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A mild and convenient method for the allylic chlorination of naturally occurring terpenic olefins was investigated in the presence
of different supported and non-supported Lewis acid catalysts.,e reaction has been tested on carvone as a model substrate in the
presence of sodium hypochlorite as chlorine donor. ,e scope and limitations of transition metal-based Lewis acid catalysts,
stoichiometry, and substrate structure were evaluated. Among the iron precursors used, FeCl3 and FeCl2 provide the promise of a
general approach to allylic or vinylic chlorination reaction. Various terpenic olefins were examined in the presence of FeCl3/
NaOCl combination system.,e catalytic chlorination proceeds under mild conditions with short reaction time and shows a high
selectivity affording the corresponding chlorides in good to excellent yields.

1. Introduction

Allyl, vinyl, or isopropenyl groups are present in different
naturally occurring products as part of their structures [1–3].
,ey have been used repeatedly as starting materials to reach
new natural products derivatives or more complex atomic
arrangements [4, 5]. Among the versatile natural products
bearing these groups, terpenes represent a sustainable supply
of intermediates for several functionalization segments of
the fine chemical industry, for example, the manufacture of
flavors and fragrances [6–8]. Allylic chlorination represents
a convenient way to functionalize terpenes bearing an allyl,
vinyl, or isopropenyl group since further manipulation on
the chloride may lead to several functional groups for the
synthesis of natural products [9–13]. Previously, we have
reported the allylic substitution of optically active natural
terpenic allylic chloride derivatives in good yields [14, 15].
Moreover, isoprenoid chlorides are remarkably interesting

for the synthesis of α-monoterpenes or vitamin A inter-
mediates such as pseudoionone [16–18].

Allylic chlorination represents a convenient alternative
method for allylic olefins functionalization. Various meth-
odologies developing the allylic chlorination are reported in
the literature, allowing the preparation of allyl chloride
derivatives from the corresponding allylic alcohols using
different reagents, such as thionyl chloride [19], hydro-
chloric acid [20], titanium (IV) chloride [21], N-chlor-
osuccinimide (NCS) [22], chlorosilanes [23, 24],
methanesulfonyl chloride/lithium chloride [25], or iridium
catalyst [26, 27]. Moreover, allylic chloride intermediates
could be synthesized from aldehydes through olefination-
reduction-halogenation sequences [28]. Torii et al. have
reported electrochemical methods using sodium chloride as
halogen source for the allylic chlorination of variety of
isoprenoids [29, 30]. In organic synthesis, diselenides were
also used as catalysts for the allylic chlorination of olefins
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[31–33]. Barrero et al. have reported a solid-phase selenium
catalyst for the selective allylic chlorination of polyprenoids
[34]. Recently, we have prepared an efficient new organo-
selenide for the allylic chlorination of various terpenic
olefins [35]. In the presence of NCS, the allylic chloride can

be prepared from olefins using Yb(OTf)3–TMSCl or aniline
catalyst [36, 37], while the allylic chlorination could be
performed by a direct molecular chlorine bubbling through
the reaction medium but suffer from disadvantages such as
difficulties of handling chlorine gas [38]. On the other hand,
reports are focused on the use of calcium hypochlorite
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Scheme 1: Allylic chlorination of terminal olefins catalyzed by MClx.
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Scheme 2: Allylic chlorination of carvone.

Table 1: Allylic chlorination of carvone using different Lewis acid catalysts.

Entry Catalyst Catalyst/substrate∗ Conversion Selectivity
a (%) b (%) c (%) e (%)

1 AlCl3/SiO2 10% wt% 40% wt./wt. 25 6 4, 7 0
2 AlCl3/SiO2 10% wt% 3 eq. of AlCl3 74 53 20 0
3 AlCl3 3 74 60 14 0
4 FeCl3 3 84 68 6 0
5 FeCl2 3 99 4 12 84
6 Fe(NO3)3 3 99 33 15 52
7 Fe(acac)3 3 0 0 0 0
8 MoCl5 3 99 75 10 14
∗Reaction conditions: NaOCl (3 eq.), CH2Cl2/H2O (1 :1, 10mL), RT, and 30min.
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Figure 1: Effect of FeCl3 amount.
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[39, 40] or by a combination of Vilsmeier reagent and H2O2,
but this excludes the use of acid-sensitive substrates [41]. In
addition, sodium hypochlorite and acetic acid were used for
the chlorine generation with limitation to nonsensitive
substrates [42].

In the last two decades, the use of Brønsted acid (acetic
acid) instead of Lewis acid has gained considerable im-
portance. ,e method has the advantage of mild reaction
conditions when the reaction occurs in a smoothly two-
phase system (CH2Cl2/H2O) [38]. Different metallic Lewis
acids in combination with NaOCl were studied for the allylic
chlorination of terpenic olefins such as CeCl3, InCl3, or
MoCl5 [38, 43, 44]. ,e optimum solvent was reported to be
the biphasic system of dichloromethane and water with
addition of sodium hypochlorite under vigorous stirring to
ensure the homogeneous distribution of the in situ gener-
ated electrophilic chlorine [38]. Moreover, Lewis acids such
as NbCl5 and NbBr5 are reported to be efficient for the allylic
and allenic chlorination via a mediated alkoxide rear-
rangements [28].

As part of our studies directed towards the valorization
of natural terpenes via new catalytic systems [45–47], herein
we report an efficient and convenient method for the allylic
chlorination of terpenes using a combination of sodium
hypochlorite and Lewis acid catalyst. ,e allylic chlorination

was achieved in a high degree of efficiency and selectivity.
Among the Lewis acids used, aluminum and iron salts ex-
hibit multiple interesting features such as their high
abundance, low environmental impact, high chemo-
selectivity, and tolerance to aqueous media. ,e method
represents a good choice for the preparation of new func-
tionalized compounds derived from natural products under
mild conditions (Scheme 1).

2. Results and Discussion

,e scope and limitation of the allylic chlorination was
examined first using carvone, chosen as model substrate, in
the presence of supported and nonsupported Lewis acid
catalysts (Scheme 2). ,e results are summarized in Table 1.

First, we have checked the reaction in the presence of a
prepared supported catalyst AlCl3/SiO2 10% wt% (Table 1,
entries 1-2). A slight conversion is observed when the re-
action is carried out with a catalytic amount of a prepared
supported catalyst AlCl3/SiO2 10% wt% (entry 1). However,
a conversion of 74% with selectivity of 53% (b) and 10% (c)
were obtained with a stoichiometric amount of AlCl3/SiO2
10% wt% (entry 2). From entries 1 and 2, we can assume that
supported catalyst is less efficient for the allylic chlorination
of terminal olefins due to the need of a stoichiometric
amount of the Lewis acid.

,e use of nonsupported catalyst AlCl3 leads to similar
result (entry 3). Table 1 shows that FeCl3 was the most
reactive and selective catalyst towards monochloride (b)
(entry 4). ,e catalytic activity of different iron Lewis acid
catalysts has been performed (entries 4–7). While the
presence of FeCl3 orients the reaction towards the formation
of the allylic monochloride (b), FeCl2 gave mainly the vinyl
allyl dichloride (e) with 86% of yield (entry 5). ,e exam-
ination of iron(III) Lewis catalyst ligands effect indicates that
with acetylacetone practically no reaction took place which
could be due to the ligand steric hindrance effect (entry 7).
When the reaction was carried out with MoCl5, the cor-
responding monochloride (b) is formed as the major
product (entry 8). It appeared that the molybdenum catalyst
promotes the formation of allylic monochloride (b) with a
moderate selectivity of dichloride (c) and vinyl allyl
dichloride (e) contrarily to what was reported previously
[44].

,e catalytic chlorination of carvone (a) was performed
by varying the amount of FeCl3 (Figure 1). In the absence of
Lewis acid catalyst, no reaction was observed even after
stirring for a long reaction time. ,e increase of the FeCl3
equivalence resulted in the increase of the conversion of
carvone (a) with the formation of both the mono- and
dichloride product. ,e best result was obtained with 0.5
equivalence of catalyst, and a conversion of 84% was ob-
tained. ,e 0.75 equivalence amount reached a slight in-
crease of conversion with no significant increase of
selectivity.

,e effect of NaOCl on the allylic chlorination reaction
was evaluated using 0.5 eq. of FeCl3 (Figure 2). In the ab-
sence of NaOCl as a chlorination agent, no reaction took
place even in presence of Lewis acid catalyst. An excess of

Table 2: Allylic chlorination of nonfunctionalized terpenic olefinsa.

Entry Substrate Product/isolated yield (%)

991

d Cl

ClCl

g h
20% 18%

992

e

10% 41%

Cl

Cl

Cl

g h

993

f
36% 12%

Cl Cl

Cl
g h

Conversionb (%)

aReaction conditions: FeCl3 (0.5 eq.), NaOCl (4 eq.), CH2Cl2/H2O (1 :1,
10mL), RT, and 30min. bConversion was determined by GC using
dodecane as an internal standard.
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NaOCl up to 4 equivalence resulted in a maximum of
conversion (96%) and amaximum of selectivity of (b) (82%).

According to the literature [38, 43, 44], the modest
selectivity of dichlorinated product proved its presence for
the first time in Lewis acid catalytic system. In order to
confirm the formation of dichloride compound, a chlori-
nation reaction starting from monochloride (b) was carried

out and no conversion was observed. Based on this result, we
can predict that the dichlorinated product is formed by
direct addition on the double bond.

Under the optimized conditions with FeCl3 as a catalyst,
allylic chlorination of various nonfunctionalized olefins has
been carried out (Table 2). All the proposed terpenic olefins
(α-pinene d, β-pinene e, and limonene f) were converted

Table 3: Allylic chlorination of functionalized terpenesa.

Entry Substrate Conversionb (%) Product/isolated yield (%)

1

O
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aReaction conditions: FeCl3 (0.5 eq.), NaOCl (4 eq.), CH2Cl2/H2O (1 :1, 10mL), RT, and 30min. bConversion was
determined by GC using dodecane as an internal standard.
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totally to the corresponding monochlorinated g and the
dichlorinated h. At lower temperature of 0°C, no im-
provement on the selectivity is detected. In addition, a
complex mixture was obtained.

To shed more light on the activity of FeCl3, we have
extended the allylic chlorination to a muchmore demanding
functionalized terpenic olefins such as limonene oxide,
pulegone, perillyl aldehyde, limona ketone and nootkatone
(Table 3). ,e results depicted in Table 3 demonstrate that
functionalized terpenic olefins were found to be more re-
active than the nonfunctionalized ones. Except for limona
ketone (entry 5), all substrates were converted to the cor-
responding allylic monochlorides as a major product (en-
tries 1–4 and 6). It is noteworthy that perillyl aldehyde and
carvone lead to the formation of a new vinyl allyl dichlorides
in moderate yield (entries 5-6 (Table 1) and entry 4 (Ta-
ble 3)). As vinyl chloride derivatives represent great interest
in organic synthesis and biological activity [38, 48, 49], this
procedure may serve as a tool for their synthesis in a simple
one step. All isolated pure products were fully characterized
by 1H, 13C NMR, and mass spectroscopy (Supporting In-
formation, Figures S1–S41).

Despite no reaction took place in the absence of Lewis
acid catalyst, it has been reported that chlorine is usually
generated from NaOCl [38, 43, 44]. ,e allylic chlorination
reaction is probably based on the mild generation of elec-
trophilic chlorine from NaOCl to a chlorination of the
corresponding alkene. ,e loss of proton of the cationic
intermediate leads to the formation of the major allylic
chlorinated product (Scheme 3).

3. Conclusion

An efficient methodology for the catalytic allylic chlorina-
tion of naturally occurring terpenes using inexpensive and
readily available Lewis acid catalysts combined with NaOCl
has been investigated. ,e reaction was performed with a
high degree of efficiency and selectivity. All the proposed
terpenic olefins exhibit marked activity under mild condi-
tions and lead to the corresponding mono- or dichlorides
derivatives in good yields. Various supported and non-
supported Lewis acid catalysts were studied. Different iron
precursors have been checked and interesting results have
been obtained with FeCl3 and FeCl2. ,e reaction provides a
useful entry to new functionalized terpenic olefin products.

4. General Procedure

In a typical procedure, terpenic olefin (1mmol) in 10mL of
CH2Cl2 is added to a vigorously stirred solution of FeCl3 (0.5
eq.) in 10mL of H2O.,e mixture is vigorously stirred and a
diluted NaOCl (4 eq.) is added dropwise for 5min. After

30min, a saturated aqueous Na2SO3 solution is added and
the mixture is extracted with CH2Cl2 (3×10mL). ,e or-
ganic layer is dried over anhydrous Na2SO4. ,en, the
solvent was removed under reduced pressure. ,e pure
chlorinated products were obtained by column chroma-
tography over silica gel using hexane and ethyl acetate as
eluents. ,e isolated pure products were fully characterized
by 1H, 13C NMR, and GC-MS.

Carvone monochloride b

1HNMR (300MHz) d 6.69 (m, 1H, �CH), 5.19 (s, 1H,
�CH2), 4.99 (s, 1H, �CH2), 4.03 (s, 2H,–CH2Cl), 2.9
(m, 1H, CH), 2.61 (m, 2H, CH2), 2.4 (m, 2H, CH2),
1.75 (s, 3H, –CH3). 13C NMR (75MHz) d 198.8
(C�O), 146.5 (�C–), 144.1 (�CH–), 135.5 (�C–),
115.0 (�CH2), 46.9 (CH2Cl), 43.0 (CH2), 37.8 (CH),
31.3 (CH2), 15.6 (CH3). MS (EI): m/z� 184.0176 [M]+.

Carvone dichloride c

1H NMR (300MHz) d 7.21 (m, 1H, �CH), 3.45 (m,
2H, –CH2Cl), 2.5 (m, 2H, CH2), 2.3 (m, 1H, CH), 2.15
(m, 2H, CH2), 1.71 (s, 3H, –CH3), 1.19 (s, 3H, –CH3).
13C NMR (75MHz) d 198.0 (C�O), 144.15 (�CH–),
135.30 (�C–), 72.69 (–C–Cl), 52.60 (CH2Cl), 41.64
(CH), 39.36 (CH2), 26.28 (CH2), 21.80 (CH3), 15.62
(CH3). MS (EI): m/z� 220.0758 [M]+.

Carvone vinyl allyl dichloride e

1HNMR (300MHz) d 6.74 (m, 1H, �CH), 6.12 (s, 1H,
�CHCl), 4.20 (s, 2H,–CH2Cl), 3.00 (m, 1H, CH), 2.60
(m, 2H, CH2), 2.49 (m, 2H, CH2), 1.70 (s, 3H, –CH3).
13C NMR (75MHz) d 197.97 (C�O), 143.69 (�CH–),
139.70 (�C–), 135.77 (�C–), 119.91 (�CHCl), 42.40
(–CH2Cl), 42.0 (CH2), 39.56 (CH), 31.15 (CH2), 15.62
(CH3). MS (EI): m/z� 218 [M]+.

Limonene oxide monochloride

1H NMR (300MHz) d 4.96 (s, 1H, �CH2), 4.95 (s, 1H,
�CH2), 4.02 (s, 2H,–CH2Cl), 2.99 (m, 1H, –O–CH–),
2.36 (m, 1H, CH), 1.35–1.93 (m, 6H), 1.30 (s, 3H,
–CH3). 13C NMR (75MHz) d 148.76 (�C–), 113.65
(�CH2), 58.97 (O–CH), 57.12 (O–C), 47.37 (CH2Cl),
32.42 (CH), 30.70 (CH2), 28.46 (CH2), 24.66 (CH2),
22.96 (CH3). MS (EI): m/z� 185.0668 [M]+.

Limonene oxide dichloride

1H NMR (300MHz) d 3.55 (s, 2H,–CH2Cl), 3.02 (m,
1H, –O–CH–), 2.05 (m, 1H, CH), 2.01–1.50 (m, 6H),
1.33 (s, 3H, –CH3), 1.13 (s, 3H, –CH3). 13C NMR
(75MHz) d 73.37 (–C–Cl), 58.78 (O–CH), 57.66
(O–C), 53.23 (CH2Cl), 39.78 (CH), 30.58 (CH2), 24.89
(CH2), 22.85 (CH3), 22.96 (CH3), 20.45 (CH2). MS
(EI): m/z� 220.9909 [M]+.

Pulegone monochloride

1H NMR (300MHz) d 5.20 (s, 1H, �CH2), 5.14 (s, 1H,
�CH2), 2.35–2.80 (m, 2H, CH2), 2.30 (m, 2H, CH2),
1.96 (m, 1H, CH), 1.90 (m, 3H, –CH3), 1.84 (m,
2H,CH2), 1.06 (d, 3H, –CH3). 13C NMR

R1
R2 Cl

+–

R1
R2

B

H

R1
R2

Cl

Scheme 3: Proposed mechanism of allylic chlorination of terpenic
olefins.
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(75MHz) d 203.76 (C�O), 143.44 (�C–), 115.25
(�CH2), 76.09 (–C–Cl), 45.54 (CH2), 37.97 (CH2),
34.39 (CH), 29.64 (CH2), 21.48 (CH3), 20.58 (CH3).
MS (EI): m/z� 186.1188 [M]+.

Pulegone dichloride

1H NMR (300MHz) d 2.38–2.86 (m, 2H, CH2), 2.15
(m, 1H, CH), 1.79–2.38 (m, 2H, CH2), 1.79 (m, 2H,
CH2), 1.44 (s, 3H, –CH3), 1.35 (s, 3H, –CH3), 1.05 (d,
3H, –CH3). 13C NMR (75MHz) d 208.21 (C�O),
75.13 (–C–Cl), 74.96 (–C–Cl), 46.63 (CH2), 35.22
(CH2), 29.49 (CH2), 25.52 (CH), 21.99 (2CH3), 18.15
(CH3). MS (EI): m/z� 222.9984 [M]+.

Perillyl aldehyde monochloride

1H NMR (300MHz) d 9.43 (s, 1H, HC�O), 6.83 (m,
1H, �CH), 5.23 (s, 1H, �CH2), 5.02 (s, 1H, �CH2),
4.09 (s, 2H,–CH2Cl), 2.02–2.53 (m, 2H, CH2), 2.25 (m,
1H, CH), 1.42–1.72 (m, 2H, CH2), 0.87–1.24 (m, 2H,
–CH2). 13C NMR (75MHz) d 193.74 (HC�O), 149.82
(�CH–), 148.25 (�C–), 141.15 (�C–), 114.20 (�CH2),
47.56 (CH2Cl), 36.21 (CH), 32.13 (CH2), 26.51 (CH2),
21.46 (CH2). MS (EI): m/z� 184.0441 [M]+.

Perillyl aldehyde vinyl allyl dichloride

1H NMR (300MHz) d 9.45 (s, 1H, HC�O), 6.82 (m,
1H, �CH), 6.12 (m, 1H, �CHCl), 4.29 (s, 2H,–CH2Cl),
1.58–2.59 (m, 2H, CH2), 1.99 (m, 1H, CH), 1.26 (m,
2H, –CH2), 0.87–2.30 (m, 2H, CH2). 13C NMR
(75MHz) d 193.51 (HC�O), 148.79 (�CH–), 141.26
(�C–), 141.10 (�C–), 119.00 (�CHCl), 40.11 (CH2Cl),
37.86 (CH), 31.81 (CH2), 26.28 (CH2), 21.40 (CH2).
MS (EI): m/z� 218.0015 [M]+.

Limona ketone dichloride

1H NMR (300MHz) d 4.04 (m, 1H,–CHCl), 2.82 (m,
1H, CH), 1.89–2.35 (m, 2H, CH2), 2.17 (s, 3H, –CH3),
1.76–1.95 (m, 2H, CH2), 1.56–1.76 (m, 2H, CH2), 1.35
(s, 3H, –CH3). 13C NMR (75MHz) d 211.13 (C�O),
71.46 (–CCl), 64.75 (–CHCl), 44.64 (CH), 32.62
(CH2), 31.80 (CH2), 28.14 (CH3), 27.32 (CH3), 23.28
(CH2). MS (EI): m/z� 206.9165 [M]+.

Nootkatone monochloride

1HNMR (300MHz) d 5.66 (m, 1H, �CH), 5.09 (s, 1H,
�CH2), 4.90 (s, 1H, �CH2), 4.01 (s, 2H,–CH2Cl), 2.47
(m, 2H, CH2), 2.29 (m, 1H, CH), 2.15 (m, 2H, CH2),
1.91 (m, 2H, CH2), 1.27 (m, 1H, CH), 1.04–1.97 (m,
2H, CH2), 1.04 (s, 3H, –CH3), 0.87 (d, 3H, –CH3).13C
NMR (75MHz) d 199.08 (C�O), 169.58 (�C–), 148.67
(�C–), 124.74 (�CH–), 113.80 (�CH2), 47.70
(CH2Cl), 44.17 (CH2), 41.95 (CH2), 40.30 (CH), 39.35
(–C–), 35.72 (CH), 32.85 (CH2), 31.91 (CH2), 16.67
(CH3), 14.87 (CH3). MS (EI): m/z� 252.0591 [M]+.

Nootkatone dichloride

1H NMR (300MHz) d 5.76 (m, 1H, �CH), 3.57 (m,
1H, CH2Cl), 3.64 (m, 1H, CH2Cl), 2.40 (m, 1H, CH),
2.23–2.50 (m, 2H, CH2), 2.06 (m, 2H, CH2), 1.99–2.29

(m, 2H, CH2), 1.87–2.12 (m, 2H, CH2), 1.25 (m, 1H,
CH), 1.19 (s, 3H, –CH3), 1.10 (m, 3H, –CH3), 0.98 (m,
3H, –CH3).13C NMR (75MHz) d 199.50 (C�O),
170.08 (�C–), 124.62 (�CH–), 73.33 (–CCl), 53.47
(CH2Cl), 42.04 (CH2), 40.53 (CH), 39.96 (CH), 39.68
(CH), 32.72 (CH2), 27.70 (CH2), 26.67 (CH2), 21.22
(CH3), 16.75 (CH3), 14.96 (CH3). MS (EI): m/
z� 288.0343 [M]+.
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perillyl aldehyde vinyl allyl chloride. Figure S30: 1H NMR
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spectrum of the limona ketone dichloride. Figure S31: 13C
spectrum of the limona ketone dichloride. Figure S32: DET
135 spectrum of the limona ketone dichloride. Figure S33:
MS spectrum of the limona ketone dichloride. Figure S34:
1H NMR spectrum of the nootkatone monochloride. Figure
S35: 13C spectrum of the nootkatone monochloride. Figure
S36: DET 135 spectrum of the nootkatone monochloride.
Figure S37: MS spectrum of the nootkatone monochloride.
Figure S38: 1H NMR spectrum of the nootkatone dichloride.
Figure S39: 13C spectrum of the nootkatone dichloride.
Figure S40: DET135 spectrum of the nootkatone dichloride.
Figure S41: MS spectrum of the nootkatone dichloride.
(Supplementary Materials)
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