalyst loading.^[3]

As a privileged fragment, isoquinolines are present in a variety of natural products and in numerous pharmaceutically important compounds such as the antitumor agent carcristine A^[4b] (Figure 1).^[4] Isoquinoline-fused benzimidazoles have attracted considerable attention due to their immense and outstanding biological activities, such as anti-HIV-1, anticancer, antimicrobial, and antifungal proper-

- [b] Department of Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston-02881, Rhode Island, USA
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201200546.

ties.^[5a-5d] For instance, Hoechst 33258 (Figure 1) possesses anti-PCP activity, the most common and leading cause of unhealthiness and fatality rates in AIDS patients.^[5e] They also act as anti-inflammatory, antitumor, antiparasitic, and antiprotozoal agents.^[5f-5h] These fused heterocycles are also used for grafting carbon nanotubes.^[6] Similarly, quinoxalines are an important class of benzoheterocycles^[7a] that constitute the building blocks of some organic semiconductors,^[7b] are used as sensitizers in dye-sensitized solar cells,^[7c] and from part of a wide range of pharmacologically active compounds including anticancer drugs such as the

Figure 1. Examples of biologically active isoquinolines, benzimidazoles, and quinoxalines.

 [[]a] Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India Fax: +91-11-27667730 E-mail: averma@acbr.du.ac.in

FULL PAPER

antibiotic echinomycin^[7d] (Figure 1) and antimicrobial agents.^[7e–7g] Furthermore, nitrogen-containing molecules exert specific binding to various targets.^[7h] Thus, molecular skeletons that integrate both isoquinoline and quinoxaline moieties might possess properties of both and lead to enhanced activity. For this reason, the development of simultaneously benign and atom economical synthetic processes for rapid access to such functionalized and fused isoquinolines under mild conditions is of high demand.

In this regard, progress has been made by using tandem nucleophilic addition^[8a] and electrophilic cyclization^[8b-81] with *o*-alkynylbenzaldehyde, amines, and various carbon pronucleophiles either in the absence^[9,27] or in the presence of various alkynophilic Lewis acidic catalysts such as Ag-OTf,^[10] [In(OTf)₃] or [AuClPPh₃]/[AgNTf₂],^[11] Cu^I or Pd^{II} salts,^[12a-12d] CuI/I₂,^[12e] [Mg(ClO₄)₂]/[Cu(OTf)₂],^[13] and AuCl,^[14] leading to the synthesis of 1,2-dihydroisoquinoline derivatives. Additionally, various multicomponent reactions of aldehydes, alkynes, and amines have also been carried out by using transition-metal-catalysts^[15,16] such as Au^I, Ag^I, Cu^I, and CuSO₄/C₁₂H₂₅SO₃Na,^[17] in the presence of water as a solvent, to yield aldimines.

Many organic syntheses have been carried out in environmentally benign modern solvents.^[18-20] Most notably, reactions of water-insoluble organic compounds taking place in aqueous suspension, i.e., "on water", are gaining considerable attention due to their high efficiency and straightforward synthetic protocol.^[21] Water, in contrast to common organic reaction solvents, is an environmentally friendly, inexpensive, nonhazardous reaction medium that often has an unparalleled effect on the rate and selectivity of organic reactions through hydrophobic interactions and enrichment of organic substrates in local hydrophobic environments.^[22] It is believed that in many circumstances, the hydrophobic effect of water generates internal pressure and promotes the association of reactants in solvent cavities during reaction processes and thus accelerates reaction.^[23] Various authors have reasoned that the rate accelerating effects of water can be attributed to its high heat capacity, hydrogen bonding, charge stabilization, dipolar effects, and/or high cohesive energy.^[24]

Prompted by above results and as a part of our ongoing efforts to synthesize N-heterocycles,^[25] and on the basis of our recent preliminary report^[26] on the synthesis of fused polyheterocycles, we herein report full details of our work on Ag^I-catalyzed regioselective tandem syntheses of benzimidazo[2,1-a]isoquinolines 5a-h, 5t, naphthyridines 5i-q, thienopyridines 5r-s, and quinoxalines 6a-m (Scheme 1). The developed methodology has been extended to carry out double tandem cyclizations to access polyheterocycles 9 and 10, which may be useful for the rapid assembly of systems with extended conjugation. This greener strategy involves the formation of three new C-N bonds (in the case of benzimidazole) and two new C-N with one C-C bond (in the case of quinoxaline), thereby leading to the formation of two heterocyclic rings in one-pot, giving fused polycyclic heterocycles. To the best of our knowledge, this environmentally friendly and atom economical tandem synthesis

of diversely functionalized fused heterocycles from *ortho*-alkynylaldehydes in water has not previously been explored.

Scheme 1. Synthesis of fused benzimidazo[2,1-a]isoquinolines, naphthyridines, thienopyridines, and quinoxalines by Ag^I catalysis in water.

Results and Discussion

To probe the viability of the designed cascade strategy (Scheme 1), *ortho*-alkynylaldehydes 3a-u were readily prepared by standard Sonogashira cross-coupling reaction of commercially available and readily accessible *ortho*-haloal-dehydes 1a-g with terminal alkynes 2a-k (Scheme 2).^[25d] This coupling procedure readily accommodated a large variety of functional groups and provided the coupling products 3a-u in good to excellent yields.

Scheme 2. Preparation of ortho-alkynylaldehydes.

To establish the optimal reaction conditions, we selected 2-phenylethynyl benzaldehyde (**3a**) and benzene-1,2-diamine (**4a**) as model substrates (Table 1). Interesting observations emerged from the data; reaction of **3a** (0.5 mmol) with **4a** (0.5 mmol) using 8.0 mol-% AgNO₃ in dichloromethane (2.0 mL) at 25 °C for 12 hours, afforded the desired product **5a** in 68% yield through exclusive *6-endo-dig* cyclization along with the formation of intermediate U in Date: 11-07-12 15:33:42

Pages: 14

AgI-Catalyzed Cascade Strategy

25% yield (Table 1, entry 1). When different solvents such as toluene, dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF), 1,2-dichloroethane (EDC), and ethanol were examined at elevated temperatures, it was observed that the respective reaction did not attain the desired levels of reactivity and led to the formation of product 5a in 35-72% yield and intermediate U in 20-45% yield (Table 1, entries 2-6). Interestingly, when water was employed as a solvent, the reaction proceeded to completion and provided the desired product 5a in 89% yield in 10 hours at 85 °C (Table 1, entry 7). When the reaction was further monitored after 5 and 7 h, and it was found that reaction was complete in 7 h, resulting in the formation of the desired product 5a in 88% yield (Table 1, entry 9) but was incomplete after 5 h (Table 1, entry 8). It is notable that vigorous stirring was required to promote the reaction, most likely by increasing the area of contact between the organic and aqueous phase.^[21a,23d] The yield of compound 5a remained almost the same after prolonged heating (Table 1, entry 10). It was observed that decreasing catalyst loading from 8 to 5 mol-% adversely affected the yield of the product; under these conditions, compound 5a was obtained in only 65% yield along with starting material **3a** and **4a** in 20 and 18% yield, respectively (Table 1, entry 11). Moreover, the solvent isotope effect had no noticeable impact on the yield of the product when D₂O was used in place of water (Table 1, entry 12). As expected, in the absence of catalyst, reactants remained almost unchanged during the reaction (Table 1, entry 13).

Table 1. Optimization of reaction conditions.[a]

General Contraction of the second sec	CHO 4a NH VH VH VH VH VH VH VH VH VH V	$\frac{\mathbf{h}_2}{\mathbf{h}_2}$	N N N N H H V Ph			N N Ph 5a
Entry	Catalyst	Solvent	t	Time	Yield	[%] ^[b]
	(mol-%)		[°C]	[h]	U	5a
1	$AgNO_3(8)$	CH_2Cl_2	25	12	25	68
2	$AgNO_3(8)$	toluene	100	10	40	35
3	$AgNO_3(8)$	EDC	70	10	20	72
4	$AgNO_3(8)$	DMSO	120	10	28	58
5	$AgNO_3(8)$	DMF	110	10	45	52
6	$AgNO_3(8)$	EtOH	70	10	42	60
7	$AgNO_3(8)$	H_2O	85	10	0	89
8	$AgNO_3(8)$	H_2O	85	5	35	55
9	$AgNO_3(8)$	H_2O	85	7	0	88
10	$AgNO_3(8)$	H_2O	85	12	0	89
11	$AgNO_3(5)$	H_2O	85	7	40	65
12	$AgNO_3(8)$	D_2O	85	7	0	88
13	-	H_2O	85	7	5	trace
14	AgOAc (8)	H_2O	85	7	40	45
15	AgI (8)	H_2O	85	7	5	10
16	AgOTf (8)	H_2O	85	7	25	62
17	$PdCl_2(8)$	H_2O	85	7	55	5
18	$Pd(OAc)_2(8)$	H_2O	85	7	38	35
19	CuI (8)	H ₂ O	85	7	35	30

[a] Reagents and conditions: *o*-alkynylaldehyde **3a** (0.50 mmol), amine **4a** (0.50 mmol), solvent (2.0 mL). [b] Isolated yield.

The use of other silver catalysts with different counter anions such as AgOAc, AgI, and AgOTf resulted in inferior yields of the desired product **5a** (Table 1, entries 14–16). Transition-metal catalysts other than silver such as PdCl₂, Pd(OAc)₂, and CuI afforded the desired product **5a** in lower yields (Table 1, entries 17–19). The regioselective *6-endo-dig* cyclized product was fully characterized by ¹H, ¹³C NMR and mass spectroscopic analysis. Disappearance of the two characteristic peaks of the alkynyl carbon of intermediate U in the ¹³C NMR spectrum of the product suggested the formation of the desired cyclized product **5a**. X-ray crystallographic analysis of **5a** (Figure 2) and the intermediate U confirmed the formation of the *6-endo-dig* cyclized product through formation of intermediate U (see also the Supporting Information).

Figure 2. ORTEP drawing of compound 5a.

Having demonstrated the viability of this cascade strategy, we next investigated the generality and scope of the transformation under the optimized condition (Table 2). As shown in Table 2, the reaction is tolerant towards a variety of o-alkynylaldehydes 3 bearing a range of alkynyl substituents R². When electron-donating groups such as phenyl or *p*-methoxyphenyl, were attached to the triple bond, the respective reaction was very well implemented to form intriguing cyclized products 5a and 5b in 88-93% yield; these groups increase the electron density at the distal end of the triple bond, thereby promoting the regioselective 6-endo-dig ring closure in an efficient manner (Table 2, entries 1 and 2). On the other hand, when 4-phenoxybenzene was used as an alkynyl substituent, the reaction resulted in the formation of product 5c in 78% yield, which may be due to operation of a (+M)-effect of ethereal oxygen in both of the phenyl rings (Table 2, entry 3). Also noteworthy is the fact that this chemistry tolerated the thiophene group, and the product 5d was obtained in excellent yield (Table 2, entry 4). However, when the 3-methoxyphenyl group was employed, the reaction afforded compound 5e in comparatively low yield (Table 2, entry 5). Reaction of o-alkynylaldehyde 3e with 4-methylbenzene-1,2-diamine 4b resulted in the formation of two inseparable regioisomers 5f in 83% yield (Table 2, entry 6). A 65% isolated yield of compound 5g was obtained when a 4-(trifluoromethyl)phenyl group was employed as R^2 (Table 2, entry 7). Interestingly, when the

Product

Yield

FULL PAPER_____

Table 2. Tandem synthesis of fused benzimidazoles.[a]

Table 2. (continued)

Entry o-Alkynylaldehyde

Amine

[a] Reagents and conditions (unless otherwise noted): *o*-alkynylaldehyde **3** (0.50 mmol), amine **4a/b** (0.50 mmol), AgNO₃ (8.0 mol-%), H₂O (2.0 mL), 85 °C, 7 h. [b] Yield of isolated product. [c] AgNO₃ (15.0 mol-%) was used.

Da

Date: 11-07-12 15:33:42

Pages: 14

Eurjoc Jurgean Journal of Organic Chemistry

1	abl	le	3. (cont	tinuea	I)
---	-----	----	------	------	--------	----

[a] Reagents and conditions (unless otherwise noted): *o*-alkynylaldehyde **3** (0.50 mmol), amine **4c**–**f** (0.50 mmol), AgNO₃ (8.0 mol-%), H₂O (2.0 mL), 85 °C, 7 h. [b] Yield of isolated product. [c] AgNO₃ (12.0 mol-%) was used and the reaction was stirred for 10 h.

cyclohexyl group was introduced, the reaction afforded the desired product **5h** in 75% yield (Table 2, entry 8).

The scope of the reaction was extended to the synthesis of medicinally important naphthyridines 5i-q. Thus, 2-(arylethynyl)nicotinaldehyde 3h-k and 3-(arylethynyl)ison-icotinaldehyde 3l-m with a variety of alkynyl substituents afforded the desired 6/7-substituted benzo[4,5]imidazo[2,1-f][1,6]naphthyridines 5i-n in 77–92% yield (Table 2, entries 9–14). Moving onwards to two ring systems, when 2-(substituted ethynyl)quinoline-3-carbaldehydes 3n-o were subjected to the reaction conditions with amines 4a-b, the reaction proceeded well and afforded the fused polycyclic compounds 5o-q in 86–88% yield (Table 2, entries 15–17).

To incorporate more diversity in the products, reaction of 3-[(substituted)ethynyl]benzo[*b*]thiophene-2-carbaldehyde **3p-q** with **4a** afforded the corresponding 6-substituted benzo[4,5]imidazo [1,2-*a*]benzo[4,5]thieno[2,3-*c*]pyridine **5r**-**s** in 78–80% yield (Table 2, entries 18 and 19). Furthermore, when aliphatic systems such as 2-(*p*-tolylethynyl)cyclohex-1-enecarbaldehyde was employed, the reaction afforded the desired compound **5t** in good yield (72%; Table 2, entry 20).

The developed cascade strategy was successfully extended to the synthesis of functionalized polycyclic quinoxalines by the reaction of *o*-alkynylaldehydes **3** with heteroaromatic amines **4c**-**f** having tethered nucleophiles (Table 3). Reaction of *o*-alkynylaldehydes **3e**-**f**, **3j**, **3l**, **3no**, and **3s**-**t** with 2-(1*H*-pyrrol-1-yl)aniline **4c** afforded the substituted quinoxalines **6a**-**h** in good to excellent yields

Table 3. Tandem synthesis of fused quinoxalines.^[a]

Ag^I-Catalyzed Cascade Strategy

Scheme 3. Mechanistic studies.

with high regioselectivity (Table 3, entries 1-8). With 3methoxyphenyl as an alkynyl substituent, compound 6a was obtained in 78% yield (Table 3, entry 1). 5-Bromo-2-(phenylethynyl)benzaldehyde (3s) afforded the bromo-substituted quinoxaline 6b in 85% yield, which can be used for further synthetic elaboration by palladium-catalyzed coupling reactions (Table 3, entry 2). It is noteworthy that the trimethylsilyl-substituent of o-alkynylaldehyde 3t remained intact during the reaction and afforded the desired cyclization product 6c in 75% yield (Table 3, entry 3). The presence of an electron-withdrawing trifluoromethyl group in the 4position of the phenyl of alkyne **3f** (Table 3, entry 4) led to a lower yield of the desired product 6d, which may be due to the reduced electrophilicity at the proximal end of the alkyne moiety thereby reducing the efficiency of the desired transformation. The reaction proceeded appreciably well with heteroaromatic ortho-alkynylaldehydes 3j, 3l, and 3no, which afforded the polyheterocyclic quinoxalines 6e-h in 80-85% yield, respectively (Table 3, entries 5-8). Encouraged by the above results, we further extended the same protocol to examine its scope for the reaction of 2-(3methyl-1H-indol-1-yl)aniline (4d) with functionally varied

Figure 3. ORTEP diagram of intermediate U.

o-alkynylaldehydes 3 (Table 3). The reaction proceeded well and provided the fused indolo-quinoxalines 6i-m in 45-91% yield (Table 3, entries 9–13). Of particular medicinal relevance, the fluoro-substituted quinoxaline 6l was synthesized in 90% yield by using fluoro-substituted amine 4e (Table 3, entry 12). It was observed that amine 4f (without a 3-methyl group) provided the desired product 6m in only 45% yield (Table 3, entry 13). This observation shows that the presence of a methyl group at the 3-position of the in-

Scheme 4. Plausible mechanism.

Ag^I-Catalyzed Cascade Strategy

dole ring is a prerequisite for efficient intramolecular ring closure. $^{\left[25a,25d\right] }$

To understand the mechanism of the designed cascade strategy, the reaction between **3a** and **4a** was examined by using 8.0 mol-% AgNO₃ in water (Scheme 3). After careful monitoring of the reaction, the formation of intermediate alkyne U as a major product was observed on TLC after 2 h. This intermediate was isolated and characterized by NMR analysis. In the ¹H NMR spectrum, the presence of a peak at $\delta = 10.96$ ppm and its disappearance upon shaking in D₂O confirmed the presence of a proton attached to nitrogen. The presence of characteristic peaks at $\delta = 94.7$ and 89.1 ppm in the ¹³C NMR spectrum illustrated that both alkynylic carbon atoms remained intact. Formation of intermediate U was finally confirmed by X-ray crystallographic studies (Figure 3; see also the Supporting Information).

Isolation and characterization of intermediate U clearly confirms that the reaction proceeds through route A, leading to the formation of heterocyclic ring A first (Scheme 3), by nucleophilic attack of the NH_2 group of *o*-phenylenediamine onto imine carbon, leaving both alkynyl carbon atoms intact to generate U, which further undergoes a second intramolecular ring closure to give **5a**. The reaction does not proceed through route B, which would occur through the formation of isoquinolinium intermediate T,^[12d] forming ring B first.

With these observations in hand, a plausible mechanism is proposed (Scheme 4). Reaction of alkyne 3a and amine 4a generates imine P, which, upon activation by AgNO₃, results in nucleophilic attack by the NH₂ group of amine 4a onto the imine carbon to form transient intermediate Q, which undergoes subsequent electronic rearrangements to give unstable R.^[27] The latter species undergoes auto-oxidation and generates isolable intermediate U, which might be in equilibrium with U'. Subsequent π complexation between alkyne and Ag^I leads to regioselective intramolecular addition of nucleophilic NH on to the alkyne to form S (nonaromatic), along with the possibility of forming the aromatic species S', in which pyridine, like the nitrogen of the benzimidazole moiety, can attack the triple bond, both of which, after concomitant deprotonation, leads to the formation of cyclized product 5a.

To compare the feasibility of an intramolecular and an intermolecular reaction, a competitive study was performed by carrying out the reaction between 2-(phenylethynyl)-benzaldehyde (**3a**), amine **4c**, and MeOH (1.2 equiv.) in dichloromethane using AgNO₃ (8.0 mol-%) as catalyst

Scheme 5. Comparative study.

Scheme 6. Bis-tandem cyclization.

Pages: 14

FULL PAPER

(Scheme 5). The results demonstrated that fused quinoxaline $6n^{[26]}$ was formed as a major product in 68% yield along with intermediate $V^{[26]}$ in 25% yield, whereas 1-methoxy-1*H*-isochromene $7^{[28]}$ was formed in trace amounts. Formation of 2-[2-(1*H*-pyrrol-1-yl)phenyl]-1-methoxy-3phenyl-1,2-dihydroisoquinoline (8) was not observed. This clearly reveals that intramolecular reaction is preferred over intermolecular reaction because amine 4c, with a tethered nucleophile, is in proximity to attack the imine carbon, which is entropically more feasible than attack by distal methanol molecules.

We have also investigated the possibility of carrying out double tandem cyclizations, which might be useful for the rapid assembly of systems with extended conjugation. Alkyne **3v** underwent tandem reaction with amine **4a** and **4c** to afford double cyclization products **9** and **10** in 62 and 60% yield, respectively (Scheme 6). Recently, such polycyclic aromatic compounds have also been disclosed as potential candidates for photoelectronic devices and π -conjugated material such as organic semiconductor and luminescent materials.^[29]

Conclusions

We have developed an environmentally benign Ag^I-catalyzed tandem protocol in water that provides facile access to an impressive variety of fused benzimidazo[2,1-a]isoquinolines, naphthyridines, thienopyridines, and quinoxalines in good to excellent yields with high regioselectivity and structural diversity. The activation of the alkyne is advantageously employed in the tandem cyclization by intramolecular nucleophilic attack leading to concomitant heterocyclizations in one-pot. These atom-economical transformations in water proceed with high functional-group tolerance. The proposed mechanistic pathway (mode of concomitant bond formations) was confirmed by control experiments and X-ray crystallographic studies of an intermediate and the cyclized product. This synthetic methodology provides a powerful tool for divergent preparation of polyheteroaromatics through double cyclizations, which are of high importance in material chemistry. Owing to the great skeletal diversity of the substitution pattern, this developed chemistry is attractive for the generation of libraries of various heterocyclic systems that may modulate the activity of many targets that have been beyond the horizon of traditional compound collections.

Experimental Section

General Information: ¹H NMR (300 MHz or 400 MHz) and ¹³C NMR (75 MHz or 100 MHz) spectra were recorded in CDCl₃ or in DMSO as specified, with Jeol JNM ECX400P (400 MHz) and Bruker AV300 (300 MHz) spectrometers. Chemical shifts for ¹H NMR spectra are reported in ppm from tetramethylsilane with the residual CHCl₃ resonance as internal reference. Chemical shifts for ¹³C NMR spectra are reported in ppm from tetramethylsilane and are referenced to the carbon resonance of the solvent. Data are reported as follows: chemical shift, multiplicity (s = singlet, d =

doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublet), coupling constants (J) in Hertz, and integration. Highresolution mass spectra were recorded with an Applied Biosystems QSTAR Elite Hybrid (QqTOF) LC/MS/MS System with electrospray mass spectrometer using positive electrospray ionization mode (ESI+). Crystal structure analysis was accomplished with an Oxford diffraction (Xcaliber S) single-crystal X-ray diffractometer. TLC analysis was performed on commercially prepared 60 F₂₅₄ silica gel plates and visualized by either UV irradiation or by staining with I₂. Chemical yields refer to the pure isolated substances. Anhydrous forms of all reagents such as diethyl ether, THF, toluene, DMSO, DMF, ethanol, hexanes, ethyl acetate, and CH₂Cl₂ were purchased from Merck Chemical Co. and 2-Bromobenzaldehyde, terminal alkynes, silver nitrate, AgI, AgOAc, PdCl₂, Pd-(OAc)₂, AgOTf, 2-(1H-pyrrol-1-yl)aniline, benzene-1,2-diamine, Et₃N and the palladium salts were purchased from Aldrich and were used as such without further purification unless otherwise noted. Compounds 3a, 3b, 3d, 3g, 3h, 3m, 3s, and 3t have been previously reported,^[26] as have compounds 3k, 3n and 3o,^[25f] and also compounds 3r^[30] and 3u.^[28]

General Procedure for the Synthesis of Benzimidazo[2,1-*a*]isoquinolines 5a–h, 5t, Naphthyridines 5i–q, Thienopyridines 5r–s and 10: To a solution of *ortho*-alkynylaldehyde (3; 0.5 mmol), amine [4a–b; 0.5 mmol, 1.0 equiv. (2.0 equiv. for 10)] in H₂O (2.0 mL) was added AgNO₃ [8.0 mol-% (22 mol-% for 10)] and the mixture was stirred at 85 °C. After completion of reaction (indicated by TLC), H₂O (10 mL) was added to the reaction mixture, which was then extracted with ethyl acetate (2 × 10 mL). The combined organic layer was dried with anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude material was purified by column chromatography on silica gel (100–200 mesh; petroleum ether/ethyl acetate) to afford the desired pure products. Compounds 5a and 5n have been previously reported.^[26]

6-(4-Methoxyphenyl)benzo[4,5]imidazo[2,1-*a*]isoquinoline (5b): Colorless crystals (150 mg, 93%); m.p. 210–214 °C (petroleum ether/ CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃): δ = 8.89–8.86 (m, 1 H), 7.98 (d, *J* = 8.1 Hz, 1 H), 7.70–7.64 (m, 3 H), 7.52–7.49 (m, 2 H), 7.39 (td, *J* = 1.2, 8.4 Hz, 1 H), 7.11–7.08 (m, 2 H), 7.05–7.00 (m, 1 H), 6.87 (s, 1 H), 6.60 (d, *J* = 8.4 Hz, 1 H), 3.95 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 160.7, 148.4, 144.3, 137.4, 131.7, 130.8, 130.7, 130.0, 127.7, 127.0, 126.6, 125.1, 124.1, 122.9, 121.2, 119.7, 114.3, 114.2, 112.6, 55.5 ppm. HRMS (ESI+): calcd. for C₂₂H₁₆N₂O 324.1263; found 324.1275.

6-(4-Phenoxyphenyl)benzo[4,5]imidazo[2,1-*a***]isoquinoline (5c): Light-yellow solid (150 mg, 78%); m.p. 236–238 °C (petroleum ether/CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): \delta = 8.89–8.87 (m, 1 H), 7.99 (d,** *J* **= 8.1 Hz, 1 H), 7.73–7.67 (m, 3 H), 7.56 (d,** *J* **= 8.8 Hz, 2 H), 7.46–7.39 (m, 3 H), 7.23–7.17 (m, 5 H), 7.07 (td,** *J* **= 1.5, 8.8 Hz, 1 H), 6.92 (s, 1 H), 6.65 (d,** *J* **= 8.7 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): \delta = 158.9, 156.2, 148.3, 144.2, 136.9, 131.6, 130.9, 130.7, 130.1, 130.0, 129.1, 127.9, 126.6, 125.1, 124.2, 122.9, 121.3, 119.71, 119.68, 118.5, 114.1, 112.8 ppm. HRMS (ESI+): calcd. for C₂₇H₁₈N₂O 386.1419; found 386.1419.**

6-(Thiophen-3-yl)benzo[4,5]imidazo[2,1-*a***]isoquinoline (5d):** Yellow crystals (138 mg, 92%); m.p. 194–196 °C (petroleum ether/ CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃): δ = 8.89 (t, *J* = 3.6 Hz, 1 H), 8.00 (d, *J* = 8.1 Hz, 1 H), 7.72–61 (m, 4 H), 7.59–7.56 (m, 1 H), 7.44–7.39 (m, 1 H), 7.29 (dd, *J* = 1.2, 5.1 Hz, 1 H), 7.11–7.05 (m, 1 H), 6.97 (s, 1 H), 6.63 (d, *J* = 8.4 Hz, 1 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 148.2, 144.2, 134.9, 132.5, 131.4, 130.6, 130.1, 128.6, 127.9, 127.1, 126.8, 126.6, 125.1, 124.3, 123.0, 121.4,

Pages: 14

AgI-Catalyzed Cascade Strategy

119.7, 113.7, 113.1 ppm. HRMS (ESI+): calcd. for $C_{19}H_{12}N_2S$ 300.0721; found 300.0718.

6-(3-Methoxyphenyl)benzo[**4,5]imidazo**[**2,1**-*a*]isoquinoline (5e): Colorless crystals (129 mg, 80%); m.p. 182–184 °C (petroleum ether/ CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃): δ = 8.89 (t, *J* = 3.6 Hz, 1 H), 7.99 (d, *J* = 8.1 Hz, 1 H), 7.74–7.66 (m, 3 H), 7.51 (t, *J* = 7.8 Hz, 1 H), 7.40 (t, *J* = 7.5 Hz, 1 H), 7.19–7.12 (m, 3 H), 7.03 (t, *J* = 7.8 Hz, 1 H), 6.92 (s, 1 H), 6.58 (d, *J* = 8.4 Hz, 1 H), 3.85 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 159.9, 148.3, 144.2, 137.3, 135.8, 131.6, 130.6,130.1, 127.9, 126.7, 125.1, 124.2, 122.9, 121.7, 121.3, 119.7, 115.8, 114.6, 114.2, 112.4, 55.5 ppm. HRMS (ESI+): calcd. for C₂₂H₁₆N₂O 324.1273; found 324.1263.

6-(3-Methoxyphenyl)-10-methylbenzo[4,5]imidazo[2,1-a]isoquinoline (5f): White solid (140 mg, 83%); major/minor ratio 1.0:0.33; m.p. 176-178 °C (petroleum ether/CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃): δ = 8.88–8.85 [m, 2 H, including 1 H (major) + 1 H (minor)], 7.87 (d, J = 9.0 Hz, 1 H, minor), 7.76–7.65 [m, 5 H, including 3 H (major) + 2 H (minor)], 7.50 [td, *J* = 1.5, 8.0 Hz, 2 H, including 1 H (major) + 1 H (minor)], 7.25-7.12 [m, 6 H, including 4 H (major) + 2 H (minor)], 6.90-6.84 [m, 3 H, including 2 H (major) + 1 H (minor)], 6.44 (d, J = 7.8 Hz, 1 H, major), 6.33 (s,)1 H, minor), 3.86 (s, 3 H, major), 3.85 (s, 3 H, minor), 2.49 (s, 3 H, major), 2.28 (s, 3 H, minor) ppm. ¹³C NMR (75 MHz, CDCl₃): δ (major regioisomer) = 159.9, 148.2, 144.6, 137.2, 135.8, 131.5, 130.1, 129.97, 129.93, 129.8, 128.7, 127.8, 126.6, 125.0, 123.1, 121.7, 119.3, 115.7, 114.5, 113.6, 112.1, 55.5, 21.6 ppm; δ (minor regioisomer) = 147.9, 142.3, 137.3, 134.1, 131.4, 131.1, 130.7, 127.8, 125.8, 124.9, 122.9, 121.8, 119.1, 114.6, 114.1, 112.2, 55.5, 22.0 ppm. HRMS (ESI+): calcd. for C₂₃H₁₈N₂O 338.1419; found 338.1418

6-[4-(Trifluoromethyl)phenyl]benzo[4,5]imidazo[2,1-*a***]isoquinoline (5g): Colorless crystals (117 mg, 65%); m.p. 226–228 °C (petroleum ether/CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): \delta = 8.90–8.88 (m, 1 H), 8.00 (d,** *J* **= 8.0 Hz, 1 H), 7.88 (d,** *J* **= 8.1 Hz, 2 H), 7.77–7.70 (m, 5 H), 7.42 (t,** *J* **= 7.3 Hz, 1 H), 7.05 (t,** *J* **= 7.3 Hz, 1 H), 6.91 (s, 1 H), 6.52 (d,** *J* **= 8.8 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): \delta = 148.2, 144.2, 138.1, 135.8, 131.2, 130.4, 130.3, 129.8, 128.4, 126.8, 126.0, 125.9, 125.1, 124.4, 123.1, 121.5, 119.9, 113.6, 113.3 ppm. HRMS (ESI+): calcd. for C₂₂H₁₃F₃N₂ 362.1031; found 362.1025.**

6-Cyclohexylbenzo[4,5]imidazo[2,1-*a*]isoquinoline (5h): Yellow solid (112 mg, 75%); m.p. 150–152 °C (petroleum ether/CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 8.83 (dd, *J* = 1.2, 7.4 Hz, 1 H), 8.04 (d, *J* = 8.1 Hz, 1 H), 7.94 (d, *J* = 8.1 Hz, 1 H), 7.68–7.58 (m, 3 H), 7.54–7.48 (m, 1 H), 7.44–7.35 (m, 1 H), 6.84 (s, 1 H), 3.56–3.51 (m, 1 H), 2.34–2.31 (m, 2 H), 2.03–1.92 (m, 4 H), 1.70–1.54 (m, 3 H), 1.47–1.40 (m, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 148.7, 144.4, 144.3, 131.7, 130.4, 129.9, 127.1, 126.1, 125.0, 124.0, 122.3, 122.0, 120.0, 114.4, 107.0, 39.5, 32.1, 26.4, 26.2 ppm. HRMS (ESI+): calcd. for C₂₁H₂₀N₂ 300.1626; found 300.1627.

6-(4-Methoxyphenyl)benzo[4,5]imidazo[2,1-*f*][1,6]naphthyridine (5i): Yellow crystals (149 mg, 92%); m.p. 244–248 °C (petroleum ether/ CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 9.12 (dd, *J* = 1.4, 8.0 Hz, 1 H), 8.97 (dd, *J* = 1.4, 4.4 Hz, 1 H), 7.98 (d, *J* = 8.1 Hz, 1 H), 7.59–7.54 (m, 3 H), 7.43 (td, *J* = 1.4, 8.1 Hz, 1 H), 7.15–7.14 (m, 2 H), 7.13–7.12 (m, 1 H), 7.07 (td, *J* = 1.4, 7.2 Hz, 1 H), 6.64 (d, *J* = 8.8 Hz, 1 H), 3.97 (s, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 160.9, 152.4, 148.6, 147.5, 144.4, 141.2, 132.7, 130.5, 130.4, 126.3, 124.5, 122.3, 121.8, 119.7, 118.8, 114.4, 114.3, 113.9, 55.5 ppm. HRMS (ESI+): calcd. for C₂₁H₁₅N₃O 325.1215; found 325.1216. **6-(Thiophen-3-yl)benzo**[4,5]imidazo[2,1-*f*][1,6]naphthyridine (5j): Yellow solid (137 mg, 91%): m.p. 222–224 °C (petroleum ether/ CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 9.12 (dd, *J* = 1.5, 8.1 Hz, 1 H), 8.97 (dd, *J* = 2.2, 4.4 Hz, 1 H), 7.99 (d, *J* = 8.1 Hz, 1 H), 7.70 (dd, *J* = 1.5, 2.9 Hz, 1 H), 7.63–7.57 (m, 2 H), 7.45 (t, *J* = 7.3 Hz, 1 H), 7.33 (dd, *J* = 1.4, 5.1 Hz, 1 H), 7.23 (s, 1 H), 7.15– 7.11 (m, 1 H), 6.67 (d, *J* = 8.1 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 152.4, 148.4, 147.3, 144.3, 136.4, 134.2, 132.7, 130.4, 128.3, 127.1, 126.6, 124.6, 122.5, 122.1, 119.8, 119.0, 114.4, 113.9 ppm. HRMS (ESI+): calcd. for C₁₈H₁₁N₃S 301.0674; found 301.0674.

6-(3,5-Dimethoxyphenyl)benzo[4,5]imidazo[2,1-*f***][1,6]naphthyridine (5k**): Yellow crystals (136 mg, 77%): m.p. 200–202 °C (petroleum ether/CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 9.11 (d, *J* = 8.0 Hz, 1 H), 8.95 (d, *J* = 5.1 Hz, 1 H), 7.96 (d, *J* = 8.0 Hz, 1 H), 7.58–7.56 (m, 1 H), 7.41 (t, *J* = 8.1 Hz, 1 H), 7.17 (s, 1 H), 7.09 (t, *J* = 8.8 Hz, 1 H), 6.72–6.67 (m, 4 H), 3.81 (s, 6 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 161.3, 152.4, 148.5, 147.3, 144.2, 141.0, 135.5, 132.8, 130.3, 124.7, 122.5, 122.1, 119.7, 118.9, 114.5, 113.5, 107.0, 102.4, 55.6 ppm. HRMS (ESI+): calcd. for C₂₂H₁₇N₃O₂ 355.1321; found 355.1320.

6-Cyclohexylbenzo[4,5]imidazo[2,1-*f*][1,6]naphthyridine (5l): Offwhite solid (116 mg, 77%): m.p. 162–164 °C (petroleum ether/ CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 9.04–9.03 (m, 1 H), 8.21 (d, *J* = 8.2 Hz, 1 H), 8.04 (d, *J* = 8.7 Hz, 1 H), 7.70–7.63 (m, 2 H), 7.56 (t, *J* = 7.8 Hz, 1 H), 7.49–7.45 (m, 1 H), 7.25 (s, 1 H), 3.63–3.60 (m, 1 H), 2.36–2.34 (m, 2 H), 2.07–2.05 (m, 3 H), 1.74–1.60 (m, 4 H), 1.52–1.41 (m, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 152.3, 148.7, 148.3, 147.8, 144.6, 132.7, 130.1, 124.4, 122.5, 122.0, 120.1, 118.1, 114.5, 108.4, 39.8, 31.9, 26.3, 26.0 ppm. HRMS (ESI+): calcd. for C₂₀H₁₉N₃ 301.1579; found 301.1551.

6-Phenylbenzo[4,5]imidazo[2,1-*a***][2,6]naphthyridine (5m):** Yellow solid (125 mg, 85%): m.p. 208–210 °C (petroleum ether/CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 9.14 (s, 1 H), 8.64 (d, *J* = 5.2 Hz, 1 H), 8.49 (d, *J* = 5.8 Hz, 1 H), 8.03 (d, *J* = 8.7 Hz, 1 H), 7.68–7.60 (m, 5 H), 7.45 (t, *J* = 7.4 Hz, 1 H), 7.08 (td, *J* = 1.5, 7.3 Hz, 1 H), 6.99 (s, 1 H), 6.52 (d, *J* = 8.0 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 149.4, 147.1, 145.9, 144.1, 139.4, 134.0, 130.6, 130.2, 129.2, 129.1, 127.8, 126.2, 124.8, 122.5, 120.3, 117.5, 114.3, 109.7 ppm. HRMS (ESI+): calcd. for C₂₀H₁₃N₃ 295.1109; found 295.1107.

7-Phenylbenzo[*b*]benzo[4,5]imidazo[2,1-*f*][1,6]naphthyridine (50): Yellow solid (148 mg, 86%): m.p. 260–264 °C (petroleum ether/ EtOH). ¹H NMR (400 MHz, CDCl₃): δ = 9.69 (s, 1 H), 8.22 (d, *J* = 8.8 Hz, 1 H), 8.12 (d, *J* = 8.0 Hz, 1 H), 8.00 (d, *J* = 8.7 Hz, 1 H), 7.87 (td, *J* = 1.4, 6.6 Hz, 1 H), 7.69–7.63 (m, 6 H), 7.41 (t, *J* = 7.4 Hz, 1 H), 7.23 (s, 1 H), 7.07 (td, *J* = 1.5, 8.4 Hz, 1 H), 6.48 (d, *J* = 8.8 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 151.6, 149.8, 148.6, 147.8, 144.2, 142.0, 134.0, 133.4, 131.4, 131.0, 129.1, 128.7, 127.1, 126.8, 124.3, 122.4, 119.9, 117.6, 115.8, 114.1, 108.2 ppm. HRMS (ESI+): calcd. for C₂₄H₁₅N₃ 345.1266; found 345.1258.

11-Methyl-7-phenylbenzo[*b*]benzo[4,5]imidazo[2,1-*f*][1,6]naphthyridine (5p): Yellow solid (158 mg, 88%); major/minor ratio 1.0:0.40; m.p. 256–258 °C (petroleum ether/EtOH). ¹H NMR (300 MHz, CDCl₃): δ = 9.65 (s, 1 H, major), 9.63 (s, 1 H, minor), 8.21 [d, *J* = 8.7 Hz, 2 H, including 1 H (major) + 1 H (minor)], 8.11 [d, *J* = 8.1 Hz, 2 H, including 1 H (major) + 1 H (minor)], 7.87–7.83 (m, 2 H, major), 7.76 (s, 1 H, major), 7.65–7.61 [m, 11 H, including 6 H (major) + 5 H (minor)], 7.20 (s, 1 H, major), 6.89 (d, *J* = 8.1 Hz, 1 H, minor), 6.33 (d, *J* = 8.1 Hz, 1 H, major), 6.21 (s, 1 H, minor), 2.49 (s, 3 H, major), 2.26 (s, 3 H, minor) ppm.

FULL PAPER

¹³C NMR (75 MHz, CDCl₃): δ (major regioisomer) = 149.7, 148.6, 147.7, 144.6, 141.9, 134.2, 133.2, 131.3, 130.2, 129.07, 129.04, 128.7, 127.0, 126.7, 125.9, 123.9, 119.5, 117.6, 113.7, 113.5, 21.6 ppm; δ (minor regioisomer) = 149.6, 142.3, 142.1, 134.1, 133.1, 132.3, 131.2, 129.1, 128.9, 119.3, 117.7, 113.9, 113.8, 22.0 ppm. HRMS (ESI+): calcd. for C₂₅H₁₇N₃ 359.1422; found 359.1414.

7-(Thiophen-3-yl)benzo[*b***]benzo[***4***,5]imidazo[2,1-***f***][1,6]naphthyridine (5q): Yellow solid (154 mg, 88%); m.p. 258–260 °C (petroleum ether/EtOH). ¹H NMR (400 MHz, [D₆]DMSO): \delta = 9.75 (s, 1 H), 8.37 (d,** *J* **= 8.8 Hz, 1 H), 8.19 (d,** *J* **= 8.8 Hz, 1 H), 8.15–8.14 (m, 1 H), 7.95–7.92 (m, 3 H), 7.79–7.70 (m, 2 H), 7.51 (dd,** *J* **= 1.4, 5.1 Hz, 1 H), 7.44 (t,** *J* **= 8.1 Hz, 1 H), 7.21–7.16 (m, 1 H), 6.52 (d,** *J* **= 8.7 Hz, 1 H) ppm. ¹³C NMR (100 MHz, [D₆]DMSO + CD₃OD): \delta = 149.3, 148.2, 147.3, 143.9, 137.5, 133.9, 133.2, 131.8, 130.7, 129.2, 128.8, 128.7, 128.1, 127.9, 127.0, 126.8, 124.4, 122.5, 119.7, 117.3, 113.7, 113.5 ppm. HRMS (ESI+): calcd. for C₂₂H₁₃N₃S 351.0830; found 351.0834.**

6-(4-Methoxyphenyl)benzo[4,5]imidazo[1,2-*a***]benzo[4,5]thieno[2,3***c***]pyridine (5r): Yellow crystals (152 mg, 80%); m.p. 208–210 °C (petroleum ether/CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): \delta = 8.06– 8.04 (m, 1 H), 7.98–7.96 (m, 1 H), 7.92 (d,** *J* **= 8.8 Hz, 1 H), 7.50– 7.46 (m, 4 H), 7.36 (t,** *J* **= 8.1 Hz, 1 H), 7.18 (s, 1 H), 7.08 (d,** *J* **= 8.1 Hz, 2 H), 6.96 (t,** *J* **= 8.1 Hz, 1 H), 6.61 (d,** *J* **= 8.8 Hz, 1 H), 3.91 (s, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): \delta = 160.8, 145.7, 144.9, 141.1, 138.1, 135.2, 134.2, 130.7, 130.4, 127.2, 126.9, 125.0, 124.9, 123.4, 122.1, 120.9, 119.7, 114.6, 114.4, 106.7, 55.5 ppm. HRMS (ESI+): calcd. for C₂₄H₁₆N₂OS 380.0983; found 380.0985.**

6-[4-(*tert*-Butyl)phenyl]benzo[4,5]imidazo[1,2-*a*]benzo[4,5]thieno-[2,3-*c*]pyridine (5s): Yellow crystals (158 mg, 78%); m.p. 202–204 °C (petroleum ether/CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 8.08 (dd, J = 3.0, 6.6 Hz, 1 H), 8.03 (dd, J = 2.2, 6.6 Hz, 1 H), 7.98 (d, J = 8.0 Hz, 1 H), 7.65–7.63 (m, 2 H), 7.57–7.56 (m, 2 H), 7.53–7.51 (m, 2 H), 7.41 (t, J = 8.0 Hz, 1 H), 7.35 (s, 1 H), 7.01 (td, J = 2.2, 7.3 Hz, 1 H), 6.62 (d, J = 8.7 Hz, 1 H), 1.47 (s, 9 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 153.4, 145.7, 144.9, 141.1, 138.4, 135.3, 134.2, 131.6, 130.4, 129.1, 127.2, 125.9, 125.0, 124.9, 123.4, 122.1, 120.9, 119.7, 114.6, 106.7, 35.0, 31.4 ppm. HRMS (ESI+): calcd. for C₂₇H₂₂N₂S 406.1504; found 406.1502.

6-(*p***-Tolyl**)-1,2,3,4-tetrahydrobenzo[4,5]imidazo[2,1-*a*]isoquinoline (5t): Yellow solid (112 mg, 72%); m.p. 150–152 °C (petroleum ether/CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 7.90 (d, *J* = 8.0 Hz, 1 H), 7.41–7.33 (m, 5 H), 6.94–6.90 (m, 1 H), 6.61 (d, *J* = 8.0 Hz, 1 H), 6.39 (s, 1 H), 3.16 (t, *J* = 5.7 Hz, 2 H), 2.79 (t, *J* = 6.5 Hz, 2 H), 2.52 (s, 3 H), 1.98–1.91 (m, 4 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 149.9, 144.9, 139.7, 137.7, 137.6, 131.7, 129.8, 129.5, 129.0, 124.5, 123.5, 119.7, 119.3, 114.7, 114.4, 29.0, 24.3, 22.4, 22.2, 21.5 ppm. HRMS (ESI+): calcd. for C₂₂H₂₀N₂ 312.1626; found 312.1625.

X-ray Crystal Data for 5a: Crystallized in the orthorhombic crystal system with space group P 21 21 21 (petroleum ether/CH₂Cl₂). The single crystal X-ray data were collected using graphite monochromated Mo- K_{α} radiation ($\lambda = 0.71073$ Å). The structures were solved using SHELXL-97 direct method and refined by the full-matrix least-squares technique on F^2 using the SHELXL-97 program within the WinGX v 1.80.05 software package. All hydrogen atoms were fixed at the calculated positions with isotropic thermal parameters, and all non-hydrogen atoms were refined anisotropically. Crystal data for 5a: C₂₁H₁₄N₂; $M_r = 294.34$; orthorhombic group $P2_12_12_1$; a = 5.0768(6) Å, b = 14.411(2) Å, c = 20.257(3) Å, $a = 90^\circ$, $\beta = 90^\circ$, $\gamma = 90^\circ$; V = 1482.1(3) Å³; Z = 4; T = 293 K; $d_{\text{caled.}} = 1.319$ Mg/m³; $R_{\text{int}} = 0.0368$, $R_1 = 0.0420$, $wR_2 = 0.0639$ [$I > 2\sigma(I)$], $R_1 = 0.1306$, $wR_2 = 0.0796$ (all data), GOF = 0.675. For

further details on the crystal structure of compound **5**a, see the Supporting Information.

General Procedure for the Synthesis of Pyrrolo/Indolo-Quinoxalines 6a–m and 9: To a solution of *ortho*-alkynylaldehyde (3; 0.50 mmol), and amine [4c–f; 0.50 mmol, 1.0 equiv. (2.0 equiv. for 9)] in H₂O (2.0 mL) was added AgNO₃ [8.0 mol-% (22 mol-% for 9)] and the mixture was stirred at 85 °C for 7 h. After completion of reaction (indicated by TLC), H₂O (10 mL) was added to the reaction mixture, which was then extracted with ethyl acetate (2 × 10 mL). The combined organic layer was dried with anhydrous Na₂SO₄ and concentrated under vacuum. The crude material was then purified by column chromatography on silica gel (100–200 mesh; petroleum ether/ethyl acetate) to afford the desired pure products (6a–m). Compounds 6b–c have been previously reported.^[26]

6-(3-Methoxyphenyl)-11bH-isoquinolino[2,1-a]pyrrolo[2,1-c]quinoxaline (6a): Colorless crystals (146 mg, 78%); m.p. 194–196 °C (petroleum ether/CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃): δ = 7.34 (d, *J* = 7.8 Hz, 1 H), 7.28–7.14 (m, 6 H), 7.12–7.05 (m, 2 H), 6.88–6.71 (m, 2 H), 6.68–6.55 (m, 2 H), 6.44 (t, *J* = 3.3 Hz, 1 H), 6.28–6.26 (m, 2 H), 5.56 (s, 1 H), 3.74 (s, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 160.2, 143.3, 137.4, 133.6, 132.6, 132.4, 129.9, 127.9, 127.5, 126.1, 124.8, 124.6, 124.3, 123.4, 121.7, 119.9, 118.8, 117.0, 114.5, 114.4, 111.7, 110.4, 109.3, 107.9, 56.9, 55.4 ppm. HRMS (ESI+): calcd. for C₂₆H₂₀N₂O 376.1576; found 376.1572.

6-[4-(Trifluoromethyl)phenyl]-11b*H*-isoquinolino[2,1-*a*]pyrrolo-[2,1-*c*]quinoxaline (6d): Colorless crystals (120 mg, 58%); m.p. 216–218 °C (petroleum ether/CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 7.90 (d, *J* = 8.0 Hz, 2 H), 7.62 (d, *J* = 8.7 Hz, 2 H), 7.37–7.36 (m, 1 H), 7.31–7.28 (m, 2 H), 7.25–7.22 (m, 2 H), 7.18 (td, *J* = 1.5, 7.3 Hz, 1 H), 6.96 (d, *J* = 7.3 Hz, 1 H), 6.76 (t, *J* = 7.4 Hz, 1 H), 6.66 (td, *J* = 1.5, 8.0 Hz, 1 H), 6.52 (t, *J* = 2.9 Hz, 1 H), 6.36–6.35 (m, 1 H), 6.24 (d, *J* = 8.1 Hz, 1 H), 5.64 (s, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 141.8, 139.1, 133.7, 132.1, 131.9, 128.5, 127.7, 126.3, 126.2, 126.0, 125.9, 125.2, 124.7, 124.3, 123.1, 120.4, 118.7, 118.6, 114.7, 114.6, 110.5, 108.1, 56.9 ppm. HRMS (ESI+): calcd. for C₂₆H₁₇F₃N₂ 414.1344; found 414.1344.

6-(3,5-Dimethoxyphenyl)-11b*H*-[1,6]naphthyridino]6,5-*a*]pyrolo-[2,1-*c*]quinoxaline (6e): Yellow solid (162 mg, 80%); m.p. 232– 234 °C (petroleum ether/CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 8.40 (d, *J* = 5.1 Hz, 1 H), 7.35–7.34 (m, 1 H), 7.27–7.24 (m, 2 H), 7.18 (d, *J* = 8.0 Hz, 1 H), 7.06–7.03 (m, 1 H), 6.98–6.97 (m, 2 H), 6.75 (t, *J* = 7.3 Hz, 1 H), 6.67 (t, *J* = 7.3 Hz, 1 H), 6.51–6.47 (m, 2 H), 6.37 (d, *J* = 8.0 Hz, 1 H), 6.33–6.32 (m, 1 H), 5.67 (s, 1 H), 3.77 (s, 6 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 161.3, 151.9, 148.5, 147.8, 137.5, 132.3, 131.8, 128.7, 125.9, 124.5, 122.5, 122.2, 120.6, 119.2, 117.9, 114.9, 114.5, 110.6, 107.9, 104.6, 102.0, 56.6, 55.5 ppm. HRMS (ESI+): calcd. for C₂₆H₂₁N₃O₂ 407.1634; found 407.1645.

6-Phenyl-11b*H*-**[2,6]naphthyridino[2,1-***a***]pyrrolo[2,1-***c***]quinoxaline** (**6f**): Yellow solid (147 mg, 85%); m.p. 180–190 °C (petroleum ether/CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 8.50 (s, 1 H), 8.32 (d, *J* = 5.1 Hz, 1 H), 7.73 (d, *J* = 6.6 Hz, 2 H), 7.36–7.30 (m, 3 H), 7.22 (dd, *J* = 1.5, 6.6 Hz, 1 H), 7.18 (s, 1 H), 7.124–7.122 (m, 1 H), 6.85 (d, *J* = 5.1 Hz, 1 H), 6.70 (t, *J* = 7.3 Hz, 1 H), 6.59 (td, *J* = 1.5, 7.3 Hz, 1 H), 6.46 (t, *J* = 3.0 Hz, 1 H), 6.30–6.29 (m, 1 H), 6.25 (d, *J* = 8.0 Hz, 1 H), 5.49 (s, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 148.8, 145.5, 144.9, 141.4, 135.1, 131.6, 129.4, 129.1, 128.7, 126.4, 125.9, 124.4, 121.6, 120.6, 119.5, 119.0, 114.9, 114.6. 113.0, 110.1, 108.2, 56.1 ppm. HRMS (ESI+): calcd. for C₂₄H₁₇N₃ 347.1422; found 347.1454. Date: 11-07-12 15:33:42

Pages: 14

AgI-Catalyzed Cascade Strategy

6-Phenyl-13b*H*-benzo[2,3][1,6]naphthyridino[6,5-*a*]pyrrolo[2,1-*c*]quinoxaline (6g): Yellow solid (158 mg, 80%); m.p. 214–216 °C (petroleum ether/CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃): δ = 8.04 (d, J = 6.6 Hz, 1 H), 7.91 (s, 2 H), 7.67–7.62 (m, 3 H), 7.48–7.38 (m, 6 H), 7.32 (d, J = 7.8 Hz, 1 H), 6.76 (t, J = 7.2 Hz, 1 H), 6.67–6.58 (m, 2 H), 6.43–6.34 (m, 2 H), 5.89 (s, 1 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 152.6, 150.1, 147.8, 135.2, 132.2, 131.6, 129.9, 129.5, 129.2, 128.8, 127.9, 127.8, 126.7, 125.9, 124.6, 122.5, 120.7, 119.3, 117.9, 115.0, 114.7, 110.7, 108.1, 57.2 ppm. HRMS (ESI+): calcd. for C₂₈H₁₉N₃ 397.1579; found 397.1578.

7-(Thiophen-3-yl)benzo[*b***]benzo[***4***,5]imidazo[***2***,1-***f***][1,6]naphthyridine (6h): Yellow solid (167 mg, 83%); m.p. 210–214 °C (petroleum ether/CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): \delta = 8.01 (d,** *J* **= 8.6 Hz, 1 H), 7.68–7.60 (m, 3 H), 7.57–7.53 (m, 2 H), 7.40–7.38 (m, 4 H), 7.30 (d,** *J* **= 7.3 Hz, 1 H), 6.78 (t,** *J* **= 7.8 Hz, 1 H), 6.69 (t,** *J* **= 7.8 Hz, 1 H), 6.57 (t,** *J* **= 3.6 Hz, 1 H), 6.43 (d,** *J* **= 7.8 Hz, 2 H), 5.84 (s, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): \delta = 152.5, 147.7, 145.6, 137.7, 132.4, 131.7, 129.5, 128.6, 128.3, 127.7, 127.1, 125.9, 125.2, 124.5, 122.6, 120.8, 118.9, 117.2, 114.9, 114.7, 110.6, 108.1, 56.9 ppm. HRMS (ESI+): calcd. for C₂₆H₁₇N₃S 403.1143; found 403.1144.**

17-Methyl-6-(*p*-tolyl)-17b*H*-indolo[1,2-*a*]isoquinolino[1,2-*c*]quinoxaline (6i): Colorless crystals (188 mg, 89%); m.p. 208–212 °C (petroleum ether/CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃): δ = 8.07 (d, J = 8.1 Hz, 1 H), 7.83 (d, J = 8.1 Hz, 1 H), 7.72 (d, J = 7.8 Hz, 3 H), 7.38–7.29 (m, 3 H), 7.24–7.17 (m, 4 H), 7.14–7.09 (m, 1 H), 6.88–6.81 (m, 2 H), 6.67 (t, J = 7.8 Hz, 1 H), 6.43 (d, J = 7.8 Hz, 1 H), 5.71 (s, 1 H), 2.36 (s, 3 H), 2.33 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 143.9, 138.9, 133.7, 133.3, 133.1, 132.8, 131.9, 130.5, 129.7, 128.7, 127.8, 127.7, 127.6, 126.1, 125.1, 124.6, 123.4, 122.7, 120.6, 120.4, 119.3, 118.9, 116.0, 115.8, 112.1, 109.4, 56.4, 21.3, 8.4 ppm. HRMS (ESI+): calcd. for C₃₁H₂₄N₂ 424.1939; found 424.1938.

6-(4-Methoxyphenyl)-17-methyl-17b*H*-indolo[1,2-*a*]isoquinolino-[1,2-*c*]quinoxaline (6j): Colorless crystals (200 mg, 91%); m.p. 238–240 °C (petroleum ether/CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃): δ = 8.07 (d, *J* = 8.1 Hz, 1 H), 7.84–7.71 (m, 4 H), 7.73–7.19 (m, 4 H), 7.14–7.07 (m, 2 H), 6.93–6.81 (m, 4 H), 6.68 (td, *J* = 1.5, 8.1 Hz, 1 H), 6.42 (dd, *J* = 1.2, 7.8 Hz, 1 H), 5.70 (s, 1 H), 3.81 (s, 3 H), 2.33 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 160.3, 143.6, 133.7, 133.3, 133.2, 131.8, 130.5, 128.8, 128.2, 127.9, 127.8, 127.6, 127.5, 124.9, 124.5, 123.4, 122.7, 120.6, 120.4, 119.3, 118.9, 116.0, 114.8, 114.4, 112.1, 109.4, 56.4, 55.3, 8.41 ppm. HRMS (ESI+): calcd. for C₃₁H₂₄N₂O 440.1889; found 440.1887.

17-Methyl-6-(4-phenoxyphenyl)-17b*H***-indolo**[**1,2***-a*]isoquinolino-[**1,2***-c*]quinoxaline (6k): Light-yellow solid (201 mg, 80%); m.p. 164– 168 °C (petroleum ether/CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 8.06 (d, *J* = 8.1 Hz, 1 H), 7.84–7.78 (m, 3 H), 7.72 (d, *J* = 7.3 Hz, 1 H), 7.36–7.29 (m, 5 H), 7.27–7.21 (m, 2 H), 7.18 (s, 1 H), 7.14– 7.10 (m, 2 H), 7.05–6.99 (m, 3 H), 6.88–6.84 (m, 2 H), 6.71 (td, *J* = 1.5, 8.4 Hz, 1 H), 6.45 (d, *J* = 8.0 Hz, 1 H), 5.71 (s, 1 H), 2.34 (s, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 158.1, 156.6, 143.3, 133.7, 133.2, 133.0, 131.8, 130.5, 130.4, 129.8, 128.6, 127.9, 127.8, 127.7, 125.1, 124.6, 123.7, 123.4, 122.7, 120.6, 120.5, 119.3, 119.2, 118.9, 118.8, 116.1, 115.8, 112.0, 109.5, 56.4, 8.4 ppm. HRMS (ESI+): calcd. for C₃₆H₂₆N₂O 502.2045; found 502.2046.

10-Fluoro-17-methyl-6-phenyl-17b*H***-indolo[1,2-***a*]isoquinolino-[**1,2-***c*]quinoxaline (6): Off-white solid (192 mg, 90%); m.p. 202– 204 °C (petroleum ether/CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃): δ = 8.10 (d, *J* = 8.1 Hz, 1 H), 7.83–7.81 (m, 2 H), 7.72 (d, *J* = 7.2 Hz, 1 H), 7.55 (dd, *J* = 2.4, 9.9 Hz, 1 H), 7.41–7.31 (m, 6 H), 7.29–7.23 (m, 2 H), 7.15 (t, *J* = 7.5 Hz, 1 H), 6.86 (d, *J* = 7.5 Hz, 1 H), 6.41– 6.30 (m, 2 H), 5.70 (s, 1 H), 2.32 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 158.7, 155.7, 143.8, 135.4, 133.7, 132.8, 131.6, 130.7, 129.2, 129.0, 128.6, 128.4, 128.1, 127.8, 126.1, 125.3, 124.5, 123.1, 121.1, 119.6, 119.2, 116.7, 111.8, 110.1, 109.4, 103.8, 56.4, 8.4 ppm. HRMS (ESI+): calcd. for C₃₀H₂₁FN₂ 428.1689; found 428.1668.

6-(4-Methoxyphenyl)-17bH-indolo[1,2-a]isoquinolino[1,2-c]quinoxaline (6m): Off-white solid (95 mg, 45%); m.p. 162–164 °C (petroleum ether/CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 8.03 (d, J = 8.0 Hz, 1 H), 7.79 (d, J = 8.0 Hz, 1 H), 7.69 (d, J = 8.8 Hz, 3 H), 7.28 (td, J = 1.5, 8.5 Hz, 1 H), 7.22–7.12 (m, 3 H), 7.06–7.02 (m, 2 H), 6.93 (d, J = 8.1 Hz, 1 H), 6.85–6.77 (m, 3 H), 6.64 (t, J = 5.8 Hz, 2 H), 6.37 (dd, J = 1.5, 8.1 Hz, 1 H), 5.65 (s, 1 H), 3.75 (s, 3 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 160.3, 143.3, 134.0, 133.5, 132.9, 132.2, 132.1, 129.8, 128.0, 127.6, 127.5, 127.4, 124.7, 124.6, 123.8, 122.6, 122.0, 121.1, 120.4, 119.2, 116.3, 114.9, 114.3, 114.1, 112.2, 102.2, 57.8, 55.3 ppm. HRMS (ESI+): calcd. for C₃₀H₂₂N₂O 426.1732; found 426.1732.

6-[4-(11bH-Isoquinolino]2,1-*a***]pyrrolo]2,1-***c***]quinoxalin-6-yl)phenyl]-11bH-isoquinolino]2,1-***a***]pyrrolo]1,2-***c***]quinazoline (9): Yellow solid (190 mg, 62%); m.p. 194–196 °C (petroleum ether/EtOH). ¹H NMR (400 MHz, CDCl₃): \delta = 7.73 (d,** *J* **= 5.1 Hz, 4 H), 7.29–7.28 (m, 2 H), 7.22–7.06 (m, 10 H), 6.87 (d,** *J* **= 7.3 Hz, 2 H), 6.67 (t,** *J* **= 7.3 Hz, 2 H), 6.58 (td,** *J* **= 1.6, 7.3 Hz, 2 H), 6.46–6.44 (m, 2 H), 6.29–6.25 (m, 4 H), 5.56 (s, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): \delta = 142.8, 142.6, 136.0, 135.9, 133.6, 132.6, 132.4, 127.9, 127.6, 126.8, 126.7, 126.2, 124.9, 124.6, 124.3, 124.2, 123.4, 123.3, 120.1, 118.8, 118.8, 117.11, 117.06, 114.6, 114.5, 110.4, 107.9, 56.9 ppm. HRMS (ESI+): calcd. for C₄₄H₃₀N₄ 614.2470; found 614. 2471.**

1,4-Bis(benzo[4,5]imidazo[2,1-*a***]isoquinolin-6-y1)benzene (10):** Yellow solid (153 mg, 60%); m.p. 206–208 °C (petroleum ether/EtOH). ¹H NMR (400 MHz, CDCl₃): δ = 8.94 (dd, *J* = 3.5, 6.5 Hz, 2 H), 8.09–8.03 (m, 2 H), 7.90 (d, *J* = 5.8 Hz, 4 H), 7.76–7.73 (m, 4 H), 7.23 (d, *J* = 7.3 Hz, 1 H), 7.16–7.11 (m, 3 H), 7.04 (s, 1 H), 6.75–6.71 (m, 5 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 148.4, 144.4, 136.5, 134.7, 131.4, 130.3, 129.9, 128.3, 126.8, 125.2, 124.5, 123.1, 121.3, 120.2, 116.7, 113.9, 113.4 ppm. HRMS (ESI+): calcd. for C₃₆H₂₂N₄ 510.1844; found 510.1844.

2-[2-(Phenylethynyl)phenyl]-1*H*-benzo[*d*]imidazole (U): Colorless crystals (124 mg, 85%); m.p. 120–122 °C (petroleum ether/ CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta = 10.96$ (s, 1 H, NH), 8.58 (d, J = 8.0 Hz, 1 H), 7.87–7.85 (m, 1 H), 7.69 (dd, J = 1.4, 6.0 Hz, 1 H), 7.62–7.58 (m, 2 H), 7.52 (td, J = 1.4, 6.0 Hz, 1 H), 7.48–7.43 (m, 5 H), 7.31–7.28 (m, 2 H) ppm. ¹H NMR (400 MHz, CDCl₃ + D₂O): $\delta = 8.56$ (d, J = 8.0 Hz, 1 H), 7.87–7.84 (m, 1 H), 7.68 (dd, J = 1.4, 7.3 Hz, 1 H), 7.61–7.58 (m, 2 H), 7.51 (td, J = 1.4, 7.3 Hz, 1 H), 7.49–7.42 (m, 5 H), 7.32–7.28 (m, 2 H), 4.75 (s, 1 H, DOH) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 150.5$, 133.7, 131.4, 130.6, 129.6, 129.5, 129.4, 129.3, 128.9, 123.4, 122.7, 122.0, 119.8, 119.2, 110.8, 94.7, 89.1 ppm. HRMS (ESI+): calcd. for C₂₁H₁₄N₂ 294.1157; found 294.1155.

X-ray Data for Compound U: Crystallized in the monoclinic crystal system with space group P 1 21/n 1. The single-crystal X-ray data were collected using graphite monochromated Mo- K_a radiation ($\lambda = 0.71073$ Å). The structures were solved using SIR-92 and refined by the full-matrix least-squares technique on F^2 using the SHELXL-97 program within the WinGX v 1.80.05 software package. All non-hydrogen atoms were refined anisotropically. Crystal data for U: C₂₁H₁₄N₂; $M_r = 294.34$; monoclinic group; P12₁/n1; a = 11.0361(9) Å, b = 18.5228(12) Å, c = 15.9836(13) Å, $a = 90^\circ$, $\beta = 104.253(8)^\circ$, $\gamma = 90^\circ$; V = 3166.8(4) Å³; Z = 8; T = 298(2) K; $d_{calcd.} = 1.235$ Mg/m³; $R_{int} = 0.0368$, $R_1 = 0.0624$, $wR_2 = 0.1280$

Pages: 14

FULL PAPER

 $[I > 2\sigma(I)]$, $R_1 = 0.0943$, $wR_2 = 0.1425$ (all data), GOF = 1.051. For further details on the crystal structure of compound U, see the Supporting Information.

Supporting Information (see footnote on the first page of this article): NMR spectroscopic data of the starting compounds; copies of the ¹H NMR, ¹³C NMR, and HRMS spectra of all compounds.

Acknowledgments

We gratefully acknowledge the Department of Science and Technology, Government of India (SR/S1/OC-66/2010) for providing financial support and USIC, University of Delhi for providing instrumentation facilities. V. R. is thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi for a fellowship.

- a) R. Dua, S. Shrivastava, S. K. Sonwane, S. K. Srivastava, Advan. Biol. Res. 2011, 5, 120–144; b) C. Gil, S. Bräse, J. Comb. Chem. 2009, 11, 175–197.
- [2] a) S. L. Schreiber, Science 2000, 287, 1964–1969; b) P. Arya,
 D. T. H. Chou, M. G. Baek, Angew. Chem. 2001, 113, 351; Angew. Chem. Int. Ed. 2001, 40, 339–346; c) D. P. Walsh, Y. T. Chang, Chem. Rev. 2006, 106, 2476–2530; d) R. Breinbauer,
 I. R. Vetter, H. Waldmann, Angew. Chem. 2002, 114, 3002; Angew. Chem. Int. Ed. 2002, 41, 2878–2890; e) S. Dandapani,
 L. A. Marcaurelle, Curr. Opin. Chem. Biol. 2010, 14, 362–368.
- [3] a) J. M. Weibel, A. Blanc, P. Pale, *Chem. Rev.* 2008, *108*, 3149–3173; b) M. A. Corral, M. M. Dorado, I. R. Garcia, *Chem. Rev.* 2008, *108*, 3174–3198.
- [4] a) S. D. Riedl, S. B. Felix, W. J. Houlihan, M. Zafferani, G. Steinhauser, D. Oberberg, H. Kalvelage, R. Busch, J. Rastetter, W. E. Berdel, *Cancer Res.* 1991, *51*, 43–48; b) D. Scholz, H. Schmidt, E. E. Prieschl, R. Csonga, W. Scheirer, V. Weber, A. Lembachner, G. Seidl, G. Werner, P. Mayer, T. Baumruker, *J. Med. Chem.* 1998, *41*, 1050–1059; c) M. Chrzanowska, M. D. Rozwadowska, *Chem. Rev.* 2004, *104*, 3341–3370; selected references: d) R. J. Griffin, G. Fontana, B. T. Golding, S. Guiard, I. R. Hardcastle, J. J. J. Leahy, N. Martin, C. Richardson, L. Rigoreau, M. Stockley, G. C. M. Smith, *J. Med. Chem.* 2005, *48*, 569–585; e) A. D. C. Parenty, L. V. Smith, K. M. Guthrie, D. L. Long, J. Plumb, R. Brown, L. Cronin, *J. Med. Chem.* 2006, *23*, 444–463; g) K. W. Bentley, *Nat. Prod. Rep.* 2006, *22*, 249–268.
- [5] a) R. L. Weinkauf, A. Y. Chen, C. Yu, L. Liu, L. Barrows, E. LaVoie, J. Bioorg. Med. Chem. 1994, 2, 781–786; b) V. K. Pandey, A. Shukla, Indian J. Chem. Sect. B 1999, 38, 1381–1383; c) L. W. Deady, T. Rodemann, G. J. Finlay, B. C. Baguley, W. A. Denny, Anti-Cancer Drug Des. 2000, 15, 339–346; d) S. M. Rida, S. A. M. El-Hawash, H. T. Y. Fahmy, A. A. Hazzaa, M. M. M. El-Meligy, Arch. Pharmacal Res. 2006, 29, 826–833; e) R. L. Lombardy, F. A. Tanious, K. Ramachandran, R. R. Tidwell, W. D. Wilson, J. Med. Chem. 1996, 39, 1452–1462; f) W. A. Denny, G. W. Rewcastle, B. C. Baguley, J. Med. Chem. 1990, 33, 814–819; g). A. R. Porcari, R. V. Devivar, L. S. Kucera, J. C. Drach, L. B. Townsend, J. Med. Chem. 1998, 41, 1252–1262; h) C. Pabba, H. J. Wang, S. R. Mulligan, Z. J. Chen, T. M. Stark, B. T. Gregg, Tetrahedron Lett. 2005, 46, 7553–7557.
- [6] J. Y. Kang, S. M. Eo, S. L. Tan, J. B. Baek, Mater. Res. Soc. Symp. Proc. 2009, 1240, WW09–02.
- [7] a) G. Sakata, K. Makino, Y. Kurasawa, *Heterocycles* 1988, 27, 2481–2515; b) G. W. H. Cheeseman, E. S. G. Werstiuk, *Adv. Heterocycl. Chem.* 1978, 22, 367–431; c) A. Kira, Y. Matsubara, H. Iijima, T. Umeyama, Y. Matano, S. Ito, M. Niemi, N. V. Tkachenko, H. Lemmetyinen, H. Imahori, *J. Phys. Chem. C* 2010, *114*, 11293–11304; d) Y. B. Kim, Y. H. Kim, J. Y. Park, S. K. Kim, *Bioorg. Med. Chem. Lett.* 2004, *14*, 541–544; e) D.

O'Brien, M. S. Weaver, D. G. Lidjdy, D. D. C. Bradley, *Appl. Phys. Lett.* **1996**, *69*, 881–883; f) S. Dailey, J. W. Feast, R. J. Peace, I. C. Sage, S. Till, E. L. Wood, *J. Mater. Chem.* **2001**, *11*, 2238–2243; g) L. E. Seitz, W. J. Suling, R. C. Reynolds, *J. Med. Chem.* **2002**, *45*, 5604–5606; h) K. Cheng, N. J. Rahier, B. M. Eisenhauer, R. Gao, S. J. Thomas, S. M. Hecht, *J. Am. Chem. Soc.* **2005**, *127*, 838–839.

- [8] a) X. Yao, C.-J. Li, Org. Lett. 2006, 8, 1953-1955; b) R. C. Larock, D. Yue, Tetrahedron Lett. 2001, 42, 6011-6013; c) D. Yue, R. C. Larock, J. Org. Chem. 2002, 67, 1905-1909; d) D. Yue, N. Della Ca, R. C. Larock, Org. Lett. 2004, 6, 1581-1584; e) T. Yao, M. A. Campo, R. C. Larock, Org. Lett. 2004, 6, 2677-2680; f) D. Yue, R. C. Larock, Org. Lett. 2004, 6, 1037-1040; g) T. Yao, R. C. Larock, J. Org. Chem. 2005, 70, 1432-1437; h) D. Yue, T. Yao, R. C. Larock, J. Org. Chem. 2005, 71, 62-69; i) D. Yue, N. Della Cá, R. C. Larock, J. Org. Chem. 2006, 71, 3381-3388; j) S. A. Worlikar, T. Kesharwani, T. Yao, R. C. Larock, J. Org. Chem. 2007, 72, 1347-1353; k) F. V. Manarin, J. A. Roehrs, R. M. Gay, R. Brandao, P. H. Menezes, C. W. Nogueira, G. Zeni, J. Org. Chem. 2009, 74, 2153-2162; 1) B. Godoi, R. F. Schumacher, G. Zeni, Chem. Rev. 2011, 111, 2937-2980.
- [9] a) N. Asao, K. Iso, Y. S. Salprima, Org. Lett. 2006, 8, 4149– 4151; b) Y. Zhou, Y. Zhai, J. Li, D. Ye, H. Jiang, H. Liu, Green Chem. 2010, 12, 1397–1404.
- [10] a) N. Asao, Y. S. Salprima, T. Nogami, Y. Yamamoto, Angew. Chem. 2005, 117, 5662; Angew. Chem. Int. Ed. 2005, 44, 5526– 5528; b) H. Gao, J. Zhang, Adv. Synth. Catal. 2009, 351, 85– 88; c) Z. Chen, X. Yang, J. Wu, Chem. Commun. 2009, 3469– 3471; d) X. Yu, J. Wu, J. Comb. Chem. 2010, 12, 238–244.
- [11] a) R. Yanada, S. Obika, H. Kono, Y. Takemoto, Angew. Chem.
 2006, 118, 3906; Angew. Chem. Int. Ed. 2006, 45, 3822–3825;
 b) S. Obika, H. Kono, Y. Yasui, R. Yanada, Y. Takemoto, J. Org. Chem. 2007, 72, 4462–4468; c) R. Yanada, K. Hashimoto, R. Tokizane, Y. Miwa, H. Minami, K. Yanada, M. Ishikura, Y. Takemoto, J. Org. Chem. 2008, 73, 5135–5138.
- [12] a) Q. Ding, B. Wang, J. Wu, *Tetrahedron* 2007, 63, 12166–12171; b) M. Yu, Y. Wang, C.-J. Li, X. Yao, *Tetrahedron Lett.* 2009, 50, 6791–6794; c) H. Zhou, H. Jin, S. Ye, X. He, J. Wu, *Tetrahedron Lett.* 2009, 50, 4616–4618; d) Y. Ohta, Y. Kubota, T. Watabe, H. Chiba, S. Oishi, S. Fujii, H. Ohno, *J. Org. Chem.* 2009, 74, 6299–6302; e) H.-C. Ouyang, R.-Y. Tang, P. Zhong, X.-G. Zhang, J.-H. Li, *J. Org. Chem.* 2011, 76, 223–228.
- [13] K. Gao, J. Wu, J. Org. Chem. 2007, 72, 8611-8613.
- [14] N. T. Patil, A. K. Mutyala, P. G. V. V. Lakshmi, P. V. K. Raju, B. Sridhar, *Eur. J. Org. Chem.* **2010**, 1999–2007.
- [15] C. Wei, C.-J. Li, J. Am. Chem. Soc. 2003, 125, 9584-9585.
- [16] B. Huang, X. Yao, C.-J. Li, Adv. Synth. Catal. 2006, 348, 1528– 1532.
- [17] Y. Ye, Q. Ding, J. Wu, Tetrahedron 2008, 64, 1378–1382.
- [18] a) J. J. J. Juliette, D. Rutherford, I. T. Horváth, J. A. Gladysz, J. Am. Chem. Soc. 1999, 121, 2696–2704; b) D. P. Curran, Pure Appl. Chem. 2000, 72, 1649–1653; c) I. Ryu, H. Matsubara, S. Yasuda, H. Nakamura, D. P. Curran, J. Am. Chem. Soc. 2002, 124, 12946–12947; d) C. S. Consorti, M. Jurisch, J. A. Gladysz, Org. Lett. 2007, 9, 2309–2312.
- [19] a) W. Leitner, *Top. Curr. Chem.* 1999, 206, 107–132; b) T. Mizuno, T. Iwai, Y. Ishino, *Tetrahedron Lett.* 2004, 45, 7073–7075; c) R. Magi, C. Bertolotti, E. Orlandini, C. Oro, G. Sartori, M. Selva, *Tetrahedron Lett.* 2007, 48, 2131–2134; d) H.-F. Jiang, J. W. Zhao, *Tetrahedron Lett.* 2009, 50, 60–62.
- [20] T. Welton, Chem. Rev. 1999, 99, 2071-2083.
- [21] a) S. Naryan, J. Muldoon, M. G. Finn, V. V. Fokin, H. C. Kolb, K. B. Sharpless, Angew. Chem. 2005, 117, 3339; Angew. Chem. Int. Ed. 2005, 44, 3275–3279; b) N. Shapiro, A. Vigalok, Angew. Chem. 2008, 120, 2891; Angew. Chem. Int. Ed. 2008, 47, 2849–2852; c) V. Saggiorrio, U. Luning, Tetrahedron Lett. 2009, 50, 4663–4665; d) P. Norcott, C. Spielman, C. S. P. McErlean, Green Chem. 2012, 14, 605–609.

- Ag^I-Catalyzed Cascade Strategy
- [22] a) U. M. Lindstrom, F. Andersson, Angew. Chem. 2006, 118, 562; Angew. Chem. Int. Ed. 2006, 45, 548–551; b) C. I. HerrerTas, X. Yao, Z. Li, C.-J. Li, Chem. Rev. 2007, 107, 2546–2562; c) X. Y. Liu, C. M. Che, Angew. Chem. 2008, 120, 3865; Angew. Chem. Int. Ed. 2008, 47, 3805–3810.
- [23] a) D. C. Rideout, R. Breslow, J. Am. Chem. Soc. 1980, 102, 7816–7817; b) R. Breslow, Acc. Chem. Res. 1991, 24, 159–164; c) A. Meijer, S. Otto, J. B. F. N. Engberts, J. Org. Chem. 1998, 63, 8989–8994; d) S. Otto, J. B. F. N. Engberts, Pure Appl. Chem. 2000, 72, 1365–1372; e) J. E. Klijn, J. B. F. N. Engberts, Nature 2005, 435, 746–747; f) R. N. Butler, A. G. Coyne, Chem. Rev. 2010, 110, 6302–6337.
- [24] A. Chanda, V. V. Fokin, Chem. Rev. 2009, 109, 725-748.
- [25] a) A. K. Verma, T. Kesharwani, J. Singh, V. Tandon, R. C. Larock, Angew. Chem. 2009, 121, 1158; Angew. Chem. Int. Ed. 2009, 48, 1138–1143; b) A. K. Verma, J. Singh, R. C. Larock, Tetrahedron 2009, 65, 8434–8439; c) A. K. Verma, T. Aggarwal, V. Rustagi, R. C. Larock, Chem. Commun. 2010, 46, 4064–

4066; d) A. K. Verma, V. Rustagi, T. Aggarwal, A. P. Singh, *J. Org. Chem.* **2010**, *75*, 7691–770; e) A. K. Verma, S. P. Shukla, J. Singh, V. Rustagi, *J. Org. Chem.* **2011**, *76*, 5670–5684; f) A. K. Verma, R. R. Jha, V. K. Sankar, T. Aggarwal, R. P. Singh, R. Chandra, *Eur. J. Org. Chem.* **2011**, 6998–7010.

- [26] V. Rustagi, T. Aggarwal, A. K. Verma, Green Chem. 2011, 13, 1640–1643.
- [27] G. Dyker, W. Stirner, G. Henkel, Eur. J. Org. Chem. 2000, 1433– 1441.
- [28] N. Asao, T. Nogami, K. Takahashi, Y. Yamamoto, J. Am. Chem. Soc. 2002, 124, 764–765.
- [29] E. Ahmed, A. L. Briseno, Y. Xia, S. A. Jenekhe, J. Am. Chem. Soc. 2008, 130, 1118–1119.
- [30] M. K. Waddell, T. Bekele, M. A. Lipton, J. Org. Chem. 2006, 71, 8372–8377.

Received: April 25, 2012 Published Online: ■

FULL PAPER

$X=CH,\,N,\,S;\,R^{1}=H,\,Br;\;\,R^{2}=aryI,\,alkyI$

An eco-friendly, one-pot cascade approach to benzimidazoles and quinoxalines in water using AgNO3 as catalyst from oalkynyl aldehydes and amines with tethered nucleophiles, has been developed. Selective 6-endo-dig regioselectivity and structural diversity are accomplished in good yields with a range of substrates. X-ray crystallographic studies and mechanistic experiments are also presented.

Heterocyclic Chemistry

V.	Ru	stagi, R.	Tiwari,	
A.	K.	Verma*	•••••	1–14

AgI-Catalyzed Cascade Strategy: Regioselective Access to Diversely Substituted Fused Benzimidazo[2,1-a]isoquinolines, Naphthyridines, Thienopyridines, and Quinoxalines in Water

Keywords: Electrophilic substitution / Domino reactions / Cyclization / Polycycles / Silver