A Novel Transformation of Primary Amines to N-Monoalkylhydroxylamines

Hidetoshi Tokuyama, Takeshi Kuboyama, Akiko Amano, Tohru Yamashita, Tohru Fukuyama*

Graduate School of Pharmaceutical Sciences, The University of Tokyo, CREST, The Japan Science and Technology Corporation (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Fax +81(3)58028694; E-mail: fukuyama@mol.f.u-tokyo.ac.jp Received 24 May 2000

Abstract: A novel transformation of primary amines to the corresponding *N*-monoalkylhydroxylamines is described. The three-step protocol involves selective mono-cyanomethylation of primary amines, regioselective formation of nitrones by *m*-CPBA oxidation, and hydroxylaminolysis of the nitrones with hydroxylamine hydrochloride. The method is applicable for a wide range of primary amines, including alkyl, benzyl, and chiral.

Key words: amine, hydroxylamine, oxidation, cyanomethylation, nitrone

Since a variety of α -hydroxylamino acids and hydroxamic acids occur in nature, synthesis of their precursors, N-monoalkylhydroxylamines, has been a topic of considerable interest.^{1,2} Direct oxidation of primary amines with hydrogen peroxide or *m*-CPBA is generally ineffective, often leading to further oxidation products such as nitroso and nitro compounds. While reduction of nitro compounds³ or oximes⁴ appears to be the most common and reliable method, it is not applicable to the synthesis of optically active N-monoalkylhydroxylamines. Selective oxidation of primary amines with dimethyldioxirane is applicable only to a limited range of substrates.⁵ Hydroxylamines have also been synthesized from primary amines by way of oxidation of the corresponding Schiff bases.⁶ The protocol is amenable to the synthesis of optically active hydroxylamines,^{6b-d} although the intermediary of a relatively acid-labile Schiff base is one of its disadvantages. In the course of studies related to total synthesis of indole alkaloids, we investigated a protocol for the conversion of optically active primary amines to the corresponding hydroxylamines. We describe herein a novel method consisting of selective monocyanomethylation of primary amines, regioselective formation of nitrones, and hydroxylaminolysis of the nitrones (Scheme).

Scheme

First, we explored the optimum conditions for selective monocyanomethylation of primary amines. To this end, we developed three different procedures depending on the steric bulkiness of the alkyl substituent (Table). Primary amines bearing a primary alkyl substituent could be cyanomethylated with chloroacetonitrile and K_2CO_3 in acetonitrile at 60 °C (Conditions A). More hindered amines can be selectively converted to their cyanomethylated derivatives with bromoacetonitrile and Hünig's base (Conditions B). The highly sterically hindered amine such as 1-adamantamine was selectively cyanomethylated with iodoacetonitrile and K_2CO_3 (Conditions C).

We have found that cyano group serves as a highly effective directing group for the regioselective formation of nitrones. For example, oxidation of cyanomethylamines with *m*-CPBA (2.0 equivalents) took place regioselectively to afford exclusively the desired nitrones 3a-i. This remarkable regioselectivity, which may be due to the inductive effect of the cyano group, was also observed in the oxidation of substrates (1h, 1i) derived from glycine and phenylalanine. The structures of the nitrones were unambiguously determined by extensive ¹H NMR studies.

The conversion of the nitrones to the desired *N*-monoalkylhydroxylamines was best achieved by a modification of the literature procedures.^{6c,d} Namely, treatment of the nitrones with excess hydroxylamine hydrochloride (5 equivalents) in MeOH at 60 °C for 2 hours afforded the desired *N*-monoalkylhydroxylamines, which were isolated as the corresponding oxalates because of the instability of the free hydroxylamines. Yields, given in the Table, are based on the corresponding oxalic acid salts.

As shown in the Table, a variety of *N*-monoalkylhydroxylamines could be synthesized by this protocol in high overall yields. In general, better yields were obtained when the sequence was carried out without isolation of the nitrone intermediates. Since the intermediate cyanomethylamines are stable, the present protocol is more reliable than the one employing Schiff bases for oxidation. It should be noted that this method is particularly useful for the preparation of chiral hydroxylamines. Thus, (*S*)-1phenylethylamine (**1d**) was transformed to the corresponding hydroxylamine oxalate (**4d**) without loss of enantiomeric excess (entry 4).^{6c} Furthermore, the method is amenable to the synthesis of α -hydroxylamino acid derivatives (entries 8, 9).^{5,6b,d}

In summary, we have developed a novel methodology for conversion of primary amines to the corresponding

Table	Synthesis of N-	Monoalkylh	ydroxylamines
-------	-----------------	------------	---------------

Entry	Amine	R	Conditions for Cyanomethylation ^a	Time (h)	Yield (%)	2 to 3 ^f Yield (%)	$3 \text{ to } 4^{g}$ Yield (%)	2 to 4 Yield (%)
1	1a	PhCH ₂ -	А	24	95	78	76	82
2	1b	PhCH ₂ CH ₂ -	А	24	96	75	83	75
3	1c	PhCH ₂ CH ₂ CH ₂ -	А	24	93	65	79	74
4	1d	Me	А	24	71	85	100	89 ^h
		Ph	В	5	96			
5 1	1e		А	24	74	_	_	79
			B ^{b,c}	22	97			
6	1f	Ph ₂ CH-	В	15	98	73	80	55
7	1g		С	1	89	89	77	76
8	1h	BnO ₂ CCH ₂ -	\mathbf{B}^{d}	18	91	_	_	62
9	1i	Ph	B ^{c,e}	26	92	-	-	61 ⁱ

^a Conditions A: ClCH₂CN (1.5 equiv), K_2CO_3 (2.0 equiv), CH₃CN, 60 °C; Conditions B: BrCH₂CN (1.5 equiv), *i*-Pr₂NEt (2.0 equiv), CH₃CN, r.t.; Conditions C: ICH₂CN (2.0 equiv), K_2CO_3 (2.5 equiv), DMF, r.t.

^b HCl salt of amine was used.

^c BrCH₂CN (1.3 equiv), *i*-Pr₂NEt (3.0 equiv).

^d BrCH₂CN (1.2 equiv), *i*-Pr₂NEt (2.0 equiv).

^eBrCH₂CN (2.0 equiv), *i*-Pr₂NEt (3.0 equiv).

^f*m*-CPBA (2.0 equiv), CH₂Cl₂, r.t., 30 min.

^gNH₂OH·HCl (5.0 equiv), MeOH, 60°C, 2 h; work-up and treatment with (COOH)₂ MeOH.

^hOptical purity of the product was determined by HPLC on a chiral column.

ⁱ Optical purity of the product was determined after reduction to the amino acid methyl ester; see experimental details.

N-monoalkylhydroxylamines by way of oxidation of the intermediate monocyanomethylamines. The present protocol seems to be applicable to a wide range of primary amines.

All non-aqueous reactions were carried out in oven-dried glass tubes under a slightly positive pressure of Ar. Commercial MeCN and MeOH were dried over 3 Å molecular sieves. All other reagents were commercially available and used without further purification, unless otherwise noted. Preparative flash chromatography was performed using Silica Gel 60 (spherical, 40-100 µm) purchased from Kanto Chemical Co., Inc. All products were characterized by ¹H NMR, ¹³C NMR, and infrared (IR) spectroscopy. NMR spectra were obtained in CDCl₃, CD₃OD, or DMSO-d₆ on a JEOL LA-400 MHz spectrometer. All ¹H NMR spectra are reported in ppm relative to the methyl singlet of MeOH, DMSO, or a TMS internal standard. All ¹³C NMR spectra are reported in ppm relative to the central line of the triplet for CDCl₃ at 77.0 ppm, the central line of the septet for CD₃OD at 49.0 ppm, or the central line of the septet for DMSO-d₆. IR spectra were recorded on a JASCO FT/IR-410; absorptions are reported in cm⁻¹. High-resolution mass spectra were obtained on a JEOL JMS-GCmate MS-DIP20 quadrupole at 70 eV

using direct probe insertion at temperatures of 50 $^{\circ}$ C to 330 $^{\circ}$ C. Mps were determined using a Yanako MP-500V melting point apparatus and are uncorrected. Elemental analyses were carried out on a Yanako MT-6.

Cyanomethylation of Primary Amines (Conditions A): Preparation of *N*-Cyanomethyl 2-phenylethylamine (2b); Typical Procedure

To a MeCN (30 mL) solution of 3-phenylethylamine (260 mg, 1.93 mmol) were added K_2CO_3 powder (532 mg, 3.85 mmol) and ClCH₂CN (183.5 µL, 2.89 mmol). After stirring for 24 h at 60 °C, the resulting suspension was filtered through a pad of Celite, and the filtrate was concentrated on a rotary evaporator. Purification of the residue by flash column chromatography on silica gel (30% EtOAc in hexanes) gave the desired **2b** as a colorless oil (295 mg, 96%).

IR (film): $\nu=3330,\,3027,\,2928,\,2841,\,2233,\,1603,\,1497,\,1454,\,1131,\,1030,\,872,\,751,\,701\;cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 2.84 (t, *J* = 6.8 Hz, 2H), 3.02 (t, *J* = 6.8 Hz, 2H), 3.60 (s, 2H), 7.20–7.34 (m, 5H).

¹³C NMR (100 MHz, CDCl₃): δ = 35.7, 37.3, 49.6, 117.6, 126.5, 128.6 (overlapping 4C), 138.9.

HRMS (EI): m/z calcd for $C_{10}H_{12}N_2$: 160.1000. Found: 160.1007.

N-Cyanomethylbenzylamine (2a) Colorless oil.

IR (film): $\nu=3333,\ 3029,\ 2926,\ 2845,\ 2233,\ 1723,\ 1496,\ 1453,\ 1121,\ 872,\ 739,\ 698\ cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 3.51 (s, 2H), 3.89 (s, 2H), 7.26–7.34 (m, 5H).

¹³C NMR (100 MHz, CDCl₃): δ = 36.1, 52.1, 117.6, 127.5, 128.3, 128.5, 137.7.

Anal. Calcd for $C_9H_{10}N_2$: C, 73.94; H, 6.89; N, 19.16. Found: C, 73.69; H, 6.90; N, 18.96.

N-Cyanomethyl-3-phenylpropylamine (2c)

Colorless oil.

IR (film): v = 3331, 3026, 2933, 2858, 2233, 1951, 1878, 1811, 1602, 1496, 1454, 1329, 1132, 1030, 873, 749, 701 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): $\delta = 1.78-1.88$ (m, 2H), 2.69 (t, J = 7.2 Hz, 2H), 2.77 (t, J = 6.8 Hz, 2H), 3.49 (s, 2H), 7.13-7.31 (m, 5H).

¹³C NMR (100 MHz, CDCl₃): δ = 30.9, 33.1, 37.1, 48.1, 117.8, 125.8, 128.2, 128.3, 141.5.

HRMS (EI): *m/z* calcd for C₁₁H₁₄N₂: 174.1157. Found: 174.1160.

Cyanomethylation of Primary Amines (Conditions B): Preparation of (*S*)-*N*-Cyanomethyl-1-phenylethylamine (2d); Typical Procedure

To an MeCN (20 mL) solution of (*S*)-1-phenylethylamine (1.01 g, 8.33 mmol) were added *i*- Pr_2NEt (2.90 mL, 16.7 mmol) and BrCH₂CN (0.638 mL, 9.12 mmol). After stirring for 5 h at r.t., the reaction mixture was concentrated on a rotary evaporator. The residue was partitioned between sat. NaHCO₃, sat. NaCl, and CHCl₃. The aqueous layer was extracted twice with CHCl₃, and the combined organic extracts were washed with sat. NaCl, dried (MgSO₄), filtered, and concentrated on a rotary evaporator to afford a crude product. Purification by flash column chromatography on silica gel (20% EtOAc in hexanes) gave (*S*)-*N*-cyanomethyl-1-phenylethylamine (**2d**) as a colorless oil (1.28 g, 96%).

 $[\alpha]_D^{27}$ –217 (*c* 1.23, CHCl₃).

IR (film): v = 3335, 2968, 2235, 1957, 1887, 1818, 1494, 1452, 1207, 1132, 870, 763 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 1.38 (d, *J* = 6.8 Hz, 3H), 3.23 (d, *J* = 16.8 Hz, 1H), 3.53 (d, *J* = 17.6 Hz, 1H), 4.01 (q, *J* = 6.5 Hz, 1H), 7.26–7.34 (m, 5H).

¹³C NMR (100 MHz, CDCl₃): δ = 23.7, 34.8, 56.5, 117.7, 126.7, 127.4, 128.5, 142.7.

Anal. Calcd for $C_{10}H_{12}N_2$: C, 74.97; H, 7.55; N, 17.48. Found: C, 74.94; H, 7.57; N, 17.35.

N-Cyanomethyl-2-indanamine (2e)

Colorless oil.

IR (film): v = 3329, 3022, 2938, 2900, 2839, 2234, 1475, 1459, 1426, 1363, 1219, 1134, 1024, 871, 744 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 2.78 (dd, *J* = 4.8, 15.6 Hz, 2H), 3.22 (dd, *J* = 6.8, 15.6 Hz, 2H), 3.66 (s, 2H), 3.81–3.88 (m, 1H), 7.15–7.23 (m, 4H).

¹³C NMR (100 MHz, CDCl₃): δ = 35.7, 39.5, 58.3, 118.0, 124.7, 126.7, 140.9.

HRMS (EI): *m/z* calcd for C₁₁H₁₂N₂: 172.1000. Found: 172.1006.

N-Cyanomethyldiphenylmethylamine (2f)

Mp: 73.9-74.7 (Et₂O/hexanes).

IR (KBr): v = 3434, 3336, 3029, 2924, 2845, 2240, 1631, 1598, 1491, 1453, 1411, 1132, 1085, 1029, 877, 745, 703 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 3.54 (s, 2H), 5.07 (s, 1H), 7.20–7.45 (m, 10H).

¹³C NMR (100 MHz, CDCl₃): δ = 35.1, 65.6, 117.5, 127.1, 127.6, 128.7, 141.7.

Anal. Calcd for $C_{15}H_{14}N_2$: C, 81.05; H, 6.35; N, 12.60. Found: C, 80.80; H, 6.45; N, 12.53.

N-Cyanomethyl glycine benzyl ester (2h)

Colorless oil.

IR (film): v = 3346, 3034, 2954, 2236, 1741, 1498, 1456, 1392, 1193, 1150, 974, 875, 753, 699 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 3.57 (d, J = 4.2 Hz, 2H), 3.66 (d, J = 5.1 Hz, 2H), 5.19 (s, 2H), 7.35–7.38 (m, 5H).

¹³C NMR (100 MHz, CDCl₃): δ = 36.8, 49.2, 67.0, 117.2, 128.5, 128.6, 128.7, 131.2, 170.9.

HRMS (EI): m/z calcd for $C_{11}H_{12}N_2O_2$: 204.0899. Found: 204.0901.

N-Cyanomethyl phenylalanine methyl ester (2i) Colorless oil.

 $[\alpha]_{D}^{28}$ +7.4 (c 0.822, CHCl₃).

IR (film): v = 3339, 3029, 2952, 2238, 1735, 1495, 1436, 1268, 1210, 1175, 991, 873, 748, 701 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 2.92 (dd, *J* = 13.6, 8.0 Hz, 1H), 3.11 (dd, *J* = 13.6, 4.8 Hz, 1H), 3.53–3.55 (m, 2H), 3.68–3.74 (m, 1H), 3.75 (s, 3H), 7.18–7.34(m, 5H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 35.9, 39.1, 52.2, 61.0, 117.1, 127.1, 128.7, 129.1, 136.1, 173.2.

HRMS (EI): *m/z* calcd for C₁₂H₁₄N₂O₂: 218.1055. Found: 218.1053.

Cyanomethylation of Primary Amines (Conditions C): Preparation of *N*-Cyanomethyl-1-adamantanamine (2g); Typical Procedure

To a DMF (9 mL) solution of 1-adamantanamine (419 mg, 2.77 mmol) were added K₂CO₃ (956 mg, 6.92 mmol) and ICH₂CN (300 μ L, 4.15 mmol). After stirring for 1 h at r.t., the reaction mixture was partitioned between Et₂O and 3N NaOH. The aqueous layer was thoroughly extracted with Et₂O four times, and the combined organic extracts were washed with sat. NaCl, dried (MgSO₄), filtered, and concentrated on a rotary evaporator. The crude material (712 mg) was purified by flash column chromatography on silica gel (50% Et₂O in hexanes) to give **2g** (467 mg, 89%) as slightly yellow crystals; mp: 50.5–51.4 °C (hexanes).

IR (KBr): v = 3436, 2905, 2849, 2238, 1631, 1450, 1360, 1142, 1098, 873 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 1.58–1.71 (m, 12H), 2.10 (br s, 3H), 3.57 (s, 2H).

¹³C NMR (100 MHz, CDCl₃): δ = 29.1, 29.3, 36.2, 42.2, 51.2, 120.0.

Anal. Calcd for $C_{12}H_{18}N_2{:}$ C, 75.74; H, 9.53; N, 14.72. Found: C, 75.79; H, 9.28; N, 14.68.

Nitrone (3d); Typical Procedure

(S)-N-Cyanomethyl-1-phenylethylamine (**2d**, 1.50 g, 9.39 mmol) was dissolved in CH_2Cl_2 (50 mL). To this solution was added *m*-CPBA (approx. 70%, 5.09 g, 20.7 mmol) in several portions at 0 °C. After stirring for 20 min at r.t., aqueous $Na_2S_2O_3$ and sat. NaHCO₃ were added and the resulting mixture was stirred for an additional 20 min. The mixture was then extracted thrice with CH_2Cl_2 , the combined extracts were washed with sat. NaCl, dried (MgSO₄),

filtered, and concentrated on a rotary evaporator to afford the crude product as a yellow solid. Purification by flash column chromatography (30% to 80% EtOAc in hexanes gradient) gave **3d** (1.29 g, 79%) as white crystals; mp 91.3–91.9 (EtOAc/hexanes); $[\alpha]_D^{28}$ +83 (*c* 0.494, CHCl₃).

IR (KBr): v = 3098, 2222, 1541, 1452, 1442, 1377, 1295, 1181, 1074, 1007, 748, 701 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 1.83 (d, *J* = 6.8 Hz, 3H), 5.18 (quint, *J* = 7.2 Hz, 1H), 6.67 (s, 1H), 7.43 (br s, 5H).

¹³C NMR (100 MHz, CDCl₃): δ = 19.0, 79.5, 105.8, 112.2, 127.4, 129.2, 129.8, 136.2.

Anal. Calcd for $C_{10}H_{10}N_2O$: C, 68.95; H, 5.79; N, 16.08. Found: C, 68.70; H, 5.86; N, 15.92.

Nitrone 3a

Colorless oil.

IR (film): v = 3110, 2222, 1719, 1545, 1497, 1456, 1319, 1215, 1027, 960, 769, 709 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 5.02 (s, 2H), 6.58 (s, 1H), 7.32–7.48 (m, 5H).

¹³C NMR (100 MHz, CDCl₃): δ = 72.1, 107.5, 112.5, 130.0, 130.3, 130.7, 131.0.

HRMS (EI): *m/z* calcd for C₉H₈N₂O: 160.0637. Found: 160.0642

Nitrone 3b

Mp: 77.0–78.2 °C (EtOAc/hexanes).

IR (KBr): v = 3108, 2223, 1545, 1492, 1456, 1415, 1270, 1195, 1085, 961, 756, 710 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 3.21 (t, *J* = 7.0 Hz, 2H), 4.12 (t, *J* = 7.0 Hz, 2H), 6.37 (s, 1H), 7.17–7.37 (m, 5H).

¹³C NMR (100 MHz, CDCl₃): δ = 33.7, 68.6, 107.4, 111.8, 127.5, 128.6, 129.0, 135.9.

Anal. Calcd for $C_{10}H_{10}N_2O$: C, 68.95; H, 5.79; N, 16.08. Found: C, 68.85; H, 5.86; N, 16.03.

Nitrone 3c

Colorless oil.

IR (film): v = 3110, 2932, 2220, 1603, 1543, 1496, 1454, 1418, 1342, 1277, 1190, 965, 746, 700 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): $\delta = 2.22-2.30$ (m, 2H), 2.70 (t, J = 7.2 Hz, 2H), 3.91 (t, J = 7.4Hz, 2H), 6.66 (s, 1H), 7.16–7.33 (m, 5H).

¹³C NMR (100 MHz, CDCl₃): δ = 28.6, 32.0, 66.1, 107.2, 112.0, 126.6, 128.3, 128.7, 139.4.

HRMS (EI): *m/z* calcd for C₁₁H₁₂N₂O: 188.0949. Found: 188.0948.

Nitrone 3e

Mp: 140-141.2 °C dec. (EtOAc/hexanes).

IR (KBr): v = 3446, 3088, 2221, 1538, 1486, 1418, 1321, 1173, 997, 752 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 3.38 (dd, *J* = 8.4, 16.4 Hz, 2H), 3.53 (dd, *J* = 5.8, 16.6 Hz, 2H), 4.97 (tt, *J* = 5.8, 8.4 Hz, 1H), 6.83 (s, 1H), 7.23 (br s, 4H).

¹³C NMR (100 MHz, CDCl₃): δ = 38.2, 76.3, 105.8, 112.1, 124.5, 127.6, 138.7.

Anal. Calcd for $C_{11}H_{10}N_2O$: C, 70.95; H, 5.41; N, 15.04. Found: C, 70.68; H, 5.55; N, 15.08.

Nitrone 3f

Mp: 113.0-114.6 °C (EtOAc/hexanes).

IR (KBr): v = 3435, 3104, 2222, 1534, 1497, 1456, 1281, 1159, 748, 726, 701 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 6.34 (s, 1H), 6.76 (s, 1H), 7.27–7.43 (m, 10H).

¹³C NMR (100 MHz, CDCl₃): δ = 84.6, 108.0, 112.2, 128.4, 129.1, 129.5, 134.8.

HRMS (EI): *m/z* calcd for C₁₅H₁₂N₂O: 236.0949. Found: 236.0946.

Nitrone 3g

Mp: 187.0-190.0 °C (EtOAc/hexanes).

IR (KBr): v = 3130, 2926, 2857, 2214, 1524, 1458, 1406, 1168, 1058, 1017, 917, 726 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 1.67–1.78 (m, 6H), 2.09 (br s, 6H), 2.27 (br s, 3H), 6.81 (s, 1H).

¹³C NMR (100 MHz, CDCl₃): δ = 29.6, 35.5, 40.8, 74.7, 103.0, 113.0.

Anal. Calcd for $C_{12}H_{16}N_2 O\colon C,\, 70.56;\, H,\, 7.90;\, N,\, 13.71.$ Found: C, 70.57; H, 7.80; N, 13.62.

(S)-1-Phenylethylhydroxylamine Oxalate (4d); Typical Procedure

Nitrone (3d, 117 mg, 0.674 mmol) was dissolved in MeOH (3.5 mL) and NH₂OH•HCl (234 mg, 3.37 mmol) was added. After stirring for 2 h at 60 °C, the resulting mixture was cooled to r.t., diluted with CHCl₃ (30 mL), and filtered through a pad of Celite. The filtrate was concentrated, and the residue was partitioned between CHCl₃ and sat. NaHCO₃. The aqueous layer was extracted twice with CHCl₃, and the combined extracts were washed with sat. NaCl, dried (MgSO₄), and filtered. To the filtrate was added a MeOH solution of (COOH)₂ (91.1 mg, 1.01 mmol), and the resulting suspension was concentrated to dryness. The white solid obtained was triturated with Et₂O, and collected by suction. After drying in vacuo, analytically pure 4d (153 mg, quant.) was obtained as white crystals; mp: 163.0–167.0 °C, dec. (MeOH/Et₂O); $[\alpha]_D^{28}$ -3.1 (c 1.06, MeOH). After conversion to the corresponding *N*-benzoylhydroxylamine, enantiomeric excess of the product was determined to be 95% by chiral HPLC analysis (DAICEL CHIRALPAK AS, 4.6 mm I. D. × 250 mm, i-PrOH/n-hexane (40/60), 1.0 mL/min, 30 °C) using the racemic compound as the reference.

IR (KBr): v = 3220, 2987, 2578, 1761, 1610, 1483, 1458, 1210, 986, 961, 775, 714, 702 cm⁻¹.

¹H NMR (400 MHz, CD₃OD): δ = 1.68 (d, *J* = 6.8 Hz, 3H), 4.52 (q, *J* = 6.9 Hz, 1H), 7.39–7.50 (m, 5H).

¹³C NMR (100 MHz, CD₃OD): δ = 16.1, 62.9, 129.9, 130.1, 130.6, 136.0, 166.4.

Anal. Calcd for $C_8H_{11}NO{\bullet}(COOH)_2$: C, 52.86; H, 5.77; N, 6.16. Found: C, 52.65; H, 5.70; N, 6.09.

Benzylhydroxylamine Oxalate (4a)

Mp: 148.9–150.5 °C (MeOH/Et₂O).

IR (KBr): $v = 3425, 2945, 1703, 1634, 1457, 1404, 1264, 752, 721, 698 \text{ cm}^{-1}$.

¹H NMR (400 MHz, CD₃OD): δ = 4.36 (s, 2H), 7.38–7.45 (m, 5H).

¹³C NMR (100 MHz, CD₃OD): δ = 56.3, 130.0, 130.5, 130.8, 131.8, 165.0.

Anal. Calcd for C₇H₉NO•1.23(COOH)₂: C, 48.54; H, 4.93; N, 5.98. Found: C, 48.05; H, 5.03; N, 6.09.

2-Phenylethylhydroxylamine Oxalate (4b)

Mp: 158.0–161.2 °C, dec. (MeOH/Et₂O).

IR (KBr): v = 3431, 2598, 1721, 1629, 1498, 1458, 1403, 1280, 1189, 741, 701, 609 cm⁻¹.

¹H NMR (400 MHz, CD₃OD): δ = 3.03 (t, *J* = 8.2 Hz, 2H), 3.44 (t, *J* = 8.2 Hz, 2H), 7.23–7.35 (m, 5H).

¹³C NMR (100 MHz, CD₃OD): δ = 30.7, 53.3, 128.2, 129.8, 130.0, 137.6, 163.4.

Anal. Calcd for $C_8H_{11}NO$ •(COOH)₂: C, 52.63; H, 5.74; N, 6.11. Found: C, 52.66; H, 5.72; N, 5.97.

3-Phenylpropylhydroxylamine Oxalate (4c)

Mp: 162.4–163.9 °C, dec. (MeOH/Et₂O).

IR (KBr): v = 3415, 2957, 1720, 1628, 1518, 1453, 1404, 1279, 1220, 749, 721, 704 cm⁻¹.

¹H NMR (400 MHz, CD₃OD): δ = 1.93 (quint, *J* = 7.8 Hz, 2H), 2.65 (t, *J* = 7.8 Hz, 2H), 3.10 (t, *J* = 7.8 Hz, 2H), 7.08–7.22 (m, 5H).

¹³C NMR (100 MHz, CD₃OD): δ = 26.4, 33.4, 51.7, 127.4, 129.4, 129.6, 141.7, 165.5

Anal. Calcd for $C_9H_{13}NO{\bullet}(COOH)_2$: C, 54.77; H, 6.27; N, 5.81. Found: C, 54.48; H, 6.19; N, 5.83.

2-Indanylhydroxylamine Oxalate (4e)

Mp: 206.4–210.8 °C, dec. (DMF).

IR (film): $v = 3416, 3216, 3025, 2523, 1741, 1632, 1485, 1233, 754, 744, 719 \text{ cm}^{-1}$.

Due to this compound's insolubility in various solvents, NMR spectra were taken for the free hydroxylamine.

¹H NMR (400 MHz, CDCl₃): δ = 2.89 (dd, *J* = 16.4, 3.9 Hz, 2H), 3.11 (dd, *J* = 16.4, 6.8 Hz, 2H), 3.92–3.99 (m, 1H), 7.12–7.25 (m, 4H).

¹³C NMR (100 MHz, CDCl₃): δ = 36.7, 62.22, 124.8, 126.5. 141.1.

Anal. Calcd for $C_9H_{11}NO\bullet1.13(COOH)_2$: C, 53.87; H, 5.32; N, 5.58. Found: C, 53.81; H, 5.37; N, 5.84.

Diphenylmethylhydroxylamine Oxalate (4f)

Mp: 160.3–160.9 °C, dec. (MeOH/Et₂O).

IR (KBr): v = 3431, 3282, 2869, 1739, 1625, 1497, 1456, 1398, 1224, 1017, 698 cm⁻¹.

¹H NMR (400 MHz, DMSO- d_6): $\delta = 5.24$ (s, 1H), 7.20–7.44 (m, 10H), 8.60 (br s, 1H).

¹³C NMR (100 MHz, DMSO- d_6): $\delta = 69.4$, 127.2, 127.7, 128.3, 140.7, 163.1.

Anal. Calcd for C₁₃H₁₃NO•1.5(COOH)₂: C, 57.52; H, 4.83; N, 4.20. Found: C, 57.23; H, 5.21; N, 4.58.

1-Adamantylhydroxylamine Oxalate (4g)

Mp: 205.0–209.0 °C, dec. (MeOH/Et₂O).

IR (KBr): v = 3420, 3088, 2917, 2855, 1703, 1635, 1573, 1404, 1233, 1010, 723 cm⁻¹.

¹H NMR (400 MHz, DMSO- d_6): $\delta = 1.55 - 1.68$ (m, 6H), 1.77 (br s, 6H), 2.10 (br s, 3H).

¹³C NMR (100 MHz, DMSO- d_6): $\delta = 28.0, 35.4, 36.0, 58.1, 164.7$.

Anal. Calcd for $C_{10}H_{17}NO\bullet1.24(COOH)_2$: C, 53.75; H, 7.04; N, 5.02. Found: C, 53.72; H, 7.09; N, 5.14.

1-(Benzyloxycarbonyl)-methylhydroxylamine Oxalate (4h) Mp:135.2–136.1 °C (MeOH/Et₂O).

IR (KBr): v = 3440, 1758, 1613, 1416, 1221, 758, 721 cm⁻¹.

¹H NMR (400 MHz, DMSO- d_6): $\delta = 3.63$ (s, 2H), 5.15 (s, 2H), 7.30–7.39 (m, 5H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 54.7, 65.6, 128.0, 128.0, 128.4, 136.0, 161.7, 170.3.

Anal. Calcd for $C_9H_{11}NO_3 \bullet 1.07(COOH)_2$: C, 48.24; H, 4.78; N, 5.05. Found: C, 48.15; H, 5.09; N, 5.27.

(S)-1-Methoxycarbonyl-2-phenylethylhydroxylamine Oxalate (4i)

Mp: 143.2–144.9 °C, dec. (MeOH/Et₂O).

 $[\alpha]_{D}^{28}$ +19.5 (*c* 1.134, MeOH).

IR (KBr): v = 3444, 3146, 2717, 1895, 1752, 1585, 1395, 1300, 1226, 1070, 756, 719, 699 cm⁻¹.

¹H NMR (400 MHz, DMSO- d_6): $\delta = 2.77-2.80$ (m, 2H), 3.55 (s, 3H), 3.65-3.70 (m, 1H), 7.16-7.28 (m, 5H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 34.8, 51.4, 66.7, 126.4, 128.2, 129.1, 137.5, 161.2, 173.3.

Anal. Calcd for $C_{10}H_{13}NO_{3}$ (COOH)₂: C, 50.53; H, 5.30; N, 4.91. Found: C, 50.36; H, 5.18; N, 4.88.

The optical purity of the product **4i** was established after reduction with Zn/HOAc. The optical rotation of the corresponding amino acid methyl ester hydrochloride was in good agreement with that of the commercial starting compound and that reported in the literature.⁷ (Reduction product of **4i**, $[\alpha]_D^{27}$ +36.3° (*c* 2.0, EtOH); starting compound **1i**•HCl, $[\alpha]_D^{27}$ +36.5° (*c* 2.0, EtOH); Lit.,⁷ $[\alpha]_D$ +37° (*c* 2, EtOH)).

Conversion of Cyanomethylated Amines to *N*-Monoalkylhydroxylamines without Purification of the Intermediate Nitrones, (*S*)-*N*-1-Phenylethylhydroxylamine

(S)-N-Cyanomethyl-1-phenylethylamine (2d, 1.28 g, 8.01 mmol) was dissolved in CH₂Cl₂ (20 mL). To the solution at 0 °C was added m-CPBA (approx. 60%, 4.6 g, 16 mmol) in several portions. After the mixture was stirred for 30 min at r.t., aqueous Na₂S₂O₃ and sat. NaHCO_3 were added, and the resulting mixture was stirred for an additional 20 min. The mixture was extracted thrice with CHCl₃, and the combined extracts were washed with sat. NaCl, dried (MgSO₄), filtered, and concentrated on a rotary evaporator to afford the crude product (1.45 g) as a yellow solid. The solid was dissolved in MeOH (15 mL), and NH₂OH•HCl (2.58 g, 40.1 mmol) was added. After stirring for 2 h at 60 $^{\circ}\mathrm{C},$ the resulting white suspension was cooled to r.t., diluted with CH₂Cl₂ (30 mL), and filtered through a pad of Celite. The filtrate was concentrated, and the residue was partitioned between CHCl₃ and sat. NaHCO₃. The aqueous layer was extracted twice with CHCl₃, and the combined extracts were washed with sat. NaCl, dried (MgSO₄), and filtered. To the filtrate was added a MeOH solution of (COOH)₂ (1.44 g, 16.0 mmol), and the resulting suspension was concentrated to dryness. The white solid obtained was triturated with Et₂O/hexanes (1:1), and collected by suction. After drying in vacuo, analytically pure (S)-N-1-phenylethylhydroxylamine (4d) (1.49 g, 82%) was obtained as a white solid.

Acknowledgement

This work was partially supported by the Ministry of Education, Science, Sports, and Culture, Japan (Grant-in-Aid for Encouragement of Young Scientists No. 11771377).

References

- Ottenheijm, H. C. J.; Herscheid, J. D. M. Chem. Rev. 1986, 86, 697.
- Akiyama, A. *Yuki Gosei Kagaku Kyokai Shi* 1982, 40, 1189.
 (2) Bowman, W. R.; Marmon, R. J. In *Comprehensive Organic*
- *Functional Group Transformations*, Vol. 2; Katritzky, A. R., FRS; Meth-Cohn, O.; Rees, C. W., FRS, Eds., Pergamon, Elsevier: Oxford, 1995; Chapter 2.06.
- (3) Kabalka, G. W.; Varma, R. S. In *Comprehensive Organic Synthesis*, Vol. 8; Trost, B. M., Ed., Pergamon: Oxford, 1991; Chapter 2.1.
- (4) Hutchins, R. O.; Hutchins, M. K. In *Comprehensive Organic Synthesis*, Vol. 8; Trost, B. M., Ed., Pergamon: 1991; Chapter 1.2.

- (5) Wittman, M. D.; Halcomb, R. L.; Danishefsky, S. J. J. Org. Chem. 1990, 55, 1981.
- (6) (a) Emmons, W. D. J. Am. Chem. Soc. 1957, 79, 5739.
 (b) Polonski, T.; Chimiak, A. Tetrahedron Lett. 1974, 2453.
 (c) Wovkulich, P. M.; Uskokovic, M. R. Tetrahedron 1985, 41, 3455.
 (d) Grundke, G.; Keese, W.; Rimpler, M. Synthesis 1985, 41,

(d) Grundke, G.; Keese, W.; Rimpler, M. Synthesis **1985**, 41 3455.

(7) Stevenson, D.; Young, G. T. J. Chem. Soc. 1969, 2389.

Article Identifier:

1437-210X,E;2000,0,09,1299,1304,ftx,en;Z04700SS.pdf