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ABSTRACT: The previously unknown S-spirocyclohexylisoi-
midazole has been made efficiently and simply by reaction of
ammonia, glyoxal hydrate, and cyclohexanone. It is a very
useful precursor for the diastereocontrolled synthesis of many
C,-symmetric 1,2-diamines, a class which is important for the
generation of a variety of C,-symmetric reagents and catalysts
for enantioselective synthesis.

e describe herein a new, stereocontrolled, short, and

widely applicable synthesis of C,-symmetric 1,2-
diamines. This diamine class represents one of the most
important structural subunits for numerous reagents and
catalysts that have advanced synthetic carbomolecular chem-
istry over the past three decades."” Since racemic C,-symmetric
amines are usually easily resolved as the salts with (+)- or
(—)-tartaric acid, our objective was to develop a method for the
synthesis of the racemic 1,2-diamines, free of contamination by
the meso diastereomers. This approach is time saving since
both enantiomers of the 1,2-diamine result from this process
and are available for applications after resolution.

The most widely used chiral C,-symmetric 1,2-diamines are
1,2-diphenyl-1,2-diaminoethane (DPEN)® and trans 1,2-dia-
minocyclohexane (DAC),* which have proven to be immensely
useful for enantioselective synthesis. The versatility of DPEN is
clear from its application to many enantioselective reactions,
including Diels—Alder,™ 1,2-dihydroxylation of olefins,™ syn-
or anti-aldol,* carbonyl a]lylation,3d Ireland—Claisen rearran-
gement,”*"® Darzens reaction,” f-lactam and f-amino acid
synthesis,” prostanoid synthesis,”* Jacobsen olefin epoxida-
tion,” Noyori carbonyl reduction.”™ and Fu C—C coupling,*™°
trans-1,2-Diaminocyclohexane has been especially useful for
enantioselective Horner—Wadsworth—Emmons reactions,%'b
Jacobsen olefin epoxidation,"! and Pd-catalyzed allyl coupling
reactions via the Trost bisphosphine ligand.*

One motivation for this research came from an initial interest
in synthesizing C,-symmetric 1,2-diamine derivatives in which
the electron density at nitrogen is greatly diminished. Such
compounds offer new possibilities as ligands for enantiose-
lective catalysis because of greatly attenuated electron density at
nitrogen. One of our objectives was a simple synthesis of
(£)-1,2-pentafluoroethyl-1,2-diaminoethane (PFEEN) (1). As
described below, that goal was readily achieved by the addition
of perfluoroethyllithium to the previously unknown cyclic bis-
imine 2, as shown in Scheme 1.

A practical synthesis of the previously unknown precursor 2
for this synthetic approach to vic-diamines could be developed
from inexpensive starting materials. The bis-imine 2 was
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Scheme 1. Projected Route to the Decafluoro Diamine 1
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formed in 90% yield simply by reaction of glyoxal trimer-2H,O,
cyclohexanone (3 equiv), and ammonium acetate (4 equiv) in
THF—anhydrous ammonia at 23 °C for 8 h, followed by
removal of solvents, extractive workup, and distillation (52 °C,
0.8 barr) as reported in detail in the Supporting Information.
Pure 2 is stable indefinitely when stored in a sealed container in
a—20 °C freezer. The conversion of the bis-imine 2 to the
fluorinated 1,2-diamine 3 was accomplished in 88% yield by the
following sequence of operations: (1) deprotonation of
pentafluoroethane in ether below —78 °C by slow addition of
precooled n-butyllithium to form the perfluoroethyllithium;>*
(2) gradual addition of the cold solution of C,FLi via cannula
to a stirred solution of 2 and BF;-Et,0 (2 equiv) in ether at
—78 °C; (3) gradual increase in the temperature of the reaction
mixture to —50 °C for 12 h; (4) addition of aqueous NaHCO,
solution, extractive isolation with ether, and flash chromatog-
raphy. The C,-symmetric (+)-1,2-diamine 3 was formed with
complete exclusion of the meso isomer as shown by 'H and *C
NMR analysis. As expected, the hydrolysis of the cyclo-
hexylidine diamine 3 required vigorous conditions: heating to
boiling with 6 N HCI and removal of a cyclohexanone—aq HCl
mixture by distillation. (+)-1,2-Perfluoroethyl-1,2-diamino-
ethane (PFEEN) was isolated by basification of the aqueous
acid, extraction with ether, and flash chromatography on neutral
alumina (86% yield). The stereochemistry of 1 was
demonstrated by conversion to the cyclic C,-symmetric aminal
with benzaldehyde (either with or without HOAc as catalyst)
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and separation of the resulting enantiomers by HPLC using a
chiral OD-H column and 95% hexanes in 2-propanol as the
eluent.”® Further studies with this novel, very weakly basic
diamine are in progress.

We were able to demonstrate the general utility of the cyclic
bis-imine 2 as a key starting material for the completely
diastereoselective synthesis of many racemic 1,2-diamines using
the approach described above for the synthesis of the
fluorinated diamine 1. A series of cyclohexylidine derivatives
of 1,2-diaryl-1,2-diaminoethanes was readily obtained by slow
addition of the corresponding aryllithium reagents to a solution
of BF;-Et,O and the bis-imine 2 in a ratio of 2:1. Aryl Grignard
reagents could also be used. In each case, only the trans-cyclic
amine was formed. These racemic cyclic diaryldiamines are
shown in Scheme 2 together with the yields of isolated product.

Scheme 2. Arylation Products Derived from 2
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The conversion of the cyclic diamines 4—8 to the
corresponding  rac-1,2-diaryl-1,2-diaminoethanes was accom-
plished in high yields by heating with 6 equiv of 2 N aqueous
HCI at 60 °C for 6 h followed by extractive isolation. Both
cyclic diamine 4 and the corresponding hydrolysis product
(DPEN) matched authentic samples, further confirming the
trans-selectivity of these reactions with bis-imine 2.

The attachment of two sp® carbon centered groups to the key
cyclic intermediate 2 was also demonstrated as an effective
stereocontrolled route to trans-4,5-disubstituted imidazolidines
using n-butyllithium, tert-butyllithium, and cyclohexylmagne-
sium bromide, with ether as solvent in each case, to form the
racemic C,-symmetric products 9—11 shown in Scheme 3.

Furthermore, the addition of allyl, 3-butenyl, and propargyl
Grignard reagents in ether to 2 produced smoothly the

Scheme 3. Stereocontrolled Dialkylation of Bis-imine 2
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corresponding trans-4,5-disubstituted imidazolidines 12, 13,
and 14, as summarized in Scheme 4. The addition of 2-lithiated
furan and 4,5-benzofuran to 2 was also successful and provided
the trans-4,5-imidazolidines 15 and 16 (Scheme 4).

Scheme 4. Unsaturated and Heteroaromatic 1,2-Diamines

\—»_\J :\-—»_\f :—-———\_\\:
HN NH HN NH

HN_ _NH
12, 78% 13, 78% 14, 70%

(o)

15, 61%

16, 66%

The cyclic bis-imine 2 is a valuable intermediate for further
elaboration into a variety of interesting nitrogen-containing
compounds, most obvious of which in the context of the
synthesis of 3—16 is the synthesis of monosubstituted 1,2-
diamines. Thus, the reaction of 2 with BF;-Et,O and 1 equiv of
C,F;Li in ether at =78 °C provided the cyclic monoamine 17
(90%), which was converted via the 4-substituted imidazolidine
18 to pentafluoroethylethylene diamine 19 (88% as the
hydrochloride) as indicated in Scheme S.

Scheme S. Synthesis of Monosubstituted 1,2-

Ethylenediamines
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Another aspect of the versatility of the new approach to the
diastereoselective synthesis of 1,2-diamines that is disclosed
herein involves the use of functionalized substituents. For
example, catalytic olefin metathesis on the bis-olefinic diamines
12 and 13 (or N-protected derivatives) obviously could lead to
6- or 8-membered cyclic trans-1,2-diamines (or N-protected
derivatives).® In addition, the facile synthesis of the useful C,-
symmetric bicyclic diamine” 23 by the route that is depicted in
Scheme 6 provides a quite different example of the synthetic
opportunities that our methodology enables. The key
intermediate 20 was readily obtained from the addition of 3-
(benzyloxy)propyllithium to 2, as detailed in Scheme 6, and
then converted to the bis-trifluoroacetyl bicyclic amide 22. The
free bicyclic diamine 23 was then obtained simply by hydrolysis
with base. The usefulness of 23 in catalysis has previously been
demonstrated."’
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Scheme 6. Synthesis of C,-Symmetric Diamine 23
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We have also been able to access the C,-symmetric 2,2'-
bisisoindoline 27 by an approach analogous to that used for the
synthesis of 23, as outlined in Scheme 7.

Scheme 7. Synthesis of C,-Symmetric Diamine 27
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The key intermediate 24 was obtained by reaction of the bis-
imine 2 with 2-[[(triisopropylsilyl)oxy]methyl]phenyllithium
(from 2-[[(triisopropylsilyl)oxy]methyl]iodobenzene and n-
BuLi in ether at —78 °C for 1 h) in the presence of 1 equiv
of BF;-Et,O in ether at —78 to —50 °C for 24 h. Acidic cleavage
of the TIPS ether and cyclohexylidine group in 24 was
accomplished using 2 N methanolic HCI at 23 °C for 16 h.
Trifluoroacetylation of the resulting dihydroxy diamine with
trifluoroacetic anhydride—pyridine provided the dihydroxy bis-
amide 25. Mitsunobu cyclization of 25 furnished bis-amide 26
(26% overall yield from 2), which by base treatment, afforded
the desired C,-symmetric diamine 27.

A few of the diamines discussed above have been resolved by
the traditional method using chiral 1:1 tartaric acid—diamine
salts and simple recrystallization from ethanol, as described in
detail in the Supporting Information for the diamines derived
from 7 and 10.

As expected, the basicity of 1,2-pentafluoroethyl-1,2-diamino-
ethane (1, PFEEN) is greatly attenuated, with a measured pK,
of 2.45 in 10% ethanol and 90% water at 23 °C. Thus, PFEEN
is the least basic 1,2-disubstituted ethylenediamine now known.

The N,N’-bistrifluoromethane sulfonamide derivative, mp 86—
88 °C,” is actually a stronger acid than acetic acid with a
measured pK, of 3.57 in 1:9 ethanol—water at 23 °C. The
applications of these unusual compounds as chiral subunits for
enantioselective reactions (cf. ref 3) are now being studied.
Reaction of 1 with benzaldehyde in CH,Cl, at ambient
temperature provided the corresponding aminal 28, which was
easily separated into the pure enantiomers by HPLC using
Chiral Technologies Chiralcel OD-H column with 95:5
hexanes—isopropyl alcohol for elution (peak 1, t = 4.09 min,
and peak 2, t; = 6.00 min, on analytical scale, and t; = 3.87 and
5.43 min on a multigram preparative scale).”® Peaks 1 and 2
were shown to be S,5-28 ([a]p® —17.2, ¢ 1, CHCL;) and R,R-
28 ([a]p™ +17.5 ¢ 1, CHCLy), respectively, by the results
described below. Hydrogenation of R,R-28 using H,, Pd—C
afforded the R,R-enantiomer of 1, [a]p* —8.0 (¢ 1, CHCL,).

FsC, CoFs
HN NH

Ph
28

Three recrystallizations of the of (#)-1 with S,S-di-p-
toluoyltartaric acid and 9:1 1,2-dichloroethane—ethyl acetate
afforded an 85:15 mixture of the R,R- and S,S-diamine 1 salts,
indicating that resolution of (#)-1 by this particular salt is less
practical than the chromatographic separation described above.
Studies of other methods for direct resolution of 1 are
underway.

We have also synthesized R,R-1 using as a starting point the
bis-imine from glyoxal and S-a-methylbenzylamine (29) as
shown in Scheme 8. This method was first used in our

Scheme 8. Synthetic Route to R,R-(+)-1
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laboratories in 1988 for the synthesis of the R,R- and S§,S-
enantiomers of 1,2-di-tert-butylethylenediamine'' and devel-
oped independently by Neumann et al.'> Reaction of 29 with
perfluoroethyllithium and BF;-Et,O at —78 °C afforded the bis-
adduct 30 with 92:8 diastereoselectivity. The product could be
purified by recrystallization from pentane or by conversion to
the crystalline triflate.

The structure of 30, mp 57 °C and [a]p® —87.6 (¢ 2,
CHCl,;), was confirmed by X-ray crystallographic analysis (see
Figure 1).” Cleavage of the N-a-phenethyl groups under
strongly acidic conditions provided pure R,R-(+)-bis-penta-
fluoroethyl-1,2-diaminoethane in good yield.

In summary, the readily available cyclic bis-imine 2 serves as
a useful starting point for the completely diastereoselective and
very direct access to a wide variety of C,-symmetric 1,2-
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Figure 1. X-ray crystallographic structure of 30.

diamines, compounds of broad utility as ligands for catalytic
and enantioselective synthesis.
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