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Abstract: A new, convergent approach to the biaryl key intermedi-
ate of Schmidt’s biphenomycin B total synthesis has been accom-
plished via a palladacycle complex catalyzed Stille cross-coupling
of two o-tyrosine building blocks.
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The biphenomycins are a small family of cyclopeptide an-
tibiotics isolated from the culture broths of Streptomyces
filipinensis1 and S. griseorubiginosus2. Their key struc-
tural feature is a 15-membered macrocycle containing a
biaryl moiety (Figure 1). Among biphenomycins, biphe-
nomycin A (1a) is the most abundant. It has been shown
to exhibit high antibacterial activity both in vitro and in vi-
vo, especially against Gram-positive bacteria. These in-
clude serious pathogens such as Staphylococcus aureus,
Enterococcus faecalis or Streptococcus pneumoniae. Bi-
phenomycin B (1b), the simplest representative of this
family of cyclopeptide antibiotics, shows an in vitro anti-
microbial activity closely related to that of 1a. However,
its potential in vivo activities are still undetected, presum-
ably due to the paucity of material obtained from the nat-
ural source, which has precluded its further biological
evaluation. In view of their promising antibacterial pro-
files coupled with their intriguing structural features, bi-
phenomycins had attracted extensive synthetic studies3

culminating in the stereoselective total syntheses of bi-
phenomycin A (1a)4 and biphenomycin B (1b)5 by

Schmidt and co-workers. However, neither biphenomycin
derivatives nor close analogues thereof have been pre-
pared and biologically evaluated so far.

Figure 1

Therefore, we recently have been engaged with the devel-
opment of a new, convergent approach toward biphenom-
ycin B (1b)6 and related cyclopeptides 2 in general, that
would be readily adaptable to parallel synthesis of a di-
verse set of analogues with modified biaryl moiety. The
strategies of the total syntheses mentioned above are
largely consecutive, i.e. 11 linear steps for key intermedi-
ate 3 of Schmidt’s biphenomycin B total synthesis (vide
infra), and thus unfavourable to this end.

In our convergent strategy cyclopeptides 2 are separated
into a Nα-Boc amino acid 4 and key building block 3,
which is further subdivided into o-tyrosine derivatives 5
and 6 (Scheme 1). Subsequent segment coupling of these

Scheme 1 Retrosynthetic analysis of biphenomycin B analogues (2)
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fragments involving a Stille cross-coupling reaction and a
final macrolactamisation as key steps was envisioned to
give the desired macrocycles. Herein we report a short and
efficient asymmetric approach to o-tyrosine derivatives 5
and 6 as well as their subsequent cross-coupling to afford
key building block 3.

Building blocks 5 and 6 are both derived from (S)-2-ben-
zyloxy-5-iodophenylalanine (11). This novel α-amino
acid was synthesized following a diastereoselective path-
way based on Oppolzer’s camphor sultam as chiral auxil-
iary (Scheme 2). Thus successive treatment of chiral
glycine equivalent 77 with n-BuLi (THF, DMPU, –78 °C)
and benzylbromide building block 88 (–78 °C to r.t.) pro-
vided the alkylation product 9 in 84% yield and with high
diastereoselectivity (ds ≥ 98:2 as determined by 500 MHz
1H NMR).

Scheme 2 (a) (i) n-BuLi (1.05 equiv), THF, –78 °C; (ii) 7, DMPU,
–78 °C to r.t. (84%); (b) 0.01 M HCl, THF, 0 °C to r.t. (95%); (c)
LiOH (2.0 equiv), H2O2 (4.0 equiv), THF, 0 °C to r.t. (81%); (d)
Boc2O, dioxane, aq NaHCO3, r.t. (85%); (e) BnOH, EDCI, DMAP,
CH2Cl2, 0 °C to r.t. (75%)

Deprotection of 9 under mild acidic conditions (0.01 M
HCl, THF, 0 °C to r.t.) followed by lithium hydroperox-
ide-mediated cleavage of the chiral auxiliary (LiOH,
H2O2, THF, 0 °C to r.t.) gave enantiomerically pure (S)-2-
benzyloxy-5-iodophenylalanine (11)9–11 in 77% overall
yield. The chiral auxiliary could be recovered in 87%
yield. Starting from α-amino acid 11, building block 6
was readily obtained (64% overall yield) by introduction
of a Boc group (Boc2O, aq NaHCO3, dioxane, r.t.) and
subsequent esterification with benzyl alcohol (EDCl, cat.
DMAP, CH2Cl2, 0 °C to r.t.). In an analogous sequence
the N-Z protected amino acid 2-trimethylsilylethyl
(TMSE) ester 14 was prepared (Scheme 3). Thus, protec-
tion of the amino group (Z-ONSu, aq Na2CO3, DMF, r.t.)
and subsequent esterification (TMSCH2CH2OH, EDCl,

cat. DMAP, CH2Cl2, 0 °C to r.t.) gave 14 in 65% overall
yield.

Subsequently, aryl iodide 14 was converted to the corre-
sponding aryl stannanes 5a and 5b by treatment with ei-
ther hexamethylditin or hexabutylditin [R3SnSnR3, cat.
Pd(OAc)2, PPh3, toluene, 100 °C] according to Ortar et
al.12 However, whereas aryl trimethylstannane 5a could
be obtained in good yields (80%) the incorporation of the
tributylstannyl group proceeded unsatisfactory (41%
yield). Nevertheless preparation of 5b still could be im-
proved by stannylation according to a novel procedure re-
ported by Masuda et al.13 Thus treatment of 14 with
hexabutylditin in the presence of cat. PdCl2(PMePh2)2

(KOAc, NMP, r.t.) afforded 5b in 68% yield.

We next focused our attention on optimising reaction con-
ditions for the Stille cross-coupling of key building blocks
5 and 6. To this end, we studied the reaction of the closely
related model compounds 17 and 19, which are more
readily available than 5 and 6. 

Thus, both compounds 17 and 19 were prepared from
readily accessible 6-iodochroman-2-one (15)14 in three
and four steps respectively, as indicated in Scheme 4.

Stille cross-coupling of aryl iodide 19 with stannanes 17a
and 17b, respectively, to give biaryl 20 (Scheme 5) was
performed under several well-established reaction condi-
tions, as summarized in Table 1.

In situ generated Pd(AsPh3)4 (1 mol%) in the presence
of LiCl (3.0 equiv, NMP, 65 °C)15 or of cocatalytic CuI
(10 mol%, DMF, 65 °C)12 gave fair coupling yields (53–
60%), both with trimethylstannane 17a and tributylstan-
nane 17b (entries 1–4). Pd(dppf)Cl2 catalysed cross-cou-
pling of 17b and 19 in the presence of cocatalytic CuBr
(10 mol%), reaction conditions recently reported by Wil-
liams et al.,16 gave product 20 in a comparable yield
(49%) (entry 5). Appreciable amounts of biaryl 21 (8–
13%) and alkylarenes 22 (2–10%), which arise from com-

Scheme 3 (a) Z-ONSu, DMF, aq Na2CO3, r.t. (88%); (b)
TMSCH2CH2OH, EDC, DMAP, 0 °C to r.t. (74%); (c) Me3SnSnMe3

(1.4 equiv), Pd(OAc)2 (0.04 equiv), PPh3 (0.08 equiv), toluene, ∆
(80%); (d) Bu3SnSnBu3, cat. PdCl2(PMePh2)2, KOAc, NMP, r.t.
(68%); (e) 5b, 6, palladacycle-complex 23, LiCl, NMP, 90 °C (64%
from 6)
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petitive stannane homocoupling and alkyl group transfer
respectively, reactions that are frequently encountered
with Stille couplings,17 were isolated as the main side
products.18

A markedly improved yield of cross-coupling product 20
could be accomplished, employing palladacycle catalyst
23,19 which is not yet widely applied for Stille cross-cou-
pling reactions.20

Thus coupling of tributylstannane 17b with 19 [23 (5
mol%), LiCl (3.0 equiv), NMP, 90  C]20c proceeded
smoothly to give 20 in good yield (73%) (entry 7). Nota-
bly a distinct lower yield was observed for the coupling of
trimethylstannane 17a under analogous reaction condi-
tions (entry 6). Apparently, this is due to a differing extent
of alkyl group transfer occurring in either case (i.e. 9%
versus 24% of the respective alkylarene 22). Again, stan-
nane homocoupling product 21 was isolated as the other
main side product.

Finally, we applied these optimised reaction conditions to
the Stille cross-coupling of o-tyrosine building blocks 5b
and 6 (Scheme 3).21

Indeed, the key intermediate 3 of Schmidt’s biphenomy-
cin B (1b) total synthesis could be obtained in good yield
(64%) in addition to the respective stannane homocou-
pling and butyl transfer products (5% and 10% respective-

ly). The 1H NMR spectroscopic data of 3 are in full
accordance with those reported in the literature.5a Appar-
ently, neither racemisation during the preparation of
building blocks 5b and 6 nor epimerisation during their
Stille cross-coupling occurred to an appreciable extent,
since product 3 was attained as a single diastereomer [ds
> 98:2 as determined by 1H NMR (500 MHz) and HPLC
from the crude reaction product]. 

In conclusion we disclose an efficient convergent ap-
proach to the key intermediate of Schmidt’s biphenomy-
cin B total synthesis. Efforts to adapt this strategy for the
preparation of biphenomycin B analogues with modified
biaryl moiety are currently in progress in our laboratory.

Scheme 4 (a) NaOMe, MeOH, r.t.; (b) BnBr, K2CO3, acetone, ∆
(88% from 15); (c) Me3SnSnMe3, Pd(OAc)2, PPh3, toluene (83%);
(d) Bu3SnSnBu3, PdCl2(PMePh2)2, KOAc, NMP, r.t. (74%); (e) 16,
1M NaOH, MeOH, r.t. (83%); (f) diphenyl phosphorazidate, NEt3,
t-BuOH, toluene, ∆ (79%)

Scheme 5

Table 1 Reaction Conditions and Results for the Stille Coupling 
Outlined in Scheme 5

Entry R Conditions 20
Yield 
(%)a

21
Yield 
(%)b

22
Yield 
(%)c

1 Me Pd2dba3, AsPh3, 
CuI, DMF, 
65 °C, 14 h

56 13 2

2 Bu Pd2dba3, AsPh3, 
CuI, DMF, 
65 °C, 168 h

53 8 < 1

3 Me Pd2dba3, AsPh3, 
LiCl, NMP, 
65 °C, 14 h

55 10 10

4 Bu Pd2dba3, AsPh3, 
LiCl, NMP, 
65 °C, 168 h

60 8 9

5 Bu Pd(dppf)Cl2, 
MeCN, CuBr, 
80 °C, 168 h

49 11 < 1

6 Me Palladacycle 23, 
LiCl, NMP, 
90 °C, 14 h

56 13 24

7 Bu Palladacycle 23, 
LiCl, NMP, 
90 °C, 14 h

73 13 9

a Yield of isolated, purified product 20 based on 19.
b Yield of isolated, purified product 21 based on 17.
c Yield of isolated, purified product 22 based on 19.
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heptane–EtOAc, 85:15) to give 20.9 mg (64%) 3 as a 
colourless solid.
3: [α]D

20 = +10.3 (c = 0.95, CHCl3); lit.
5a: [α]D = +11.2. 1H 

NMR (500 MHz, CDCl3) δ = –0.03 [s, 9 H, Si(CH3)3], 0.85–
0.91 (m, 2 H, CH2CH2Si), 1.35 [s, 9 H, C(CH3)3], 3.06–3.14 
(m, 2 H, CHCH2), 3.18–3.26 (m, 2 H, CHCH2), 4.05–4.21 

(m, 2 H, CH2CH2Si), 4.56–4.67 (m, 2 H, CHCH2), 4.95–5.17 
(m, 8 H, OCH2Ph), 5.38 (d, 1 H, J = 7.8 Hz, NHBoc), 5.61 
(d, 1 H, J = 7.7 Hz, NHZ), 6.91 (d, 1 H, J = 8.6 Hz, Harom), 
6.94 (d, 1 H, J = 8.6 Hz, Harom), 7.19–7.38 (m, 20 H, Harom.), 
7.42–7.48 (m, 4 H, Harom).
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