

TETRAHEDRON LETTERS

TOWARDS POLYKETIDE LIBRARIES - II: Synthesis of Chiral Aracemic DI- and Triketides on a Solid Support

Michael Reggelin*, Volker Brenig and Reinhard Welcker

Institut für Organische Chemie, J. W. Goethe Universität, Marie-Curie-Straße 11, D-60439 Frankfurt/Main, Germany

Received 10 February 1998; accepted 29 April 1998

Abstract: A new fluoride ion cleavable linker serves as starter unit for iterative asymmetric aldol reactions on a solid support. The synthetic protocol relies on the boron enolate chemistry of D. A. Evans and a cyclic reestablishment of key functionalities. It entails the opportunity for the generation of di- and triketide libraries. © 1998 Elsevier Science Ltd. All rights reserved.

Polyketides [1,2] are an extremely rich source of bioactive substances with advantageous pharmacokinetic profiles. It has been estimated that the number of lead structures related to the total amount of known polyketides reaches 0.1%, which exceeds any lead/diversity ratio known of other classes of compounds. For that reason it seems highly promising to develop a flexible methodology, which allows to access as much as possible of the constitutional and configurational space available for polyketides in a combinatorial environment (Scheme 1, Table 1).

Scheme 1: Iterative asymmetric aldol additions on a solid support. a) NaOMe, DMF, 50°C, 24h; b) SO₃/Py, DMSO, NEt₃, rt, 3h; c) $(nBu)_2$ BOTf, NEt₃; d) 4h, -78°C, 12h, -78°C \rightarrow 0°C; e) (1) LiOH, H₂O₂, THF, H₂O, 0°C, 4h; (2) BnSH, DMAP, DCC; THF, rt, 18h; f) (1) TIPSOTf, 2.6-lutidine, 0°C, 48h; (2) LiBH₄, THF, rt, 12h; (3) DMP, CH₂Cl₂, rt, 18h. To identify individual substances use Table 1.

Following these lines, in 1996 [3] we introduced a resin bound protocol relying on iterative asymmetric aldolreactions [4-9], based on the chiral boron enolates developed by D. A. Evans [10] and on the hydroxyl amine derived amides introduced by Weinreb et al. [11].

Tuble is neoraule encoung for the compounds in benefite it										
#	R ¹	R ²	R ¹¹	R ¹²	R ¹³	R ¹⁴	R ²¹	R ²²	R ²³	R ²⁴
3a	-	-	-	-	-	-	-	-	-	-
3b	-	-	Н	Me	Н	OTIPS	-	-	-	-
5a	Н	Bn	Me	Н	OH	Н	-	-	-	-
5b	iPr	Н	Н	Me	н	OH	-	-	-	-
5c	iPr	Н	н	Me	Н	OTIPS	Н	Me	н	OH
5d	iPr	Н	Me	Н	OTIPS	Н	Н	Me	Н	Н
6b	-	-	Н	Me	Н	OH	-	-	-	-

Table 1: Residue encoding for the compounds in Scheme 1

Despite the principal feasibility of the approach we encountered a number of problems related to the absence of a suitable linker and the difficulty to reestablish the aldehyde functionality from the Weinreb amide in a quantitative fashion. Therefore we decided to introduce two major changes to the published protocol. First we replaced the Weinreb amide by thioester 6 as the aldehyde precursor and as a second modification we developed the new fluoride ion cleavable linker 10, whose synthesis is illustrated in Scheme 2.

Scheme 2: Synthesis of fluoride ion cleavable linker 10: a) BnCl. NaOMe, DMF (85%); b) (1) *n*BuLi, (2) dichlorodiisopropyl silane, (3) 1,3-propanediol, DMAP, NEt₃ (45%); c) H_2/Pd , MeOH (95%).

As a key transformation we silvlated the aromatic bromide 8 leading to the benzylated precursor of the desired diol 10, which then was attached to Merrifield resin 2 [12] using NaOMe as a base (Scheme 1). The resulting resin bound alcohol can be oxidised with SO₃-pyridine [13] yielding the aldehyde 3a (n = 0, Scheme 1, Table 1, IR: 1724 cm⁻¹). In order to validate the suitability of the new linker in the context of the proposed reaction cycle we first prepared the diketide 5a (IR: 1774 cm⁻¹ and 1696 cm⁻¹) using the enol borinate 4a derived from oxazolidinone 1a (Scheme 1). Its fluoride ion induced desilylation uncovers an oxygen nucleophile, which attacks the exocyclic carbonyl group of the chiral imide producing the expected δ -lactone 11 [14] (14% yield; $ds \ge 99\%$ by capillary GC) as well as the deacylated oxazolidinone 12 (41% yield; Scheme 3) [15].

Scheme 3: Synthesis of chiral aracemic δ - lactones on Merrifield resin. Reaction conditions: a) TBAF, HOAc, THF, 40°C, 14h.

This successful completion of the resin bound oxidation, hydroxyalkylation and cleavage sequence encouraged us to tackle the challenge to obtain enantiopure di- and triketide products following the synthetic cycle outlined in Scheme 1. Starting with the already mentioned aldehyde 3a we added the (R)-valine derived enol borinate 1b yielding the diketide 5b. The oxidative hydrolysis (LiOH, H₂O₂) of this intermediate [IR (carboxylic acid): 1715 cm⁻¹] followed by its DCC mediated coupling with benzyl mercaptane (30 eq) yields the thioester **6b** (IR: 1683 cm^{-1}). After protection of the hydroxyl function as TIPS-ether (30 eq TIPSOTf, 0° C, 48h, 2.6-lutidine as solvent), we reduced the protected ester using lithium borohydride in THF and reoxidised the reaction product with Dess-Martin periodinan [16] (DMP; 10 eq) thus obtaining the elongated aldehyde **3b** (IR: 1724 cm⁻¹). Thereby the successful reestablishment of the aldehyde functionality sets the stage for the next cycle. We repeated the already described sequence again using the (R)-value derived oxazolidinone 1b, which leads to the resin bound all-syn-configurated triketide 5c. After TBAF induced cleavage the free triketide 13 [17] was isolated in 12% yield [18] (based on the amount of isolated oxazolidinone obtained after hydrolysis of 5b, Scheme 4). According to ¹H- and ¹³C-NMR-spectroscopic analysis the compound was pure and in all respects identical to a reference compound prepared in solution [19]. As a second example we changed the nucleophile used in the first aldoladdition from 4b to ent-4b, thus inverting the induced absolute configuration at the C-atoms 4 and 5. This way we obtained the diastereometric triketide 5d, which can be cleaved from the resin ending up with the monoprotected triol 14 (7% yield). Again, the NMR-data of this compound is prooved to be in accordance with the expectation [20].

Scheme 4: Triketides obtained by iterative asymmetric aldoladditions on a solid phase. R = TIPS.

In summary we have shown that iterative aldol reactions based on chiral boron enolates can be employed to synthesise di- and triketides in diastereomerically pure form on a solid phase. Additionally the synthetic protocol introduced here offers the opportunity to prepare combinatorial libraries of di- and triketides, β -hydroxycarboxylic acids, β -hydroxythioesters, l, 2n+l-polyols and δ -lactones. Beside the obvious possibility to "decorate" the hydroxyl groups a fascinating application of these libraries may be their use as starter units in polyketide synthesis with genetically manipulated polyketide synthases (PKS) [21]. This could be a means to translate molecular diversity at the di- and triketide level to diversity at much higher levels of molecular complexity. Due to the relatively low substrate specificity of the PKS's even glycosylated and ring expanded products should be accessible starting with the above mentioned libraries.

Acknowledgment: We would like to thank the Solvay-Pharma (Hannover, Germany) for the generous financial support and Dr. H. Luftmann (University of Münster) for mass spectra of the isolated triketides. Furthermore continuous support from the DFG (Re 1007/1-4/1-5) and Prof. Dr. C. Griesinger is gratefully acknowledged.

References and Notes:

- [1] O'Hagan D., Nat. Prod. Rep. 1995; 12: 1 32.
- [2] Katz L., Donadio S. Annu. Rev. Microbiol. 1993; 47: 875 912.
- [3] Reggelin M., Brenig V. Tetrahedron Lett. 1996; 37: 6851 6852.
- [4] Review of solid phase synthesis of small organic molecules: Balkenhohl F., v. d. Bussche-Hünnefeld C., Lansky AL., Zechel C. Angew. Chem. 1996; 108: 2436 - 2488.
- [5] Kurth MJ., Ahlberg Randall LA., Chen C., Melander C., Miller RB. J. Org. Chem. 1994; 59: 5862 -5864.
- [6] Kobayashi S., Hachiya I., Yasuda M. Tetrahedron Lett. 1996; 37: 5569 5572.
- [7] Polymer supported "Evans"-oxazolidinone: Allin SM., Shuttleworth SJ. Tetrahedron Lett. 1996; 37: 8023 8026.
- [8] Purandare SV., Natarajan S. Tetrahedron Lett. 1997; 38: 8777 8780.
- [9] Epothilone synthesis: Nicolaou KC., Winssinger N., Pastor J., Ninkovic S., Sarabia F., He Y., Vourloumis D., Yang Z., Li T., Giannakakou P., Hamel E. Nature 1997; 387: 268 - 272.
- [10] Evans DA., Bartroli JA., Shih TL. J. Am. Chem. Soc. 1981; 103: 2127.
- [11] Nahm S., Weinreb SM. Tetrahedron Lett. 1981; 22: 3815.
- [12] Merrifield RB. J. Am. Chem. Soc. 1963; 85: 2149; Merrifield resin (1.1 mmol of CH₂Cl/g : Polystyrene 1 % divinylbenzene copolymer) was purchased from Novabiochem.
- [13] Parikh JR., v. Doering WE. J. Am. Chem. Soc. 1967; 89: 5505 5507.
- [14] ¹H- and ¹³C NMR spectroscopic data were identical to published data: Guindon Y., Faucher AM., Bourque E., Caron V., Jung G., Landry SR. J. Org. Chem. 1997; 62: 9276 - 9283.
- [15] For this deprotection to be successful it is mandatory to neutralise the tetrabutylammonium fluoride with acetic acid. Otherwise complete dehydration of 11 to the corresponding unsaturated δ -lactone occurs.
- [16] Dess DB., Martin JC. J. Org. Chem. 1983; 48: 4156 4158.
- [17] The crude product (25 mg) contains at least 60% (15 mg) of the isolated triketide 13.
- [18] Each synthetic step of the reaction cycle proceeded with an average yield of \geq 70% (related to the maximum load of the resin).
- [19] 13: ¹H NMR (270 MHz, CDCl₃, 300 K, TMS): $\delta = 0.858$ /0.891 (2×d, 15-H₃, 15-H₃); 0.95 (d, 9-H₃); 1.058 (TIPS-H₂₁);

1.307 (d, 8-H₃); 1.677 (ddq, 4-H); 1.832 - 1.927 (m, 6-H₂); 2.292 (dqq, 14-H); 2.262 (brs, 2×OH); 3.640 (dt, 7-H₂);

3.942 (dq, 2-H); 4.081 (dd, 3-H); 4.135 (ddd, 5-H); 4.180 (dd, 12-H); 4.241 (dd, 12⁻-H), 4.424 (ddd, 13-H)

 $J_{2,3} = 6.5 \text{Hz}; J_{3,4} = 3.6 \text{Hz}; J_{4,5} = 3.3 \text{ Hz}; J_{5,6} = 5.5/7.7 \text{ Hz}; J_{6,7} = 6.5 \text{Hz}; J_{7,7'} = 2.0 \text{Hz}; J_{2,8} = 6.9 \text{ Hz}; J_{4,9} = 7.0 \text{Hz}; J_{4,9} = 7.0 \text{Hz};$

 $J_{12,12'} = 9.1$ Hz; $J_{12,13} = 3.5$ Hz; $J_{12',13} = 7.9$ Hz; $J_{14,15'} / J_{14,15'} = 6.9/7.1$ Hz

¹³C NMR (67.9 MHz, CDCl₃, 300 K): δ = 7.48 (C-9); 13.19 (CH-TIPS), 13.85 (C-8), 14.69/17.90 (C-15, C-15[']);

18.16/18.20 (2×CH₃TIPS); 28.37 (C-14); 37.04 (C-6); 39.06 (C-4); 41.34 (C-2); 58.19 (C-13); 59.70 (C-7); 63.26 (C-12); 73.81 (C-3); 74.36 (C-5); 153.21 (C-10); 177.15 (C-1).

HRMS (CI⁺): Calculated for (C₂₄H₄₇NO₆Si+H⁺): 474.3251. Found: 474.3227.

- [20] **14**: ¹H NMR (270 MHz, CDCl₃, 300 K, TMS): $\delta = 0.85$ (d, 9-H₃); 0.857/0.891 (2×d, 15-H₃/15'-H₃); 1.066 (TIPS-H₂₁); 1.193 (d, 8-H₃); 1.528 - 2.192 (brs, 2×OH;m, 6-H₂/4-H); 2.395 (dqq, 14-H); 3.700 (dt, 7-H₂); 3.878 (dq, 2-H); 3.996 (dd, 3-H); 4.186 (dd, 12-H); 4.272 (dd, 12'-H); 4.308 (dt, 5-H); 4.449 (ddd, 13-H); J_{2,3} = 2.4Hz; J_{3,4} = 9.7Hz; J_{4,5} = 2.0Hz; J_{5,6} = 6.5Hz; J_{6,7} = 6.5Hz; J_{7,7} = 2.3Hz; J_{2,8} = 7.0Hz; J_{4,9} = 7.1Hz; J_{12,12} = 9.0Hz; J_{12,13} = 3.0Hz; J_{12',13} = 8.1Hz; J_{13,14} = 3.8Hz; J_{14,15} / J_{14,15} / = 6.9/7.1Hz ¹³C NMR (62.9 MHz, CDCl₃, 300 K): $\delta = 9.21$ (C-8); 11.07 (C-9); 12.67 (CH-TIPS);14.43/17.82 (C-15,C-15'); 17.97/18.02(2×CH₃TIPS); 28.10 (C-14); 36.23 (C-6); 39.36 (C-4); 40.11 (C-2); 58.53 (C-13); 59.67 (C-7) 63.12 (C-12); 72.13 (C-5); 72.48 (C-3); 153.55 (C-10);176.52 (C-1). HRMS (CI⁺): Calculated for (C₂₄H₄7NO₆Si+H⁺): 474.3251. Found: 474.3222.
- [21] Jacobsen JR., Hutchinson CR., Cane DE., Khosla C. Science 1997; 277: 367 369.