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Design of Bowl-Shaped N-Hydroxyimide Derivatives as New Organoradical

Catalysts for Site-Selective C(sp’)-H Bond Functionalizati

Terumasa Kato*® and Keiji Maruoka*°He

Abstract: A series of new bowl-shaped N-hydroxyimide derivatives
has been designed and used as selective organoradical catalysts. A
number of these bowl-shaped N-hydroxyimide derivatives exhibit
excellent site-selectivity in the amination of benzylic C(sp®)-H bonds
in aromatic hydrocarbon substrates.

The functionalization of unactivated C(sp*)-H bonds is one of the
most important chemical transformations in organic chemistry,
as it offers great potential to simplify synthetic sequences and to
add functionality to a wide variety of organic molecules.!"
Unfortunately, such transformations still remain challenging as
the high energy of the C(sp®)-H bond renders it inert toward
many reagents and catalysts. Previous attempts to transform
such bonds via metal-mediated or -free reactions have often
resulted in poor yield and/or low selectivity, thus reducing the
practical applicability of those methods."? N-Hydroxyphthalimide
(NHPI), a metal-free N-hydroxyimide derivative,®! and its
derivatives such as N,N'-dihydroxypyromellitimide (NDHPI),!
hydroxysaccharin (NHS),®! and N,N’N™trihydroxyisocya
acid (THICA)® are well-known organoradical catalysts th
transform various unactivated C(sp’}-H bonds into the
corresponding C(sp®)-X,! C(sp®)-C,®! C(sp®)-0,! an
N' bonds (Scheme 1a). Moreover, several c
derivatives have been reported in enantiosele
oxidations (Scheme 1b)."! However, there are

amination reactions of unactivated
designing  bowl-shaped  N-hydroxyimi
predictable site-selectivity (Scheme 1c).
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This work: Sterically congested bowl-shaped N-hydroxyimide catalysts
site-selective radical reactions
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me 1. Examples of N-hydroxyimide-derived organoradlcal catalysts.

The space-filing models of N-hydroxy-3,4-diarylmaleimide
derivatives 1~3a are shown in Scheme 2."* The examination of
these models suggests that bowl-shaped organoradical catalyst
of the type 3 might be appropriate for the site-selective
functionalization of hydrocarbons. Accordingly, we prepared
various derivatives of N-hydroxy-3,4-diarylmaleimide 3. As
shown in Table 1, we evaluated these organoradical catalysts
for their efficiency toward the site-selective amination of 1-
cyclohexyl-4-ethylbenzene.

v gt

3a (R = t-Bu)
3b (R =Ph)

Scheme 2. Space-filling models of the N-hydroxymaleimide derivatives 1~3a.

In a control experiment, we treated 1-cyclohexyl-4-ethylbenzene
(7a) with diethyl azodicarboxylate (DEAD) (0.10 mmol) in 1,2-
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dichloroethane (0.15 M) in the presence of NHPI (5 mol%) at 80
°C for 120 h, which almost quantitatively afforded a mixture of 8a
and 9a in a ratio of 53:47 (entry 1)." Replacement of the NHPI
catalyst with N-hydroxy-3,4-diphenylmaleimide (1), N-hydroxy-
3,4-di(1-naphthyl)maleimide  (4), or  N-hydroxy-3,4-di(2-
phenylphenyl)maleimide (2) under otherwise identical conditions
furnished mixtures of 8a and 9a in ratios of 53:47, 48:52, and
51:49, respectively (entries 2-4). In contrast, the use of N-
hydroxy-3,4-di(2-(4-tert-butyl)phenylphenyl)maleimide (5a) and
N-hydroxy-3,4-di(2-(4-phenyl)phenylphenyl)maleimide (5b)
enhanced the site-selectivity for the sterically less hindered
C(sp®)-H bonds to 68:32 and 72:28, respectively (entries 5 and
6). The best catalytic performance was observed for N-hydroxy-
3,4-bis(2-(3,5-di-tert-butyl)phenylphenyl)maleimide (3a), which
resulted in near perfect site-selectivity (entry 7)."® N-Hydroxy-
3,4-bis(2-(3,5-diphenyl)phenylphenyl)maleimide (3b) produced a

Table1. Optimization of the reaction conditions for the site-selective amination
of substrate 7.7

EtO,C. .
N co,E\
cat. 1~6 (5 mol%)
Et0,C”~ Ny -COE
(3.0
ed) EIO,C

DCE, 80 °C, 120 h “COzE 9a (R=H)
7a(R=H) 8a(R=H) 9bR Me)
7b (R = Me) 8b (R - Me)

5a (R = t-Bu)
5b (R = Ph)

Combined .

Entry Substrate Catalyst Yield [%]°! Ratio (8

1 7a NHPI >99 53:47

2 7a 1 A 53:47 .

. W

5 7a

6 7a

7 7a

8 7a

9 7a

10 53:47

11 90:10
121 95:5
131 100: 0

therwise noted): diethyl azodicarboxylate
1%) in 1,2-dichloroethane (0.15 M) at 80
ratio were determined by 'H NMR
spectroscopy using 1,1,2,2-te thane as the internal standard. [c]
Use of DEAD (0.50 mmol). [d] In 1,1,2,2-tetrachloroethane (0.15 M).
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slightly lower site-selectivity (entry 8) than 3a. In contrast, the
sterically hindered NHPI derivative 6 showed virtually no site-
selectivity (entry 9). The choice of solvents is also highly
important for the success of thg reaction. Polyhalogenated

solvents such as 1,1,2,2-tet and carbon
tetrachloride showed excellent site- (8:9, 100:0).
However, other solvents such as t-bu acetonitrile,
DMSO, chlorobenzene, and eptane ctive (64:36

to 85:15: cf. Supporting
conformational change could
when using these sol

which implies that a
the biphenyl moieties
f examining other
bstrate ratios, the
EAD derivatives, the
agents, the rea@bn time, and the reaction
temperature are sh in the Suppo Information.

In  marked on of 1-cyclohexyl-4-
iropropylbenz contains sterically similar
cyclohexyl and i
1,2-dichloroethane

amount of DEA
concentration of th

90:10 to achieve an even higher site-
selectivity, more ste indered N-hydroxyimide derivative
3¢ was prepared,''™ and applied as a catalyst for the reaction of
7b in 1,14-tetrachloroethane. Although the reaction

pceeded ly, it afforded a mixture of 8b and 9b in a 95:5
) (entry 12). Finally, the /-menthyl-derived N-hydroxyimide
st 3d exhibited perfect site-selectivity (entry 13).'”

ope of the site-selective amination of various substrates.

catalyst (5 mol%)
_COEt r Et0C . N,

R EtOZC Ney
T DcEorTcE

80°C, 120 h
. EtO,C

COZEt

~COEt R

Combined

Substrate Major Product Catalyst Yield [%] Ratio

1 NHPI >99 85:15
2 3a 81 100:0
BOL - ~CO.Et

3 NHPI 91  58:42

4 3a 96 73:27

5 3c 24 100:0

6 3d 45  99:1

,N
EtO,C O£t

7 NHPI 71 51:49

8 3a 75  51:49

9 3c 21 76:24
10 3d 7 88:12

EtO,C - ~CO£t
1 NHPI 75  58:42
12 3a 32 100: 0
130) 3a 57 100:0
16 17
N
BOL <Moo
H
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NHP| ~09  64:36 selectivity when using the bowl-shaped catalysts 3¢ and/or 3d.
\/©/\<\ % o Even more remote control of the site-selectivity was achieved
15 99:1 when using bowl-shaped catalysts 3¢ and/or 3d for the reaction

BOL < N ot o1 ’ of the ethylbenzene derivatives 18, 20, and 22, with different ,-
disubstituted alkyl groups at th - osmon The use of

12?)\/©/\© N oo veiar excess substrate (6.0 equiv) for the n of 18 and 22
o ” e 0 80 enhanced the yield of 19 and 23, respe s 18 and 26

45
EtO,C . .N vs. entries 17 and 25; see algo entry 1
N

COREt 24 and 26, which contain thyl substituents at the

23 w NHPI s09 62:38 ethylbenzene para-position exhi igh selectivity when using
24 3 99 83:17 } "
25 » b 3 88.12 bowl-shaped catalyst 3 hyl-4-hexylbenzene

260! 22 o 3d 64  89:11 (28) showed some s;j ivi 3c. 1-Cyclohexyl-
z "COEt 3-ethylbenzene (3 I-4-methylbenzene (32)
exhibited excellen i i y when using 3a or 3c.
27 NHPI 96  52:48 i -
o oo 8416 ' well for 1
29 68  86:14 presence of 3d.
Etozc N, ot As shown etic utility of this approach
: was successful  site-selective
pne 3-methyl ether (36).
30 NHPI 94 47:53
31 3a >99 78:22
32 3c 31 77:23
33 26 3d 55  82:18
27
EtO,C N N “COLEt catalyst (5 mol%)
H -
_N s _COEt
Et0,c~ N7 2 MeO
DCE or TCE BOL < N~ oo et
80°C,120 h H

NHP!I in DCE: 17% (59:41)
3ainDCE:  35% (71:29)
3din TCE:  21% (99:1)

selective amination of estrone 3-methyl ether (36).

The present approach is also applicable to the simultaneous
integnolecular  site-selective amination of two different
tes 38 and 39 (Scheme 4).

catalyst (5 mol%)
+ _ >
N, _COzEt
EtO,C N

H
38(3.0e 39 (3.0e ° EtO,C( .N.
( q) ( q) DCE, 80°C,120 h sy COLEt

Et0,C. _.N. 40 4
N” “CO,Et

H NHPI: >99% (49:51)

3a:  85% (100:0)

Scheme 4. Intermolecular site-selective amination of 38 and 39.

The origin of the observed high to excellent site-selectivity can
be rationalized by examining the space-filling models of the
sterically hindered N-hydroxy-3,4-diarylmaleimide derivative 3c
during the site-selective hydrogen abstraction of the benzylic
C(sp®)-H bond of 1-cyclohexyl-4-ethylbenzene (7a) (Scheme 5).

the desired isomer 11.
Ethylbenzene , and 16 with different sec-alkyl
substituents at the para-position afforded high to excellent
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Attack from Ethyl Side

N0

Attack from Cyclohexyl Side

[3]

[4]

(5]

(6l

7
Scheme 5. Space-filling models in the site-selective abstraction of the benzylic [7]
hydrogen atom at the ethyl side of 7a with the sterically hindered N-
hydroxymaleimide derivative 3c.

(8l

In conclusion, we have designed and synthesized a series of
novel bowl-shaped N-hydroxyimide derivatives as organoradical
catalysts for the site-selective amination of benzylic C(sp®)-H
bonds. Further investigations into the applications of bowl-
shaped N-hydroxyimide catalysts of the type 3c and 3d for
C-H activation and functionalization reactions, as well e
design of more efficient bowl-shaped N-hydroxyimide catalysts,
are currently in progress in our laboratory.
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A series of new bowl-shaped N-hydroxyimide derivatives has been designed and used
as selective organoradical catalysts. A number of these bowl-shaped N-hydroxyimide
derivatives exhibit high to excellent site-selectivity in the amination of benzylic C(sp”)-H
bonds in aromatic hydrocarbon substrates.
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