Journal Pre-proofs

Photocatalyzed synthesis of unsymmetrical ureas *via* the oxidative decarboxylation of oxamic acids with PANI-g- C_3N_4 -TiO₂ composite under visible light

Liang Wang, Hao Wang, Yaoyao Wang, Minggui Shen, Shubai Li

PII:	S0040-4039(20)30405-6
DOI:	https://doi.org/10.1016/j.tetlet.2020.151962
Reference:	TETL 151962
To appear in:	Tetrahedron Letters
Received Date:	11 March 2020
Revised Date:	13 April 2020
Accepted Date:	19 April 2020

Please cite this article as: Wang, L., Wang, H., Wang, Y., Shen, M., Li, S., Photocatalyzed synthesis of unsymmetrical ureas *via* the oxidative decarboxylation of oxamic acids with PANI-g-C₃N₄-TiO₂ composite under visible light, *Tetrahedron Letters* (2020), doi: https://doi.org/10.1016/j.tetlet.2020.151962

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

Graphical Abstract

Church

Tetrahedron Letters

journal homepage: www.elsevier.com

Photocatalyzed synthesis of unsymmetrical ureas via the oxidative decarboxylation of oxamic acids with PANI-g-C₃N₄-TiO₂ composite under visible light

Liang Wang,^{a,b,*} Hao Wang,^b Yaoyao Wang,^b Minggui Shen^{b,c} and Shubai Li^{a,*}

^a School of Chemical and Pharmaceutical Engineering, Changzhou Vocational Institute of Engineering, Changzhou 213164, China ^b School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, China

^c Institute of Chemical Industry of Forest Products, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210037, China

*Corresponding authors. E-mail: lwcczu@126.com and sbli@czie.edu.cn

ARTICLE INFO

Article history: Received Received in revised form Accepted Available online

Keywords: Photocatalysis Oxidative decarboxylation PANI-g-C₃N₄-TiO₂ composite Urea synthesis

ABSTRACT

The synthesis of unsymmetrical ureas via the photocatalyzed oxidative decarboxylation of oxamic acids has been developed. The carbamoyl radicals were generated from oxamic acids in the presence of a hypervalent iodine reagent and the PANI(Polyaniline)-g-C₃N₄-TiO₂ composite under visible light irradiation. The radicals were converted in situ into the corresponding isocyanates, which were then trapped by amines to afford the corresponding products in moderate to good yields. This protocol avoided the direct use of environmentally unfriendly isocvanates and a series of substrates were tolerated. Moreover, the photocatalyst could be readily recovered by simple filtration and be reused for several runs with only a slight decrease in the catalytic activity.

2009 Elsevier Ltd. All rights reserved.

Urea derivatives are useful compounds that display attractive activities in pharmaceuticals and agrochemicals.¹ They have also found wide applications in molecular recognition² and organocatalysis³ due to their high hydrogen bonding ability. Due to their significant importance in various research areas, a number of synthetic approaches have been developed. Traditionally, ureas are synthesized via the nucleophilic addition of amines to isocyanates,⁴ which are generated by the phosgenation of arylamines or the Curtius rearrangement.⁵ However, the use of toxic reagents (phosgene, triphosgene and azides), poor atom economy and limited substrate scope are the major drawbacks. Alternatively, ureas can be prepared via transition-metal-catalyzed coupling reactions such as the Pd-catalyzed amidation of aryl halides,⁶ the Pd-catalyzed cross-coupling of aryl chlorides or triflates with sodium cyanate,⁷ and Ir-⁸ or Ru-catalyzed⁹ reactions between amines and alcohols.

The transition-metal-catalyzed oxidative carbonylation of amines to access ureas in the presence of CO and an oxidant has also received interest.¹⁰ However, these protocols gave symmetrical ureas as the major products, and only aryl amines were tolerated in some cases. To expand the substrate scope, Zhang and co-workers reported a Pd/C catalyzed carbonylation of azides in the presence of amines under a CO atmosphere.¹¹ Both aryl azides and alkyl azides were suitable for this

methodology, providing unsymmetrical ureas in good yields. Wu and co-workers synthesized unsymmetrical ureas via sequential Pd-catalyzed carbonylation, Curtius rearrangement and nucleophilic addition reactions.¹² Similarly, our group reported a Pd/C-catalyzed domino synthesis of urea derivatives using chloroform as the carbon monoxide source in water.¹³ While acknowledging these pioneering contributions in this field, there are still some issues that need to be addressed. Most of these protocols required the use of homogeneous noble metal catalysts and CO gas. Limitations such as the use of inconvenient substrates, narrow substrate scope, and harsh reaction conditions have also severely restricted their applications.

Recently, visible-light photocatalysis has served as a powerful and green synthetic technology for organic synthesis.¹⁴ It provides environmentally benign and mild reaction conditions with good functional group compatibility. However, the reported photocatalyzed reactions mainly utilise heavy metal-based photocatalysts, which were either expensive or could not be easily recovered and reused. Further advantages such as low cost, high stability and recyclability make semiconductor photocatalysts more advantageous than the homogeneous ones. To date, numerous semiconductor photocatalysts have been prepared; however, they are mainly used for photo-degradation and their applications in organic

focused on photocatalyzed organic transformations employing semiconductor composites as the catalysts.¹⁶ Titanium dioxide (TiO₂)-based composites such as TiO₂-MoS₂ and PANI-g-C₃N₄-TiO₂ displayed good photocatalytic activities in thiocyanation^{16a} and arylation reactions,^{16b} as well as in the synthesis of disulfides,^{16c} α -chloro aryl ketones,^{16d} and oxadiazoles.^{16e} Particularly, for the PANI-g-C₃N₄-TiO₂ ternary composite, the addition of PANI greatly enhanced its catalytic activity and stability since PANI has high absorption coefficients in the visible-light range and good electrical conductivity. Moreover, PANI is a good electron donor and hole conductor upon photoexcitation.

To further expand their applications in photocatalyzed organic transformations, we herein report a PANI-g-C₃N₄-TiO₂ composite catalyzed synthesis of unsymmetrical ureas via the oxidative decarboxylation of oxamic acids under visible light (Scheme 1).

Scheme 1. PANI-g-C₃N₄-TiO₂ composite-catalyzed synthesis of ureas.

The PANI-g-C₃N₄-TiO₂ composite was prepared according to our previous report (see ESI for details).^{16b,d,e} With the catalyst in hand, we began to explored its photocatalytic synthesis using 2-oxo-2activity towards urea (phenylamino)acetic acid (1a) and benzylamine (2a) as the model substrates (Table 1).

Initially, a photocatalyst and an oxidant were utilized in order to achieve the radical decarboxylation of oxamic acid (1a).^{17,18} The reaction was carried out in the presence of 1a (1 equiv.), PANI(20%)-g-C₃N₄-TiO₂ (30 mg) and benziodoxole acetate (BI-OAc, 1.5 equiv.) in DCE (1,2-dichloroethane) at room temperature. After irradiation with a 14 W compact fluorescent lamps (CFL) for 24 h, Et₃N (3 equiv.) was added followed by the addition of benzylamine 2a (0.5 equiv.). The mixture was further stirred for 6 h, and a 35% yield of the desired product **3a** was obtained (Table 1, entry 1). Encouraged by this result, different parameters were investigated in detail. It was found that the loading of PANI significantly affected the catalytic activity (Entries 1-4). The composite with 40 wt% of PANI gave the best result (75%, entry 2), which might be attributed to the fact that the addition of PANI can promote the absorption of visible light as well as the seperation of the electron-hole pairs. Moreover, among these PANI-g-C₃N₄-TiO₂ composites, the one with 40 wt% of PANI had the largest surface area (128 m² g⁻¹, see ESI). The oxidants were then examined. Switching from BI-OAc to K₂S₂O₈ and (NH₄)₂S₂O₈ afforded poor yields (Entries 5 and 6), presumably due to their low solubilities in DCE. Reactions using (NH₄)₂S₂O₈ in DCE/H₂O and DMSO/H₂O provided poor yields of the desired product (Entries 7 and 8). A 62% yield of 3a was obtained when BI-OH was used, likely due to the poorer leaving group ability of OH compared with OAc. Other solvents were also surveyed (Entries 9-15). A comparable yield was obtained when the reaction was performed in dichloromethane, while the reactions in THF, 1,4-dioxane, acetonitrile, DMF and DMSO gave much lower yields. Different semiconductor photocatalysts were then evaluated (Entries 16-19). No reaction was observed in the presence of either PANI or TiO2. When g-C3N4 was employed as the catalyst, a 22% yield of 3a was obtained. The use of g-C₃N₄-TiO₂ provided the desired product in a comparable yield (25%).

PANI-g-C₃N₄. These results indicated that a synergistic effect may exist in the ternary composite. The addition of both PANI and g-C₃N₄ could enhance the visible light absorption and electron-hole separation, thereby improving the photocatalytic activity. Control experiments also showed that no reaction occurred in the absence of either a photocatalyst or an oxidant (Entries 20 and 21). Finally, visible light was necessary for this reaction and 30 mg catalyst was sufficient (Entry 22).

Table 1. Optimization of the reaction conditions.^a

Í	O photo oxida	photocatalyst oxidant, 24 h			
	N COOH H then Et ₃ N, benz Visible ligh	then Et ₃ N, benzylamine (2a), 6 h visible light, solvent, rt		N N H H 3a	
				Vield	
Entry	Catalyst	Oxidant	Solvent	3a (%) ^b	
1	PANI(20%)-g-C ₃ N ₄ -TiO ₂	BI-OAc	DCE	35	
2	PANI(40%)-g-C ₃ N ₄ -TiO ₂	BI-OAc	DCE	75	
3	PANI(60%)-g-C ₃ N ₄ -TiO ₂	BI-OAc	DCE	64	
4	PANI(80%)-g-C ₃ N ₄ -TiO ₂	BI-OAc	DCE	60	
5	PANI(40%)-g-C ₃ N ₄ -TiO ₂	$K_2S_2O_8$	DCE	<5	
6	PANI(40%)-g-C ₃ N ₄ -TiO ₂	$(NH_4)_2S_2O_8$	DCE	17	
7	PANI(40%)-g-C ₃ N ₄ -TiO ₂	$(NH_4)_2S_2O_8$	DCE /H ₂ O ^c	25	
8	PANI(40%)-g-C ₃ N ₄ -TiO ₂	$(NH_4)_2S_2O_8$	DMSO /H ₂ O ^c	14	
9	PANI(40%)-g-C ₃ N ₄ -TiO ₂	BI-OH	DCE	62	
10	PANI(40%)-g-C ₃ N ₄ -TiO ₂	BI-OAc	CH_2Cl_2	70	
11	PANI(40%)-g-C ₃ N ₄ -TiO ₂	BI-OAc	THF	40	
12	PANI(40%)-g-C ₃ N ₄ -TiO ₂	BI-OAc	1,4- Dioxane	36	
13	PANI(40%)-g-C ₃ N ₄ -TiO ₂	BI-OAc	MeCN	37	
14	PANI(40%)-g-C ₃ N ₄ -TiO ₂	BI-OAc	DMF	15	
15	PANI(40%)-g-C ₃ N ₄ -TiO ₂	BI-OAc	DMSO	11	
16	PANI or TiO ₂ (Anatase)	BI-OAc	DCE	0	
17	g-C ₃ N ₄	BI-OAc	DCE	22	
18	$g-C_3N_4-TiO_2$	BI-OAc	DCE	25	
19	PANI(40%)-g-C ₃ N ₄	BI-OAc	DCE	42	
20	_	BI-OAc	DCE	0	
21	PANI(40%)-g-C ₃ N ₄ -TiO ₂	-	DCE	0	
22	PANI(40%)-g-C ₃ N ₄ -TiO ₂	BI-OAc	DCE	0 ^d , 67, ^e 75 ^f	

^a Reagents and conditions: 1a (0.2 mmol, 1 equiv.), oxidant (0.3 mmol, 1.5 equiv.), catalyst (30 mg), solvent (2 mL), room temperature, irradiation with a 14W CFL for 24 h; then Et₃N (3 equiv.), benzyl amine 2a (0.1 mmol, 0.5 equiv.), 6 h. bIsolated yield based on 2a. c1:1 mixture. dReaction without light. e20 mg catalyst was used. f40 mg catalyst was used.

The substrate scope of the developed method was then investigated and the results are summarized in Figure 1.19 proceeded smoothly under the standard reaction conditions, affording the desired products in moderate to good yields. Initially, the synthesis of aryl/alkyl ureas were evaluated. A series of aliphatic amines including benzylamine, cyclohexylamine, *n*-hexylamine, furan-2-ylmethanamine and thiophen-2-ylmethanamine reacted with oxamic acid **1a** to give the desired products **3a-3e** in 67-77% yield. Different aryl oxamic acids bearing functional groups such as alkyl, halo and nitro (**1f-1l**) also showed good reactivities, affording the corresponding products in moderate to good yields (**3f-3l**, 43-76%). The developed protocol was also suitable for the synthesis of aryl/aryl ureas, albeit in relatively lower yields (**3m-3u**).

Figure 1. Reagents and conditions: 1 (0.2 mmol, 1 equiv.), BI-OAc (0.3 mmol, 1.5 equiv.), PANI(40%)-g-C₃N₄-TiO₂ (30 mg), DCE (2 mL), room temperature, irradiation with a 14W CFL for 24 h; then Et₃N (3 equiv.), amine 2 (0.1 mmol, 0.5 equiv.), 6 h. Isolated yield.

Importantly, the heterogeneous photocatalyst can be readily recovered and reused. A slight decrease in the catalytic activity was observed after five consecutive runs for the model reaction (75%, 75%, 73%, 71% and 70%, respectively).

To gain more detailed information about the reaction, some control experiments were then performed (Scheme 2). It was found that no desired product **3a** was obtained when 3 equiv. of the radical scavenger, 2,2,6,6-tetramethylpiperidine *N*-oxide (TEMPO) was added (Scheme 2, a). This result suggested that a radical reaction pathway might be involved in this process. Previously, Chen and co-workers reported a hypervalent-iodine-enabled radical decarboxylative alkenylation reaction under visible light.²⁰ They proposed that the benziodoxole vinyl carboxylic acid complex, as the key intermediate, was generated *in situ* from vinyl carboxylic acid and BI-OAc. The key intermediate was also isolated and confirmed. Similarly, Landais and co-workers also observed the formation of a

we were unable to isolate the benziodoxole–oxamic acid complex 4 in our reaction (Scheme 2, b). Instead, when the reaction was performed under the standard reaction conditions for 24 h, the addition of ethanol provided compund 5 in 75% yield (Scheme 2, c). This result might support the presence of the cationic species (RNHC⁺=O).

Scheme 2. Control experiments.

On the basis of above results and related literature,^{17,21} a plausible mechanism is proposed in Figure 2. Initially, the PANI-g-C₃N₄-TiO₂ composite absorbs photons and excites the electrons (e^{-}) and holes (h^{+}) under visible light. Meanwhile, oxamic acid 1 reacts with BI-OAc to form intermediate I, which abstracts an electron to generate radical-anion II. Then carbamoyl radical III and *o*-iodobenzoic acid anion form *via* the decarboxylation of radical-anion II. Afterwards, the carbamoyl radical III is oxidized by the holes (h^{+}) to give the corresponding protonated isocyanate IV. Finally, intermediate IV is attacked by amines 2 to deliver the corresponding ureas 3.

Figure 2. Proposed mechanism.

In summary, a PANI-g- C_3N_4 -TiO₂ composite was prepared and employed as an efficient heterogeneous photocatalyst in the synthesis of unsymmetrical ureas under visible light. The carbamoyl radicals were generated from oxamic acids in the presence of a hypervalent iodine reagent and the PANI-g- C_3N_4 -TiO₂ composite under visible light irradiation. The isocyanates, which were then trapped by amines to afford the corresponding products in moderate to good yields. This protocol avoided the direct use of environmentally unfriendly isocyanates. A broad scope of substrates were compatible with the reaction conditions and provided the desired products in moderate to good yields. Control experiments suggested that a radical pathway was involved in the reaction. Moreover, the photocatalyst could be readily recovered by simple filtration and reused for several runs with slight decrease in the catalytic activity.

Acknowledgments

We gratefully acknowledge financial support from the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX19_1742), China Postdoctoral Science Foundation (2018M632289), Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (BM2012110) and Jiangsu Key Laboratory of Biomass Energy and Material (JSBEM201806).

References and notes

- (a) Santella, J.B.; Gardner, D.S.; Duncia, J.V.; Wu, H.; 1 Dhar, M.; Cavallaro, C.; Tebben, A.J.; Carter, P.H.; Barrish, J.C.; Yarde, M.; Briceno, S.W.; Cvijic, M.E.; Grafstrom, R. R.; Liu, R.; Patel, S.R.; Watson, A.J.; Yang, G.; Rose, A.V.; Vickery, R.D.; Caceres-Cortes, J.; Caporuscio, C.; Camac, D.M.; Khan, J.A.; An, Y.; Foster, W.R.; Davies, P.; Hynes, J. J. Med. Chem. 2014, 57, 7550. (b) Ghiron, C.; Haydar, S.N.; Aschmies, S.; Bothmann, H.; Castaldo, C.; Cocconcelli, G.; Comery, T.A.; Di, L.; Dunlop, J.; Lock, T.; Kramer, A.; Kowal, D.; Jow, F.; Grauer, S.; Harrison, B.; Rosa, S.L.; Maccari, L.; Marquis, K.L.; Micco, I.; Nencini, A.; Quinn, J.; Robichaud, A.J.; Roncarati, R.; Scali, C.; Terstappen, G.C.; Turlizzi, E.; Valacchi, M.; Varrone, M.; Zanaletti, R.; Zanelli, U. J. Med. Chem. 2010, 53, 4379. (c) Millan, D.S.; Bunnage, M.E.; Burrows, J.L.; Butcher, K.J.; Dodd, P.G.; Evans, T.J.; Fairman, D.A.; Hughes, S.J.; Kilty, I.C.; Lemaitre, A.; Lewthwaite, R.A.; Mahnke, A.; Mathias, J.P.; Philip, J.; Smith, R.T.; Stefaniak, M.H.; Yeadon, M.; Phillips, C. J. Med. Chem. 2011, 54, 7797. (d) Guan, A.; Liu, C.; Yang, X.; Dekeyser, M. Chem. Rev. 2014, 114, 7079. (e) Jung, J.S.; Kang, K.W.; Kim, J.; Hong, S.C.; Park, Y.; Kim, B.S. Stem Cells Dev. 2016, 25, 1006.
- 2 Amendola, V.; Fabbrizzi, L.; Mosca, L. Chem. Soc. Rev. 2010, 39, 3889.
- (a) Doyle, A.G.; Jacobsen, E.N. Chem. Rev. 2007, 107, 5713. (b) Yu, X.; Wang, W. Chem. Asian J. 2008, 3, 516. (c) Zhang, Z.; Schreiner, P.R. Chem. Soc. Rev. 2009, 38, 1187. (d) Xu, H.; Zuend, S.J.; Woll, M.G.; Tao, Y.; Jacobsen, E.N. Science 2010, 327, 986. (e) Veitch, G.E.; Jacobsen, E.N. Angew. Chem. Int. Ed. 2010, 49, 7332. (f) Howlader, P.; Das, P.; Zangrando, E.; Mukherjee, P.S. J. Am. Chem. Soc. 2016, 138, 1668. (g) Bulfield, D.; Huber, S.M. Chem. Eur. J. 2016, 22, 14434. (h) Lin, B.; Waymouth, R.M. J. Am. Chem. Soc. 2017, 139, 1645.
- 4 (a) Slocombe, R.J.; Hardy, E.E.; Saunders, J.H.; Jenkins,
 R.L. J. Am. Chem. Soc. 1950, 72, 1888. (b) Eckert, H.;
 Forster, B. Angew. Chem. Int. Ed. 1987, 26, 894.
- (a) Banthorpe, D.V. Rearrangements involving azido groups. In The Chemistry of the Azido Group; Patai, S., Ed; Wiley: New York, 1971; pp 397. (b) Yagodkin, A.;

- 66, 2210.
 Kotecki, B.J.; Fernando, D.P.; Haight, A.R.; Lukin, K.A. Org. Lett. 2009, 11, 947.
- 7 Vinogradova, E.V.; Fors, B.P.; Buchwald, S.L. J. Am. Chem. Soc. 2012, 134, 11132.
- 8 Li, F.; Sun, C.; Shan, H.; Zou, X.; Xie, J. ChemCatChem 2013, 5, 1543.
- 9 Kim, S.H.; Hong, S.H. Org. Lett. 2016, 18, 212.
- (a) Mancuso, R.; Raut, D.S.; Della Ca', N.; Fini, F.; Carfagna, C.; Gabriele, B. *ChemSusChem* 2015, *8*, 2204.
 (b) Gabriele, B.; Veltri, L.; Mancuso, R.; Salerno, G.; Maggi, S.; Aresta, B.M. *J. Org. Chem.* 2012, *77*, 4005.
 (c) Orejón, A.; Masdeu-Bultó, A.M.; Salagre, P.; Castillón, S.; Claver, C.; Padilla, A.; Almena, B.; Serrano, F.L. *Ind. Eng. Chem. Res.* 2008, *47*, 8032. (d) Zhu, B.; Angelici, R.J. *J. Am. Chem. Soc.* 2006, *128*, 14460.
- 11 Zhao, J.; Li, Z.; Yan, S.; Xu, S.; Wang, M.-A.; Fu, B.; Zhang, Z. Org. Lett. 2016, 18, 1736.
- 12 Chen, B.; Peng, J.; Ying, J.; Qi, X.; Wu, X. Adv. Synth. Catal. 2018, 360, 2820.
- 13 Wang, L.; Wang, H.; Li, G.; Min, S.; Xiang, F.; Liu, S.; Zheng, W. Adv. Synth. Catal. 2018, 360, 4585.
- 14 (a) Yoon, T.P.; Ischay, M.A.; Du, J. Nat. Chem. 2010, 2, 527. (b) Narayanam, J.M.R.; Stephenson, C.R.J. Chem. Soc. Rev. 2011, 40, 102. (c) Ye, Y.; Sanford, M.S. J. Am. Chem. Soc. 2012, 134, 9034. (d) Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687. (e) Prier, C.K.; Rankic, D.A.; MacMillan, D.W.C. Chem. Rev. 2013, 113, 5322. (f) Beatty, J.W.; Stephenson, C.R.J. Acc. Chem. Res. 2015, 48, 1474. (g) Chen, J.; Hu, X.; Lu, L.; Xiao, W. Chem. Soc. Rev. 2016, 45, 2044. (h) Lang, X.; Zhao, J.; Chen, X. Chem. Soc. Rev. 2016, 45, 3026. (i) Corrigan, N.; Shanmugam, S.; Xu, J.; Boyer, C. Chem. Soc. Rev. 2016, 45, 6165. (j) Levin, M.D.; Kim, S.; Toste, F.D. ACS Cent. Sci. 2016, 2, 293. (k) Kim, S.; Rojas-Martin, J.; Toste, F.D. Chem. Sci. 2016, 7, 85. (1) Xie, J.; Jin, H.; Hashmi, A.S.K. Chem. Soc. Rev. 2017, 46, 5193. (m) Liu, W.; Li, C.-J. Synlett 2017, 28, 2714. (n) Malacarne, M.; Protti, S.; Fagnoni, M. Adv. Synth. Catal. 2017, 359, 3826.
- (a) Mao, L.; Cong, H. ChemSusChem 2017, 10, 4461. (b)
 Ren, L.; Yang, M.; Tung, C.; Wu, L.; Cong, H. ACS Catal. 2017, 7, 8134.
- (a) Wang, L.; Wang, C.; Liu, W.; Chen, Q.; He, M. *Tetrahedron Lett.* 2016, 57, 1771. (b) Wang, L.; Shen, J.; Yang, S.; Liu, W.; Chen, Q.; He, M. *Green Chem.* 2018, 20, 1290. (c) Liu, W.; Wang, C.; Huang, Y.; Chen, Q.; Wang, L.; He, M. *Synth. Commun.* 2016, 46, 1268. (d) Liu, W.; Wang, C.; Wang, L. *Ind. Eng. Chem. Res.* 2017, 56, 6114. (e) Wang, L.; Wang, Y.; Chen, Q.; He, M. *Tetrahedron Lett.* 2018, 59, 1489.
- 17 Pawar, G.G.; Robert, F.; Grau, E.; Cramail, H.; Landais, Y. Chem. Commun. 2018, 54, 9337.
- Petersen, W.F.; Taylor, R.J.K.; Donald, J.R. Org. Lett. 2017, 19, 874.
- 19 General procedure for the synthesis of ureas and reuse of the catalyst: A sealed tube equipped with a magnetic stirrer bar was charged with oxamic acid 1 (0.2 mmol, 1 equiv.), BI-OAc (0.3 mmol, 1.5 equiv.), PANI(40%)-g- C_3N_4 -TiO₂ (30 mg), DCE (2 mL). The reaction mixture was then irradiated with a 14W CFL and stirred at room temperature (25 °C) for 24 h. The distance of the reaction vial from the light was approximately 5 centimeters. After reaction completion, the light was switched off and Et₃N (3 equiv.) was added to the

for 5 min. The amine 2 (0.1 mmol, 0.5 equiv.) was then added and the reaction mixture stirred for 6 h. Then the mixture was diluted with EtOAc (10 mL) and H₂O (5 mL), and the solid catalyst was recovered by centrifugation and filtration. The aqueous phase was extracted with EtOAc (5 mL \times 3). The collected organic extracts were dried over Na₂SO₄, filtered and evaporated to dryness. The crude material was purified by flash chromatography on silica gel using a mixture of PE/EA to give the pure product **3**. The recovered catalyst was then washed with ethanol and deionized water, dried under vacuum, and reused for the next run.

- 20 Huang, H.; Jia, K.; Chen, Y. Angew. Chem. Int. Ed. 2015, 54, 1881.
- 21 Bai, Q.-F.; Jin, C.; He, J.-Y.; Feng, G. Org. Lett. 2018, 20, 2172.

Highlights

- PANI-g-C₃N₄-TiO₂ composite-catalyzed the radical synthesis of unsymmetrical ureas under visible light is described.
- The semiconductor composite is readily prepared and cost-effective;
- The reaction conditions are mild, green, and the yields are satisfactory.
- The catalyst shows good stability and photocatalytic performance, and can be reused for several runs.

Conflict of interest statement

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Graphical Abstract

Photocatalyzed synthesis of unsymmetrical ureas via the oxidative decarboxylation of oxamic acids with PANI-g- C_3N_4 -TiO₂ composite under visible light

Liang Wang,^{a,b,*} Hao Wang,^b Yaoyao Wang,^b Minggui Shen^{b,c} and Shubai Li^{a,*}

Changzhou Vocational Institute of Engineering, Changzhou 213164, P. R. China

^b School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China

^c Institute of Chemical Industry of Forest Products, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210037, China

E-mail: lwcczu@126.com and sbli@czie.edu.cn

Synthesis of unsymmetrical ureas via photocatalyzed the oxidative decarboxylation of oxamic acids has been developed.