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ABSTRACT: An efficient and general carbonylative procedure for
the synthesis of 3,4-dihydroquinazolin-2(1H)-one from 1-(hal-
omethyl)-2-nitrobenzenes and aryl/alkyl amines have been ex-
plored. In this approach, to avoid of using toxic CO gas, a solid and
stable CO precursor, TFBen (benzene-1,3,5-triyl triformate), was
utilized. With elemental selenium as the catalyst, a variety of aryl/
alkyl amines has been tolerated well to afford the corresponding 3,4-dihydroquinazolin-2(1H)-one products in moderate to
excellent yields under mild reaction condition.
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Q uinazolinones are a type of valuable structural scaffold
in natural, pharmaceutical, and agrochemical products.1

As a class of useful heterocycles, quinazolinones represent a
wide range of biological activities, including anticancer,
anticonvulsant, anti-inflammatory, antihypertensive, and diu-
retic properties.2 As a consequence, numerous synthetic
methods have been reported for the preparation of
quinazolinones.3,4 Typically, the strategies used in the synthesis
of quinazolinones mainly rely on the condensation of
anthranilic acid and its analogues with imidates or aldehydes.3

Over recent years, transition-metal-catalyzed procedures have
also emerged as effective alternatives.4 Although some of the
methods provide useful approaches for the construction of
quinazolinones, some drawbacks, such as high temperature,
multiple steps, long reaction times, and poor yields, are still
exist. Thus, the development of an efficient and general
strategy for the synthesis of quinazolinones is needed.
In recent decades, transition-metal-catalyzed carbonylation

reactions have attracted intensive interest from the synthetic
community for their wide application in the construction of
carbonyl-containing compounds and have drawn attention for
their applications in both academic and industrial fields.5 In
general, CO is used as one of the most important carbon
source in carbonylation reactions. However, gaseous CO is
toxic, flammable, and odorless and usually requires autoclave
equipment. Unfortunately, these properties restrict its
application in laboratory use. Thus, a variety of CO surrogates
were explored in recent years, such as metal carbonyl
complexes,6 paraformaldehyde,7 formic acid,8 formates,9

formamides,10 alcohol,11 CO2,
12 and others.13 On the other

hand, transition metals, including palladium, ruthenium,
rhodium, and iridium, have been commonly used in these
carbonylative transformations. Nevertheless, in addition to the

well-established noble metal systems, non-noble metal or
metal-free conditions could possibly be more preferred in
carbonylation reactions. Herein, we wish to report a selenium-
catalyzed carbonylation reaction for the synthesis of 3,4-
dihydroquinazolin-2(1H)-one derivatives with TFBen as the
CO source.
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Table 1. Screening of Reaction Conditionsa

entry base solvent time (h) yield (%)b

1 Et3N DMF 24 54
2 Et3N DMSO 24 trace
3 Et3N 1.4-dioxane 24 19
4 Et3N THF 24 40
5 Et3N toluene 24 4
6 Et3N DMF 28 71
7 DBU DMF 28 trace
8 DiPEA DMF 28 87
9 NaOH DMF 28 55
10 K2CO3 DMF 28 trace
11 KOtBu DMF 28 6

aReaction conditions: 1-(chloromethyl)-2-nitrobenzene (1.0 mmol),
aniline (1.5 mmol), Se (10 mol %), base (2.0 mmol), TFBen (1.5
mmol), and solvent (2 mL), 120 °C. bGC yield with dodecane as the
internal standard.
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Initially, 1-(chloromethyl)-2-nitrobenzene and aniline were
utilized as the model substrates, with selenium as the catalyst,
Et3N as the base, and TFBen as CO precursor in DMF at 120
°C for 24 h. To our delight, a 54% yield of the desired product
was obtained (Table 1, entry 1). We next studied the effect of
different solvents, including DMSO, 1,4-dioxane, THF, and
toluene (Table 1, entries 2−5), DMF was found to be the
optimal solvent. Because of the incomplete conversion of the
substrates, subsequently, the reaction time was prolonged, and
the yield of the target product increased to 71% (Table 1, entry
6). Moreover, various bases were investigated, such as DBU,
DiPEA, NaOH, K2CO3, and KO

tBu (Table 1, entries 7−11), it
is noteworthy an 87% yield of the target product was produced
with DiPEA as the base (Table 1, entry 8).
With the best reaction condition in hand, we next studied

the substrate scope with a variety of amines (Table 2). Aryl
amines with electron-donating group, such as methyl, ethyl,
isopropyl, tert-butyl, and trifluoromethoxy group, all afforded
the corresponding products in moderate to excellent yields
(Table 2, entries 1−9). Notably, those substrates with ortho-
and para-methyl groups resulted in higher yields than meta-
substitution, probably due to the electronic effects. Aryl amines
bearing halogen groups, including fluoro-, bromo-, and chloro-
formed groups also afford the desired products in moderate to
excellent yields (Table 2, entries 10−12). Moreover, the
influence of alkyl amines has also been studied. Substrates
bearing linear groups, such as propyl, butyl moieties, and
heptyl groups worked well to produce the target products in
moderate to good yields (Table 2, entries 13−15). Alkyl amine
with tert-butyl group could also gave the desired product in
good yield (Table 2, entry 16). Substrates containing cyclic
groups including cyclopentyl, cyclohexyl, and 1-adamdantyl
groups were investigated; the corresponding products were
generated in moderate to good yields (Table 2, entries 17−
19). Furthermore, 2-methoxyethan-1-amine could also afford
the desired product in very good yield (Table 2, entry 20). We
also tested 1-(bromomethyl)-2-nitrobenzenes with different
aryl/alkyl amines; the reactions were tolerated well to afford
the desired products in moderate to good yields (Table 2,
entries 21−25).
On the basis of the above results, a proposed reaction

mechanism is shown in Scheme 1. CO was initially generated
from TFBen promoted by a base, and then reacted with
selenium to afford carbonyl selenide (SeCO). At the same
time, 1-(halomethyl)-2-nitrobenzenes 1 reacted with aryl/alkyl
amines 2 to provide nitroanilines intermediate I, followed by a
deoxygenation with SeCO to give nitrene intermediates II.
Subsequently, isocyanate intermediate III was formed via the
reaction of nitrene intermediates II with Se/CO, followed by
an intramolecular nucleophilic addition to afford the final
product 3. The formation of CO2 was also confirmed by
bubbling the gas after the reaction into clear Ca(OH)2
solution.
In conclusion, an efficient and convenient carbonylation

reaction for the synthesis of 3,4-dihydroquinazolin-2(1H)-ones
have been established. Through a selenium-catalyzed carbon-
ylation reaction of 1-(halomethyl)-2-nitrobenzenes with aryl/
alkyl amines using TFBen as the CO source. A variety of 3,4-
dihydroquinazolin-2(1H)-one derivatives were generated in
moderate to high yields under mild reaction conditions with
good substrates toleration.

Table 2. Synthesis of 3,4-Dihydroquinazolin-2(1H)-onesa
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■ EXPERIMENTAL PROCEDURES
Selenium (10 mol %), TFBen (0.75 mmol; 2.25 mmol of CO),
and 1-(halomethyl)-2-nitrobenzenes (0.5 mmol) were added
to a 15 mL tube equipped with a magnetic stirrer, which was
then placed under vacuum and refilled with nitrogen three
times. Aryl/alkyl amines (0.75 mmol), DMF (2 mL) and
DiPEA (1.0 mmol) were added to the reaction tube; then, the
tube was sealed, and the mixture was stirred at 120 °C for 28 h.
After the reaction was completed, the mixture was filtered,
extracted with ethyl acetate and concentrated under vacuum.
The crude product was purified by column chromatography
(ethyl acetate/petroleum ether = 1/2) to afford the desired
product.
Caution: Because of the generation of CO gas from TFBen,

special attention should be paid and proper protection should be
given during the manipulation and workup process.
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Scheme 1. Plausible Reaction Mechanism
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