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A variety of ring-fused 2-pyridone-based central fragments were prepared using a strategy inspired by
diversity-oriented synthesis. The produced compounds are diverse, yet focused, analogs of biologically
active peptidomimetic 2-pyridones.
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2-Pyridones are privileged structures in medicinal chemistry,!
and many biologically active ring-fused 2-pyridones exist, for
example, the natural product derived anti-cancer drug, topotecan,’
and the acetylcholinesterase inhibitor, huperzine A3 The ring-
fused 2-pyridones 1 and 2 (Fig. 1) belong to a class of compounds
designed as peptidomimetics.* This type of thiazolo ring-fused 2-
pyridone has various biological effects depending on their substi-
tution pattern, for example, as antibacterials—targeting bacterial
virulence,>® and as modulators of the fibrillation of amyloid pro-
teins, such as Alzheimer B-peptides’ and the Parkinson’s associated
a-synuclein.® Previous synthetic efforts to improve, or to alter the
biological activity of these compounds have focused on variation of
the substituents® as well as changes of the central fragment it-
self.1%1! Here, we report the synthesis of a series of central frag-
ment analogs of compounds 1 and 2 using a strategy inspired by
the concepts of diversity-oriented synthesis (DOS).1%13

The aim with DOS is to prepare compound collections with
widely diverse central fragments to find biologically active sub-
stances without having a pre-determined target.'* Considering
the diverse biological activities of the thiazolo ring-fused 2-pyri-
dones, we believe that further exploration of the chemical space
around this class will generate many new compounds that are ac-
tive in a variety of biological assays. In efforts toward this goal, we
have developed a strategy involving directed diversity-oriented
synthesis, where the produced compounds are relatively close to
compounds 1 and 2 in the chemical space, but still considerably
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Figure 1. Biologically active thiazolo ring-fused 2-pyridones with peptidomimetic
backbones (highlighted).

more varied than what is usually achieved by substituent variation.
Inspired by the use of a 2-fluorobenzene sulfonyl chloride as a two-
sited electrophile in the preparation of a DOS-library,'*> compound
3 was prepared in analogy with previously prepared com-
pounds,'®!” and then formylated'® to give compound 4, which
contains two different electrophilic sites (Scheme 1). This key
starting material allowed the synthesis of compounds with large
variations of the left-hand side of the peptidomimetic 2-pyridone
by orthogonally reacting the two electrophilic groups to form var-
ious ring-structures.

To start with, two new heteroaromatic scaffolds were prepared.
Heteroaromatics are often easily functionalized and give rigid com-
pounds, which can be beneficial for biological activity.!® Ring-fused
pyrroles have been prepared from other compounds with two elec-
trophilic sites,?%2! and reaction of 4 with primary amines under
basic conditions gave the pyrroles 5 and 6 (Scheme 2A).

The corresponding ring-fused thiophene 7 was obtained by
reaction with potassium thioacetate followed by cleavage of the


http://dx.doi.org/10.1016/j.tetlet.2012.08.100
mailto:fredrik.almqvist@chem.umu.se
http://dx.doi.org/10.1016/j.tetlet.2012.08.100
http://www.sciencedirect.com/science/journal/00404039
http://www.elsevier.com/locate/tetlet

M. Sellstedt et al./Tetrahedron Letters 53 (2012) 6022-6024 6023

oxalyl chloride
DMF MeCN

0°C 4h
COoMe

s

CO,Me
4 54%

s

Scheme 1. Preparation of a 2-pyridone with two electrophilic sites.
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Scheme 2. Ring-fused five-membered heteroaromatics.
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Scheme 3. Improved syntheses of naphthyridones and naphthyridonium salts.
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acetyl group and dehydration in a one-pot procedure (Scheme 2B).
The use of sodium sulfide instead of potassium thioacetate gave
significant amounts of a dimeric compound (according to LC-MS).

We previously described a three-component reaction that pro-
duced dihydronaphthyridones from methyl and formyl substituted
2-pyridones such as 8. Subsequent oxidation with air, or more gen-
erally, with chloranil, gave naphthyridones and naphthyridonium
salts (Scheme 3A).2? Compound 4 participated in similar reactions
when reacted with aldehydes and amines under mildly acidic con-
ditions (Scheme 3B). The naphthyridone 9 and the naphthyridoni-
um salt 10 were formed without the need of an extra oxidation
step, thus providing a more straightforward route to these types
of compounds.

Although new heteroaromatic scaffolds are valuable in medicinal
chemistry,?> compounds with a higher proportion of sp*-carbons
and stereochemical complexity often interact more specifically with
proteins.?* A higher proportion of saturated carbons also decreases

structural planarity, which typically improves aqueous solubility.?®
By preparing medium-sized rings with saturated carbons, less pla-
nar compounds with restricted flexibility were created. To synthe-
size the seven-membered carbamates 14 and 15, compound 4 was
reduced to the alcohol 11, reacted with an amine, and then ring-
closed with triphosgene (ClsCOCOOCCI3) (Scheme 4).

Two compounds containing eight-membered rings were syn-
thesized by nucleophilic substitution of the chloride followed by
reductive amination of the aldehyde (Scheme 5). Thus, Boc-pro-
tected cysteine methyl ester was reacted with 4 and then deprotec-
ted with trifluoroacetic acid. Ring-closure to compound 16 was
accomplished with sodium borohydride in methanol. The use of
non-protected cysteine gave several by-products. Triazole 17 was
prepared by displacement of the chloride with sodium azide fol-
lowed by reductive amination with N-methyl propargylamine. A
thermal intramolecular Huisgen cyclization?®?” then gave the
ring-closed product 17. During the first step in the synthesis of
17, small amounts of the ring-fused pyrrolidone 18 were formed.
This type of transformation usually requires acidic conditions
and is then regarded an intramolecular Schmidt rearrangement,®
but in our case acid did not promote the formation of 18. However,
it was found that slightly elevated temperatures and longer reac-
tion times increased the amount of this product and allowed its
isolation in 62% yield.

We planned to prepare a nine-membered ring system by ring-
closing metathesis.?° To introduce the alkenes for the metathesis,
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Scheme 4. Synthesis of seven-membered carbamates.
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Scheme 5. Synthesis of eight-membered rings and a pyrrolidone ring-fused
compound.
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Scheme 7. Ring-closing metathesis provided compound 21.
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Scheme 8. Lactonization into a 10-membered ring.

compound 4 was first allylated with allyltrimethylsilane.3® Differ-
ent conditions for the allylation were evaluated, and the best re-
sults were accomplished in 1,4-dioxane with BFs-Et,0 as the acid
(Scheme 6). After purification, a 3.7:1 diastereomeric mixture of
19 was obtained in 73% yield (2.5:1 dr before purification). A lower
diastereomeric ratio (1.8:1) was obtained in dichloromethane, and
with SnCl, as the Lewis acid the diastereoselectivity inverted to
give a 1:2.2 mixture.

Next, compound 19 was reacted with allylamine to introduce
the second alkene needed for the metathesis. The resulting amine
20 was then N-acylated, and the ring-closing metathesis was real-
ized by the use of Grubbs’ second generation catalyst?! in toluene
(20 mM) to give 21 in 72% yield (Scheme 7).

For the 10-membered case, we considered a lactone ring-clo-
sure. Although medium-sized lactones are often difficult to prepare
because of competing formation of dimeric species,? substrates
with rigidifying elements such as Z-double bonds can give efficient
reactions.>® The 10-membered lactone 23 was prepared from the
alcohol 11, which was first reacted with the allyl ester of N-
methyl-y-aminobutyric acid to give 22. This product was then sub-
jected to palladium-catalyzed deallylation, followed by lactoniza-
tion to give 23 using PyBOP as the coupling reagent** (Scheme
8). The ring-closure proceeded well using modest dilute conditions
(50 mM) without the need for slow addition of the substrate.

In conclusion, we have applied a strategy of directed diversity-
oriented synthesis to prepare a series of 5- to 10-membered ring-
fused structural peptidomimetics starting from a chloromethyl and
formylated compound. This type of two-sited electrophile can
potentially be used to construct a wide range of ring-fused hetero-
cycles. The compounds produced here are diverse analogs of bio-
logically active 2-pyridones that will be evaluated in a variety of
biological assays in the near future.
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