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Abstract: A copper-catalyzed cross-coupling reaction of alkynes
with aryl iodides is described. The system tolerates a broad range of
functional groups and enables the sterically demanding substrates
presented during the catalysis with only 5–10 mol% of Cu2O as the
catalyst.
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Functional alkynes and enynes are important compounds
in organic synthesis1,2 and organic materials.3 The Sono-
gashira cross-coupling reaction employs a catalytic com-
bination of palladium and copper salts as the most popular
method for preparing such internal alkynes by reaction of
aryl and vinyl halides with terminal alkynes.1–4 Recently,
copper has been used as a sole metal source in combina-
tion with appropriate ligands for the Sonogashira-type re-
action owing to the low cost of the copper salts.5–14

Ligands such as Ph3P,5–7 N,N-dimethylglycine,8 ethylene-
diamine,9 1,4-diazabicyclo[2.2.2]octane,10 pyrimidine,11

1,3-diphenylpropane-1,3-dione,12 N,N-dimethylethylene-
diamine,13 and others14 have been reported. Some ligands,
however, are expensive and require time-consuming syn-
theses. Mao reported the ligand-free iron–copper co-cata-
lyzed coupling reaction of terminal alkynes with aryl
iodides,15 however, the scope of this system is limited to
aryl alkynes. Furthermore, this catalytic system requires
30 mol% of Fe(acac)3 and 10 mol% of CuI. Rothenberg et
al. revealed that the copper clusters are active species for
promoting the Sonogashira-type reaction, however, only
phenylacetylene was involved in their system.16 Biffis re-
ported that CuO on alumina could be used as a catalyst for
the same purpose, however, low yields were observed for
alkyl alkynes.17 Recently, Yuan et al. reported that CuO
nanoparticles can also catalyze the coupling of alkynes
with aryl iodides; however, the reactions were carried out
at 160 °C, and only one alkyl alkyne was explored in this
protocol.18 Although in 2010, Novák and coworkers re-
ported that trace amount of palladium is a key for the cop-
per-catalyzed Sonogashira reaction.19 Bolm et al. have
demonstrated that the [Cu(DMEDA)2]Cl2–H2O complex
can serve as a catalyst in combination of Cs2CO3 as a base
in dioxane in this area. They have proposed the mecha-
nism for the copper-catalyzed Sonogashira reaction. Im-

portantly, the purity of reagents and copper sources have
also been examined by ICP-MS technique in this report
(with 4 ppb of palladium).20 Very recently, Mao and co-
workers have also reported that [Cu(acac)2]–H2O is an ac-
tive catalyst for the same propose. All reagents including
[Cu(acac)2]–H2O, aryl halides, alkynes, K2CO3, and
DMSO have been measured by ICP-MS, and no palladi-
um was detected.20 These results strongly suggest that
copper can serve as the sole metal for the coupling of al-
kynes with aryl halides without palladium. Notably, the li-
gand is important in Bolm and Mao’s systems.20,21 Thus,
it is desirable to develop a simpler system which employs
copper as a catalyst in the absence of ligand. As part of our
ongoing interests in this area,22 herein we report that com-
mercially available Cu2O can be utilized as a catalyst for
the copper-catalyzed cross-coupling reaction of aryl io-
dides and vinyl halides with alkynes in the absence of ad-
ditional ligand. This system shows good functional-group
compatibility with unprotected amines, bromo, chloro,
and heterocyclic groups. Moreover, di-ortho-substituted
aryl iodides with sterically demanding groups also work
with alkynes, giving the corresponding internal alkynes in
good yields.

Initially, phenylacetylene (1a) and iodobenzene (2a) were
chosen as the substrates to determine the optimal reaction
conditions. The results are summarized in Table 1. To our
delight, a 94% isolated yield was obtained when the reac-
tion was carried out by using 5 mol% of Cu2O as a
catalyst23 and Cs2CO3 as a base in DMF under ligand-free
conditions (Table 1, entry 1). A lower yield was observed
when the catalyst was decreased to 1.5 mol% (Table 1, en-
try 2). The control experiment showed that no product was
formed when the reaction was performed without catalyst
(Table 1, entry 3). Copper salts including CuI, CuO,
CuCl2, CuBr, and Cu(OAc)2 (Table 1, entries 4–8, respec-
tively) were tested, but Cu2O was the best choice. Other
bases (Table 1, entries 9–12) such as Na2CO3, K2CO3,
K3PO4, and KOt-Bu could not provide satisfying results.
The study of solvent effect (Table 1, entries 13–17) re-
vealed that NMP is also suitable for this transformation;
other solvents did not show good results. It was recog-
nized that no product was obtained when the reactions
were conducted under shorter reaction times (Table 1, en-
try 18) and lower temperatures (Table 1, entry 19).

We then explored the scope of this catalytic system to a
variety of aryl alkynes and aryl iodides. As demonstrated
in Table 2,24 aryl alkynes bearing heterocyclic groups or
unprotected amine and trifluoromethyl groups were cou-
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pled smoothly with many aryl iodides, giving the internal
alkynes in good to excellent yields. Notably, functional
groups including unprotected amine (Table 2, entries 2
and 12), bromo (Table 2, entries 5 and 9), chloro (Table 2,
entry 8), thiophene (Table 2, entry 11), and pyridine moi-
ety (Table 2, entry 14) are tolerated under the reaction
conditions employed. Moreover, the sterically demanding
di-ortho-substituted aryl iodide, for example, 2-ethyl-6-
methyliodobenzene was smoothly coupled with phenyl-
acetylene to give 3h in 93% yield (Table 2, entry 7).

A low product yield was obtained when the above reac-
tion conditions (5.0 mol% of catalyst) were applied to al-
kyl alkynes. However, satisfactory results can be achieved
when the catalyst loading was increased from 5–10 mol%.
The results are listed in Table 3: Alkyl alkynes 4 reacted

Table 1  Optimization of Copper-Catalyzed Coupling of Phenylacet-
ylene with Iodobenzenea

Entry [Cu] Base Solvent Yield (%)

1 Cu2O Cs2CO3 DMF 94

2 Cu2O Cs2CO3 DMF 80b

3 – Cs2CO3 DMF –c

4 CuI Cs2CO3 DMF 80

5 CuO Cs2CO3 DMF 31

6 CuCl2 Cs2CO3 DMF 72

7 CuBr Cs2CO3 DMF 84

8 Cu(OAc)2 Cs2CO3 DMF 73

9 Cu2O Na2CO3 DMF 58

10 Cu2O K2CO3 DMF 45

11 Cu2O K3PO4 DMF 67

12 Cu2O KOt-Bu DMF –

13 Cu2O Cs2CO3 NMP 83

14 Cu2O Cs2CO3 DMSO 81

15 Cu2O Cs2CO3 dioxane 38

16 Cu2O Cs2CO3 DME 70

17 Cu2O Cs2CO3 DEF 92

18 Cu2O Cs2CO3 DMF –d

19 Cu2O Cs2CO3 DMF –e

a Reaction conditions unless otherwise stated: Cu2O (0.05 mmol, 5.0 
mol%), phenylacetylene (1.5 mmol), iodobenzene (1.0 mmol), base 
(2.0 mmol) in solvent (0.5 mL).
b Cu2O: 1.5 mol%.
c No catalyst.
d Reaction time: 12 h. 
e Reaction temperature: 120 °C.

base, solvent
135 °C, 24 h

Cu2O (5 mol%)

1a 3a

HPh Ph I

2a

+ PhPh

Table 2  Cu2O-Catalyzed Cross-Coupling Reaction of Aryl Alkynes 
with Aryl Iodidesa

Entry Ar1 Ar2 Product 3 Yield (%)

1 Ph 4-MeC6H4I 3b 94

2 Ph 4-H2NC6H4I 3c 86

3 Ph 4-MeOC6H4I 3d 88

4 Ph 2-MeOC6H4I 3e 64

5 Ph 2-BrC6H4I 3f 81

6 Ph 2-MeC6H4I 3g 92

7 Ph 2-Et-6-MeC6H3I 3h 93

8 Ph 4-ClC6H4I 3i 93

9 Ph 4-BrC6H4I 3j 82

10 Ph (2,4,6-trimethyl)C6H2I 3k 85

11 3-thiophene PhI 3l 71

12 3-H2NC6H4 PhI 3m 59

13 4-F3CC6H4 PhI 3n 70

14 Ph 3-iodopyridine 3o 75

a Reaction conditions unless otherwise stated: Cu2O (0.05 mmol, 
5 mol%), aryl alkyne (1.5 mmol), aryl iodide (1.0 mmol), Cs2CO3 
(2.0 mmol) in DMF (0.5 mL).

Cs2CO3, DMF
135 °C, 24 h

Cu2O (5 mol%)

1 3

HAr1 Ar2 I

2

+ Ar2Ar1

Table 3  Cu2O-Catalyzed Cross-Coupling Reaction of Alkyl Al-
kynes with Aryl Iodidesa

Entry R Ar Product 5 Yield (%)

1 n-C4H9 PhI 5a 74

2 n-C4H9 4-MeOC6H4I 5b 56

3 n-C4H9 4-BrC6H4I 5c 67

4 n-C4H9 4-MeC6H4I 5d 63

5 n-C4H9 2-iodopyridine 5e 43b

6 n-C4H9 2-MeC6H4I 5f 65c

7 n-C4H9 4-ClC6H4I 5g 48b

8 n-C8H17 PhI 5h 52

9 n-C8H17 4-MeOC6H4I 5i 47b

10 n-C8H17 2-MeC6H4I 5j 83b

a Conditions unless otherwise stated: Cu2O (0.10 mmol, 10 mol%), al-
kyl alkyne (1.5 mmol), aryl iodide (1.0 mmol), Cs2CO3 (2.0 mmol) in 
DMF (0.5 mL).
b Reaction time: 48 h.
c Reaction time: 30 h.

Cs2CO3, DMF
135 °C, 24 h

Cu2O (10 mol%)

4 5

HR Ar I

2

+ ArR
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with a variety of aryl iodides to afford the corresponding
alkynes in moderate to good yields.

This catalytic system is also applicable to the synthesis of
enynes, and the results are summarized in Table 4. Alkyl
vinyl iodides were reacted with alkyl and aryl alkynes to
provide enynes in good to excellent yields in the presence

of 5–10 mol% of Cu2O (Table 4, entries 1–11). Interest-
ingly, phenylacetylene was worked with bromostyrene to
obtain the product 7m in 67% yield (Table 4, entry 13).
However, the alkyl vinyl bromide did not couple with al-
kyl and aryl alkynes in the present system.

Table 4  Cu2O-Catalyzed Cross-Coupling Reaction of Alkynes with Vinyl Iodides and Bromidea 

Entry 1 6 Product 7 Yield (%)

1 n-C4H9C≡CH

6a

7a

63

2 n-C8H17C≡CH 6a

7b

64

3 6a

7c

85

4 6a

7d

51

5 6a

7e

88

6 6a

7f

53

7 6a

7g

58

8 6a

7h

81

+
Cu2O (5–10 mol%)

1 6

R2

7

X

R1

R1

R2

Cs2CO3, DMF
135 °C, 12–24 h

.

t-Bu

I

n-C4H9
t-Bu

n-C8H17
t-Bu

t-Bu

Me

t-Bu

Me

F3C
F3C

t-Bu

S
S

t-Bu

NH2

t-Bu

NH2

t-Bu
t-Bu

t-Bu
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In conclusion, we report that the commercially available
Cu2O is an active catalyst for the coupling of terminal al-
kynes with aryl iodides, vinyl iodides, and bromide with-
out the necessity of additional ligand. A variety of
functional groups such as unprotected amines, chloro,
bromo, and heterocycles were tolerated by the reaction
conditions. Moreover, highly sterically demanding sub-
strates, for example, 2-ethyl-6-methyliodobenzene could
be coupled with alkyne to provide the corresponding
alkyne in good yield.
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7.54–7.57 (m, 2 H) ppm. 13C NMR (100 MHz, CDCl3): 
δ = 55.7, 85.7, 93.3, 110.6, 112.3, 120.4, 123.5, 128.0, 
128.2, 129.7, 131.5, 133.5, 159.9 ppm.

(25) Li, P.; Wang, L.; Li, H. Tetrahedron 2005, 61, 8633.
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