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An efficient synthesis of diastereomerically pure 5-amino-1,2,3,4-cyclohexanetetrols (6 and 11) and
quercitol derivatives from naturally available (+)-proto-quercitol (1) is described. The stereochemistry
of 1 is perfectly set up for regioselective protection of the hydroxy group which was further functional-
ized into the target aminocyclitol in a straightforward manner. The present approach provides a protocol
for preparing aminocyclitols in large quantities. In addition, the absolute stereochemistry of (+)-proto-

quercitol was addressed using the modified Mosher’'s method. Of the synthesized aminocyclitols, 11
potentially inhibits a-glucosidase with an ICso value of 12.5 uM, which is 45 times greater than that of
the standard antidiabetes drug, Acarbose®.

© 2009 Elsevier Ltd. All rights reserved.

Aminocyclitols such as valiolamine, validamine, and valien-
amine were shown to possess inhibitory activity against various
glycosidases (Fig. 1).! Subsequent investigations regarding chemi-
cal modification, particularly of the amino scaffold, resulted in the
discovery of voglibose, a clinically potent remedy to control diabe-
tes mellitus (DM).2 The inhibitory effect of aminocyclitols has been
elaborated on the basis of their structural resemblance to the p-
glucopyranosyl cation possibly generated during hydrolysis of
their glycosides and strong covalent bonding to the active site of
the enzyme.> Several syntheses of aminocyclitols have been
accomplished using cyclohexanepentols, trivially called quercitols,
as starting components.* In fact, quercitol has 16 possible stereo-
isomers, however only (+)-proto-, (—)-proto-, and (—)-vibo-querci-
tols have been encountered abundantly in Nature.®

To date, there have been a few reports on the syntheses of
aminocyclitols from natural quercitols. Although Ogawa succeeded
in the preparation of 5-amino-1,2,3,4-cyclohexanetetrol analogues
from (- )-vibo-quercitol, nearly half of the product yield was lost in
the early steps.*” We considered that protection of a 1,2-diol as an
acetonide could not be carried out specifically at C-1/C-2 and C-3/
C-4, therefore yielding 3-hydroxy- and 5-hydroxy-bis-acetonide
quercitols as an inseparable mixture. In addition, a similar result
was also observed by Ogawa in the synthesis of aminocyclitols
using unnatural (—)-epi-quercitol.*2

To circumvent this problem, the use of the correct stereoisomer
of quercitol is crucial. Of all the stereoisomers, (+)-proto-quercitol
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Figure 1.

is likely to be a potential candidate due to the possibility of gener-
ating a single bis-acetonide, in addition to its natural availability.
In this Letter, we report the first synthesis of diastereomerically
pure 5S- and 5R-amino-1,2,3,4-cyclohexanetetrols (6 and 11) using
(+)-proto-quercitol (1). Furthermore, determination of the absolute
configuration of 1 using the modified Mosher’s method is also
described.

(+)-proto-Quercitol (1) utilized in this study was isolated from
the stems of Arfeuillea arborescens using the previously described
method with slight modification.® The MeOH extract, after parti-
tioning with hexane and CH,Cl,, was concentrated to afford the de-
sired quercitol (ca. 0.6%) as colorless crystals.” The structure and
relative configuration were determined by spectroscopic tech-
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niques, including 2D NMR. Despite the first report of 1 from Nature
since 1961,% the absolute configurations of all the stereogenic cen-
ters have not been addressed.

Prior to applying the modified Mosher’s approach, protection of
the hydroxy groups was required to avoid combined anisotropy ef-
fects caused by multiple MTPA moieties.® Treatment of 1 with a
large excess of 2,2-dimethoxypropane (10 equiv) in DMF in the
presence of p-TsOH at ambient temperature yielded 1,2:3,4-di-O-
isopropylidene derivative 2 as a single product (Scheme 1).1° The
NOESY data indicated that the acetonides that formed between
C-1 and C-2 and between C-3 and C-4 were trans- and cis-oriented,
respectively (Fig. 2). The bis-acetonide 2 was then treated with (+)-
and (—)-MTPACI, separately, to furnish the desired R- and S-MTPA
esters. The Adsy distribution indicated the 5R configuration, there-
fore the absolute configurations of the remaining chiral centers are
addressed as shown in Scheme 2.

After the absolute stereochemistry of the carbocyclic frame-
work had been established, we next investigated the synthesis of
5S-amino-1,2,3,4-cyclohexanetetrol (6) (Scheme 3). In an effort to
prepare azide 4, we first attempted to transform bis-acetonide 2
into the corresponding chloride by reaction with thionyl chloride.
Unfortunately, this was unsuccessful, presumably due to steric
hindrance from the two adjacent acetonide groups.

Alternatively, the 5-OH group of 2 was activated by converting
it to mesylate analogue 3. Reaction of 3 with an excess of sodium
azide in DMF at 100 °C in the presence of 15-crown-5 ether affor-
ded selectively the azide 4 (79%) as the sole product after flash
chromatography. The chemical shift at sy 3.35 with a large cou-
pling constant (Jsgax = 11.6 Hz) suggested that the azido group
was incorporated with inversion of configuration. Reduction of
azide 4 proceeded smoothly upon treatment with LiAlH,, leading
to formation of the corresponding amine 5 in good yield. Exposure
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Scheme 1. Preparation of 1,2:3,4-di-O-isopropylidene derivative 2.

Figure 2. Selected NOESY correlations of 2. For clarity, certain H atoms are omitted.
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Scheme 2. Preparation of S- and R-MTPA esters of 2 and the unequal A&SR
distribution.
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Scheme 3. Reagents and conditions: (a) MeSO,Cl, EtsN, DMAP; (b) NaNs, DMF, 15-
crown-5-ether, 100 °C; (c) LiAlH4; (d) TFA, THF; (e) Ac,0, DMSO; (f) LiAlH,.

of the amine 5 to trifluoroacetic acid in THF at room temperature
furnished the target molecule, aminocyclitol 6 in 63%."!
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Figure 3. Partial 'H NMR (400 MHz, CDCl5) spectra of 2 (top) and 8 (bottom).
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Table 1
a-Glucosidase?® inhibitory effect of compounds 1, 6, 11, 12, and 13

Compound Inhibitory effect (ICso, M)
1 NIP

6 2890

11 12.5

12 670

13 921

Acarbose® 570

DN]J 173

¢ a-Glucosidase was obtained from Baker’s yeast.

" Inhibitory effect less than 30% at 10 mg/mL.

To gain insight into the relationship between the stereochemis-
try of the 5-amino group and the inhibitory effect toward o-gluco-
sidase, the 5R-amino congener 11 was also prepared. Initially, bis-
acetonide 2 was subjected to oxidation using the Albright-Gold-
man reagent (DMSO/Ac,0),'? to afford ketone 7 (54%). Selective
reduction of 7 was carried out with LiAlH4 in THF as the solvent,
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generating exclusively diastereomeric 5-hydroxy-bis-acetonide 8
(93%), with no 2 being detectable. This could be rationalized by
preferential hydride attack on the less hindered face of ketone 7.
Obviously, compounds 2 and 8 could be differentiated by 'H
NMR spectra (Fig. 3); H,-6 of the former resonated at about dy
2.04-2.11 while those of the latter were well separated [y 2.36
(H-6 equiv) and 1.88 (H-6.)]. With 5-hydroxy-bis-acetonide 8 in
hand, we subsequently accomplished the synthesis of the 5R-ami-
no congener 11'® in a manner similar to that of aminocyclitol 6. In
order to gain more information on the pharmacophore required for
C-5, we synthesized other cyclitol derivatives. Deprotection of 7
and 8 was carried out under the aforementioned conditions, and
subsequent purification by recrystallization afforded pure target
cyclitols 12'* and 13'° in moderate yields (Scheme 4).

5-Amino-1,2,3,4-cyclohexanetetrols (6 and 11) and deprotected
analogues 12 and 13 were evaluated for a-glucosidase inhibition
(Table 1) using a method reported previously.!® The synthesized
compounds showed weak inhibition (ICso 670-2890 nM) than
the antidiabetes drugs (Acarbose® and DN]J), except for amino
cyclitol 11 (ICso 12.5 uM). The very large difference in the inhibi-
tory effect of the two diastereomeric aminocyclitols 6 and 11
(ICs0 2890 vs 12.5 uM) suggested that the configuration of the 5-
NH, was possibly essential for mimicking the conformation and
charge of the oxycarbenium ion intermediate.

In summary, we have prepared diastereomerically pure 55- and
5R-amino-1,2,3,4-cyclohexanetetrols (6 and 11) from natural (+)-
proto-quercitol (1) via two parallel routes. The key to the success
involved the exclusive formation of bis-acetonide 2, which was
generated through cis-ketal 14 (Scheme 5). In cases where several
1,2-acetonides are possible, formation of a cis-cyclic ketal is more
favorable than that of the trans-derivative. On the other hand,
(—)-vibo-quercitol afforded an inseparable mixture of bis-aceto-
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Scheme 5. Mechanistic formation of bis-acetonides 2, 16, and 17 generated from (+)-proto-quercitol and (—)-vibo-quercitol.
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nides 16 and 17* on treatment with 2,2-dimethoxypropane
though cis-cyclic ketal 15 was initially generated. This can be ratio-
nalized by the possible formation of a second acetonide at C-1/C-2
or C-2/C-3. Interestingly, aminocyclitol 11 displayed more striking
inhibition than the diastereomeric congener 6, indicating that the
configuration of the 5-NHj is critical for blocking the enzyme. With
the excellent biological activity of 11, (+)-proto-quercitol could
serve as an alternative chiral pool substrate for the synthesis of di-
verse aminocyclitols and related analogues.
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