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    The construction of carbon-nitrogen bonds, especially under 
green and safe conditions, is an important transformation in 

organic synthesis. The development of novel synthetic routes 

leading to β-aminocarbonyl compounds has received 

considerable interest due to their occurrence in a wide variety of 
biologically active natural products;

1
 they also serve as key 

intermediates for the synthesis of important nitrogen-containing 

compounds such as β-lactams, β-amino acids, and β-amino 

alcohols.
2
 One-pot Mannich reactions of aldehydes, ketones and 

amines using a variety of Lewis acids,
3
 Brønsted acids,

4
 and 

Lewis base5 catalysts have been reported. However, many of 

these suffer from drawbacks such as long reaction times, toxicity, 

and difficult separations after the reaction. 
    Another approach for preparing β-amino carbonyl compounds 
is based on the addition of amines to α,β-unsaturated carbonyl 
compounds (aza-Michael reaction). This method has a prominent 
advantage over the Mannich reaction in that it covers a wide 
range of nitrogen nucleophiles including amides, carbamates, and 
sulfonamides, which can rarely be utilized using the conventional 
Mannich condensation. A number of Lewis acid catalysts, solid 
acids, and Brønsted acids,

6
 as well as basic catalysts

7
 have been 

employed. Unfortunately, several drawbacks such as high costs, 
harsh reaction conditions, long reaction times, the requirements 
for large excesses of reagents or catalysts, and the use of toxic 
solvents are associated with the above methods. Also, some of 
the reported procedures were only applicable to aliphatic amines 
and failed to work with aromatic amines.

6h,7b
 Although recent  

protocols have made this route more attractive, the development 
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of simple, recyclable, and environmentally friendly approaches 
that can be performed at ambient temperature for both aza-
Michael and Mannich reactions are desirable. 

Significant attention has been paid to solid acid catalysts due 

to their potential applications for replacing liquid mineral acids in 

industry;
8
 they exhibit advantages of easy separation of the 

catalyst from the liquid reaction medium, minimal corrosion, 

good recyclability, green chemical processes, and enhanced 
product selectivity.

9
 In many reactions catalyzed by solid sulfonic 

acids involving hydrophobic and hydrophilic substrates, the 
water produced as a by-product is co-adsorbed by the catalyst 

poisoning the surface and producing a more hydrophilic 
environment, resulting in reduced catalytic activity.

10
 On the 

other hand, the polarities of the reactants and products, the 
acidity of the catalyst, and hydrophobic-hydrophilic balance on 

the catalyst surface have significant effects on the progress of the 

reaction. Further studies have addressed the design, synthesis and 
catalytic applications of surface-modified SO3H solid materials in 

order to optimize these properties, and the overall performance of 

the catalysts.
10d,11

 Recently, among solid acid catalysts, special 

attention has been paid to the preparation, characterization, and 
catalytic investigation of magnetic sulfonic acids.

12
  

   In continuation of our investigations on the hydrophobic, 
organosulfonic acid functionalized silica-coated magnetic 

nanoparticle catalyst, Fe3O4@SiO2@Me&Et-PhSO3H (Figure 
1),12a,b in this paper, we report the synthesis of β-amino ketones 

by two one-pot approaches: aza-Michael-type (pathway a) and 
Mannich-type (pathway b) reactions of aryl aldehydes, ketones 

and amines in EtOH at room temperature employing this reusable 
catalyst (Scheme 1). 
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Figure 1. The hydrophobic magnetic solid sulfonic acid catalyst, 
Fe3O4@SiO2@Me&Et-PhSO3H. 

 

 
 

 
Scheme 1. Two approaches for the synthesis of β-amino ketones. 

 

    To find the optimum conditions which suit the two approaches, 

the reaction of cyclohexanone, benzaldehyde and aniline, via 
different sequences of addition, was examined under various 

conditions catalyzed by Fe3O4@SiO2@Me&Et-PhSO3H 

(Table 1). 

    The effect of different molar ratios of the reactants, the amount 
of catalyst, the solvent, and temperature on the yield, was 

studied. The best results (96% for aza-Michael and 99% for 
Mannich reactions) were obtained by carrying out the reaction 

with a 1.5:1:1 molar ratio of cyclohexanone, benzaldehyde, and 
aniline at room temperature in the presence of 0.7 and 0.6 mol% 

(based on benzaldehyde) of the catalyst for the aza-Michael and 
Mannich reactions, respectively, in 4 mL of absolute EtOH for 

two hours (Table 1, entries 9 and 8, respectively). We observed 
that 0.7 and 0.6 mol% of the catalyst could catalyze the aza-

Michael and Mannich reactions efficiently; increasing or 
decreasing the amount of the catalyst did not lead to any 

improvement in the yields. To investigate the aza-Michael 

addition reaction of amines with α,β-unsaturated carbonyl 
compounds (pathway a), and the reaction of enolates with imines 

(Mannich reaction, pathway  b), we  performed  two experiments 
as shown in Scheme 2.  
   In the first experiment (pathway a), an ethanolic mixture of 
acetophenone and 4-nitrobenzaldehyde was stirred at room 

temperature in the presence of the catalyst (0.7 mol%); after 30 
minutes, the corresponding chalcone was separated as a light 

orange solid [mp 157-158 °C, Lit.
13

 mp 158-160 °C; IR (KBr): 
νmax =1677 and 1596 cm

-1
]. The reaction of this intermediate with 

aniline, after 1.5 hours, led to the corresponding β-amino ketone. 

In another experiment (pathway b), aniline and 4-

nitrobenzaldehyde were stirred in the presence of the catalyst 
(0.6 mol%). The corresponding imine was formed in 10 

 

Table 1  

Optimization of the Fe3O4@SiO2@Me&Et-PhSO3H-catalyzed 

one-pot reaction of cyclohexanone, benzaldehyde, and 

aniline
a 

 

Entry Solvent T (°C)
 Catalyst 

(mol%) 
Yield (%)b 

Aza-Michael Mannich 

1 EtOH 25 0.3 – 86 

2 EtOH 50 0.3 62c 51c 

3 EtOH 80 0.3 – 25c 

4 H2O 25 0.6 45 68 

5 THF 25 0.6 – 56 

6 – 25 0.6 85 80 

7 EtOH 25 0.4 – 87 

8 EtOH
 

25 0.6 87 99 
9 EtOH 25 0.7 96 99 

10 EtOH 25 0.9 96 – 

11 MeOH 25 0.9 95 – 
12 CH3CN 80 0.9 N.R. N.R. 

13 CH2Cl2 25 0.9 15 – 
 a Reaction conditions: cyclohexanone (3.0 mmol), benzaldehyde (2.0 mmol),     
  aniline (2.0 mmol), catalyst, solvent (4 mL), 2 h. 
 b Isolated yield. N.R = no reaction. 
 c Several by-products were detected. 

 
 

 
Scheme 2. Two possible pathways for the formation of 3-(4-

nitrophenyl)-1-phenyl-3-(phenylamino)propan-1-one in the presence 
of  Fe3O4@SiO2@Me&Et-PhSO3H. 

 

 

minutes and was separated as a yellow solid  [mp 86-88 °C, Lit.
14 

 
mp  88-90 °C; IR (KBr): νmax = 1597 and 1517 cm

-1
]. The 

addition of acetophenone to this intermediate gave the 
corresponding β-amino ketone after one hour. 
    This catalyst is composed of Brønsted acidic groups and 

hydrophobic methyl moieties. The aza-Michael reaction 
(pathway a) proceeds through the formation of intermediate 3 

(Scheme 1) followed by nucleophilic attack by the amine. The 
Fe3O4@SiO2@Me&Et-PhSO3H-catalyzed Mannich reaction of the 
aldehyde and amine proceeds through imine formation (6) with 
subsequent attack of the enol derived from the ketone on the 

protonated imine (pathway b, Scheme 1). The characteristic feature 
of both reactions is the formation of water as a by-product in the first 
step. 
    Using the optimized reaction conditions, the one-pot aza-
Michael and Mannich reactions of various aromatic ketones, 
aldehydes and amines were investigated and the results are 
shown in Table 2.

15 
It was found  that the  reaction of various 

aromatic aldehydes with aromatic amines and acetophenones 
bearing electron-withdrawing and electron-donating groups 
proceeded smoothly using both approaches, and gave the 
corresponding β-amino ketones in high to excellent yields (Table 

2, entries 1-20). Amines with electron-withdrawing groups, such 
as 4-nitroaniline and 4-chloroaniline gave the desired products in 
good to excellent yields (Table 2, entries 3, 5, 6 and 11). The 
aliphatic amine, benzylamine was also studied, and was found to 
give the  corresponding  products in  high yields (Table 2, entries  
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Table 2  

Fe3O4@SiO2@Me&Et-PhSO3H-catalyzed one-pot aza-Michael-type and Mannich reactions of various aldehydes, ketones and 

amines 

R1

O

R2

+ R3CHO
Cat. (0.6 or 0.7 mol%)

EtOH, r.t.
R4NH2 R1

O

R3

NHR4

+

R2  

Entry 
Ketone Aldehyde Amine Yield (%)a/ Time (h)b 

R1 R2 R3 R4 Pathway a Pathway b 

1 Ph H Ph Ph 95/27e 91/1.5 

2 Ph H Ph 4-MeOC6H4 96/1.57e 90/1 

3 Ph H Ph 4-O2NC6H4 – 95/17e 

4 Ph H Ph 4-MeC6H4 – 93/216a 

5 Ph H Ph 4-ClC6H4 – 98/17e 

6 Ph H 4-ClC6H4 4-ClC6H4 – 92/1.57e 

7 Ph H 4-ClC6H4 Ph 96/27e 91/2 

8 Ph H 4-MeC6H4 4-MeC6H4 90/416b 90/3 

9 Ph H 4-HOC6H4 4-MeC6H4 – 90/316b 

10 Ph H 4-O2NC6H4 Ph 99/1.57e 99/1 

11 Ph H 4-MeOC6H4 4-ClC6H4 90/27e 89/1.5 

12 Ph H 4-MeC6H4 Ph – 92/27e 

13 Ph H 4-MeOC6H4 Ph 90/27e – 

14 Ph H 4-ClC6H4 4-MeOC6H4 90/27e – 

15 Ph H 2-MeOC6H4 Ph 87/316c – 

16 Ph H 3-pyridyl Ph 86/216d 90/1 

17 Ph H 2-thienyl Ph 85/216e 92/1 

18 4-ClC6H4 H Ph Ph – 98/1.57e 

19 4-MeOC6H4 H Ph Ph – 93/1.57e 

20 4-MeC6H4 H Ph Ph 92/1.57e 90/1 

21 Ph H 4-ClC6H4 CH2Ph 85/47e 86/3 

22 Ph H 4-MeC6H4 CH2Ph 88/416f 90/3 

23 cyclohexanone Ph Ph 96/116a 99/1.5 

24 cyclohexanone 4-O2NC6H4 Ph 94/116g 99/0.5 

25 cyclohexanone 4-MeOC6H4 Ph 90/116h 92/1 

a Isolated yields. 
b References are provided for known compounds. 

 

 
 
21 and 22). The successful results obtained with these protocols 
prompted us to use cyclohexanone under these conditions (Table 
2, entries 23-25). The results indicated that cyclohexanone was 
more active than acetophenones (Table 2, entries 1, 10 and 13), 

because formation of its enol was much faster than that of the 
acetophenones. 
    The catalytic activity and the reusability of this hydrophobic 

magnetic solid acid catalyst were also studied for the Mannich 
and aza-Michael   reactions  of   4-nitrobenzaldehyde (2.0 mmol), 
acetophenone (3.0 mmol), and aniline (2.0 mmol) in the presence 

 

 
 
of 0.6 and 0.7 mol%, respectively, of the catalyst in absolute 
EtOH at room temperature. Upon completion of each  reaction, 
the catalyst was easily separated and recovered by applying an 
external magnet. The catalyst was washed with EtOH and finally 

dried at 100 °C for 30 minutes prior to the next run. The crude 
product was recrystallized from EtOH. During the recycling 
experiment with fresh reactants, under the same reaction 
conditions, no considerable change was observed in the activity 
of the catalyst over four successive runs (Table 3).                                                                                                

In conclusion, we have successfully developed a magnetic 
solid   sulfonic   acid   modified   with  hydrophobic   regulators,  
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Table 3  

Recycling of catalyst for the reaction of 4-nitrobenzaldehyde, 

acetophenone, and aniline
a 

Entry Cycle Aza-Michael yield (%)b Mannich yield (%)b 

1 1 99 99 

2 2 97 93 

3 3 95 91 

4 4 90 88 
a Reaction conditions were the same as that of entry 10, Table 2 for both   

  reactions. 
b Isolated yields. 
 

 
Fe3O4@SiO2@Me&Et-PhSO3H, which was used efficiently as a 
heterogeneous catalyst in one-pot aza-Michael and Mannich 
reactions for the synthesis of β-amino carbonyl compounds under 
mild conditions. The high reactivity of the catalyst is probably 
due to synergistic effects between sufficient hydrophobicity and 
acidity of siliceous networks, which in turn results in: (a) 
remarkable shielding effects against polar molecules, good 
accessibility of the active sites and easier diffusion of reaction 
partners within the network resulting from the presence of 
organic methyl groups on the surface of catalyst, and (b) mild 
acidic conditions for the preparation of β-amino ketones.

10,11,12b
 

The catalyst can be recovered and reused, thus making these 
procedures more environmentally acceptable. 
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