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Bromophenyl magnesium reagents generated via a Knochel type magnesium–halogen exchange of aryl
iodides undergo regioselective ring opening of cyclic primary and secondary N-Boc sulfamidates in good
to excellent yields. With secondary sulfamidates the reaction proceeds with clean inversion of the stereo-
chemistry. This protocol complements the ring opening of aziridines with bromophenyl metal reagents
and extends its scope to secondary substrates.

� 2011 Elsevier Ltd. All rights reserved.
Early papers on the ring opening of cyclic sulfam(id)ates with a
variety of nucleophiles made specific mention of the complemen-
tarity with aziridines.1a–c In a recent paper ring opening reactions
of aziridines with ortho-bromophenyl metal reagents as a means
to access pharmacologically interesting indolines were reported2

(Scheme 1). The present work allows a comparison of N-Boc aziri-
dines and N-Boc sulfamidates as electrophiles and provides evi-
dence for the superiority of analogous ring opening reactions of
cyclic sulfamidates with respect to regiochemical control and sim-
plicity of the reaction conditions.

During a program directed toward selective 5HT2c receptor ago-
nists3a,b we were confronted with the problem of introducing a chi-
ral 2-amino-propyl moiety4 at the 3-position of an indole. Ring
opening of aziridines was expected to be a straight forward way to
affect the desired transformation. Aryl lithium, aryl magnesium ha-
lide, aryl zinc halide and aryl organocuprate reagents have all been
used in the ring opening of aziridines.5a–d Our attempts to open a
variety of differently N-protected aziridines (N-tosyl, N-Boc, N-ben-
zyl) with the indole lithium reagent obtained from iodine metal ex-
change of an iodoindole were unsuccessful (Scheme 2). Neither
addition of copper(I)salts such as copper(I)iodide or copper(I)bro-
mide-dimethylsulfide complex nor addition of Lewis acids such as
borontrifluoride etherate improved the conversion.

When N-Boc-sulfamidate 2b was reacted with lithioindole, ob-
tained at �78 �C by iodine lithium exchange, the desired 2-amino-
ll rights reserved.

isen).
propylated derivative was formed in an excellent 86% yield
(Scheme 2).3a While this protocol allowed rapid and efficient ac-
cess to the desired serotoninergic compounds its restriction to pri-
mary sulfamidates and the necessity to operate at low
temperatures limited practicality and versatility.

Reaction of commercial phenyllithum with sulfamidate 2b at
�78 �C required a ca twofold excess for complete consumption of
2b and resulted in a 53% yield of the ring opened product accom-
panied by 32% of the des-Boc analog resulting from competing at-
tack of the lithio species at the Boc carbonyl. With this result we
felt encouraged to study ring opening reactions of cyclic sulfami-
dates with the aim to develop a general practical method for the
synthesis of b-phenylethylamines allowing regio and stereocon-
trolled introduction of substituents both at the 1 and the 2-posi-
tion. (Scheme 3).

Substituted b-phenylethylamines represent an important class
of pharmacologically active compounds.6 They can also serve as
intermediates to a wide variety of equally interesting derivatives
such as indolines.7a–d Ortho-bromophenyl analogs in particular
are well established precursors for indolines.2

Ring opening of mono substituted N-Boc-aziridines works well
with ortho-bromophenyl lithium at �78 �C in the presence of
borontrifluoride etherate and proceeds regioselectivly with attack
at the less hindered side. Reactions with phenylzinc, phenylmagne-
sium chloride or corresponding organocuprate reagents were less
satisfactory in terms of reaction times and excess of reagent neces-
sary for full conversion of the employed aziridines.

The ease of preparation and the much higher stability of
arylmagnesium halide reagents especially in the presence of
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Scheme 2. Reaction of N-protected aziridines and N-Boc sulfamidates with 3-lithioindoles.
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Scheme 3. General synthesis of 1- or 2-monosubstituted b-phenylethylamines via ring opening of sulfamidates.
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Scheme 1. Synthesis of indolines via ring opening of aziridines.

Table 1
Yields and selected properties of N-Boc sulfamidates
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SOCl2   1.8eq
imidazole 6eq

CH2Cl2 0-5ºC 2h
thenwash with
water and brine

1)NaIO4 1.5-2eq
   RuO2 1mol%
   CH2Cl2 0-r.t.

2)aqu. Na ascorbate
   RuO2 removal by
    filtration over silica1a-g 2a-g

+

Entry Chirality R1 R2 Yield (%) ee11 (%) Mp (�C) Lit.

2a — H H 72 — 117–118
2b R CH3 H 88 100 121–122 120–12112

2c S CH3 H 88 100 122–123
2d S H CH3 84 99.2 115–117
2e R H CH3 84 99.7 117–118
2f S COOEt H 71 n.d.
2g S CH2OTBDMS H 83 n.d.
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Figure 1. X-ray crystal structure compound 7.
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ortho-halo substituents, however, would make them the preferred
organometal species provided their reactivity being sufficient.

For instance ortho-bromophenyl magnesium halides can be
generated at �15 �C and undergo copper(I) promoted 1,4-addition
to enones at temperatures as high as 0 �C.8a,b

For the synthesis of more elaborated b-phenylethylamines
especially such as the ones carrying additional bromine substitu-
ents we investigated ring opening of cyclic N-Boc-sulfamidates
by aryl magnesium halides.

The synthesis of cyclic N-Boc sulfamidates9a,b is well established
and involves the reaction of N-Boc protected amino alcohols with
thionylchloride in the presence of a suitable base followed by
Sharpless oxidation of the formed sulfamidites. We have developed
a convenient modified protocol which also addresses removal of
toxic ruthenium tetroxide produced during Sharpless oxidation10

(Table 1).
As sulfamidates are well known to undergo ring opening with a

variety of nucleophiles including halides we sought to generate the
Grignard reagent with the least nuleophilic halide possible. A Kno-
chel8a type halogen metal exchange of iodo-bromobenzenes with
isopropylmagnesium chloride in diethyl ether proceeded rapidly
at �15 �C. When sulfamidate 2b was added to this mixture it
was rapidly consumed predominantly with the formation of the
desired ring opened product. Addition of 1 mol % of copper(I) io-
dide improved the conversion with respect to suppression of un-
wanted side products resulting from competitive opening of the
sulfamidate by the halide counter anion.13

Although primary sulfamidates 2a, 2b and 2c reacted even at
�78 �C the outcome with respect to yield and stereochemical pur-
ity did not differ to reactions carried out at non cryogenic �15 �C.
At this temperature all reaction components were freely soluble in
Table 2
b-Phenylethylamines derived from ring opening of cyclic sulfamidates
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R1 R2 R3

3a H H m-CF3

3b CH3 H m-CF3

3c CH3 H m-CF3

3d H CH3 m-CF3

3e H CH3 m-CF3

4c CH3 H o-Br
4e H CH3 o-Br
5c CH3 H m-Br
5e H CH3 m-Br
6c CH3 H p-Br
6e H CH3 p-Br
6f COOEt H o-Br
6g CH2OTBDMS H o-Br

a Crystallization.
b Distillation.
c Chromatography.
diethyl ether in which the reactions looked cleaner than in tetrahy-
drofuran. After hydrolysis of the reaction mixture with 10% aque-
ous citric acid the target compounds 3a, 3b, 3c, 4c, 5c, and 6c
were obtained by crystallization from heptane or by short path dis-
tillation (in case of low melting or oily products) in analytically and
optically pure form in yields ranging from 65 to 83% at a 5 mmol
scale14 (Table 2). Similar ring opening reactions of N-Boc aziridines
provide comparable yields but require the phenyllithium reagent
and activation by borontrifluoride etherate, rather than the Grig-
nard reagent, and operation at cryogenic �78 �C.2

As the starting iodoaryl compounds as well as their des iodo
analogs were easily separable from the reaction mixture by our
standard workup procedure we usually used them in a twofold
N
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% Cu(I)I 
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Chirality Yield (%t) ee15 (%) Mp (�C)

— 82b — 54–56
R 78a 100 84–85
S 75a 99.7 84–85
S 87b 99.2 39–40
R 85b 99.3 40–41
S 83a 100 94–95
R 75b 99.6 Oil
S 70a 100 108–109
R 62b >97.9 Oil
S 65a >98.7 98–99
R 62a >99.6 57–59
S 43c n.d.
R 89c n.d.
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Scheme 4. Stereochemical course of reactions with secondary sulfamidates. Reagents: (i) 2.26 N hydrochloric acid in ethyl acetate; (v) 4-bromobenzoylchloride, Hünig’s base.
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excess. However using only slight excess (1.1 equiv) of the iodoaryl
starting material did not reduce the yield significantly (Table 2, en-
try 6g).

Having access to the isomeric enantiomerically pure secondary
sulfamidates 2d and 2e from an earlier program we submitted
them to the same reaction conditions. Again good conversions
(62–87%) this time to b-substituted phenylethylamines 3d, 3e,
4e, 5e, and 6e were observed. This substitution pattern has not
been accessible by analogous ring opening reactions of N-Boc azir-
idines due to their propensity to open from the less hindered side.
In contrast to analogous ring opening reactions of primary sulfam-
idates no significant conversion was observed below ca. �40 �C.

The ring opening of secondary sulfamidates 2d and 2e with
nucleophiles such as indoles has been shown to proceed with
inversion.16 Copper(I) mediated ring opening reactions of the sec-
ondary cyclic sulfamidates 2d and 2e with phenylmagnesium chlo-
ride reagents (Table 2, entries 3d, 3e, 4e, 5e, 6e) also proceed with
inversion as evidenced by the X-ray single crystal analysis (Fig. 1)
of a crystalline derivative 7 obtained from phenylethlamine 3e by
N-Boc deprotection and acylation with 4-bromobenzoyl chloride
(Scheme 4).17

Having established conditions for efficient ring opening of sim-
ple methyl substituted primary and secondary N-Boc sulfamidates
we next explored sulfamidates carrying extra functionality such as
carboxylate and silyloxymethyl substituents.

Starting from L-serine esters sulfamidates 2f and 2g were ob-
tained via, also commercially available, intermediates 1f and 1g
by a standard sequence of reactions in excellent overall yield as
crystalline white powders.

Reaction of ethoxycarbonyl substituted 2f with o-bromophenyl-
magnesium chloride under the above described conditions
provided an unsatisfactory 40% yield of carboxyl substituted o-
bromophenylethylamine presumably due to competing attack at
the ester group (Table 2, entry 6f). During their elegant synthesis
of Reinieramycin Zhu et al. used ring opening of t-butylester
substituted N-Boc aziridine with an o-methoxy stabilized aryl Grig-
nard with good success18 which suggests that this aziridine might
also be better compatible o-bromophenylmagnesium chloride than
N-Boc sulfamidate 2f. Silyloxymethyl substituted sulfamidate 2g
gave an excellent 89% yield of the desired product (Table 2, entry
6g) this time after chromatography. Similar ring opening of a cor-
responding silyloxymethyl substituted aziridine was reported in
comparable 79% yield again using a phenyllithium reagent with
activation by borontrifluoride etherate at �78 �C.

The extension of this chemistry to heteroaryl metal reagents
and secondary silyoxymethyl substituted sulfamidates as well as
application to the synthesis of pharmacologically interesting aza-
indolines19 will be reported in due course.

In conclusion we have demonstrated that cyclic primary and
secondary N-Boc-sulfamidates undergo efficient copper(I) pro-
moted ring opening reactions with bromoarylmagnesium chlorides
obtained from Knochel type iodo metal exchange at convenient
temperatures (�15 �C) thus giving access to optically pure 1- and
2-monosubstituted b-(bromophenyl)-ethylamines in good to
excellent yields.
In comparison ring opening reactions with corresponding mono
substituted N-Boc aziridines require the more reactive but less sta-
ble bromoaryllithium reagents in combination with a Lewis acid
and are typically carried out at �78 �C. They occur exclusively at
the less hindered side and thus provide access exclusively to
2-substituted phenylethylamines. Pyrimidine-2-sulfonyl (pymisyl)
protected aziridines have recently been shown to ring open effi-
ciently upon reaction with organocuprates offering benefits over
N-Boc aziridines with respect to reactivity. While synthetic acces-
sibility of N-Boc-aziridines and N-Boc-sulfamidates is comparable
the latter are superior with respect to regiochemical control as well
as reactivity in reactions with aryl Grignard reagents.

Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.tetlet.2011.07.123.
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