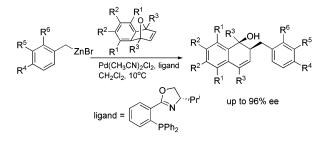
Palladium-Catalyzed Enantioselective Ring Opening of Oxabicyclic Alkenes with Organozinc Halides


Ming Li,[†] Xiao-Xia Yan,[†] Wei Hong,[‡] Xia-Zhen Zhu,[†] Bo-Xun Cao,[†] Jie Sun,[†] and Xue-Long Hou^{*,1,‡}

State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China

xlhou@mail.sioc.ac.cn

Received June 21, 2004

ABSTRACT

Palladium-catalyzed asymmetric ring opening of oxabenzonorbornadienes with readily available organozinc halides under mild conditions in the presence of (*S*)-Pr^{*L*}PHOX produces the corresponding 1,2-dihydronaphth-1-ols in good yield and high enantioselectivity.

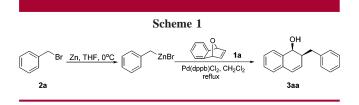
Catalytic asymmetric reactions using organozinc reagents have been well documented.¹ However, the most widely used reagents are dialkylzinc, and less attention has been paid to the use of alkylzinc halides, although they are more readily available.² On the other hand, ring opening of oxabicyclic compounds with a variety of nucleophiles, first reported by Caple and co-workers and developed by Luatens,^{3,4} has emerged as an attractive strategy for the preparation of cyclic and acyclic compounds with multiple stereocenters.⁴ Recently, Lautens reported a palladium- or copper-catalyzed addition of dialkylzinc to oxabicyclic alkenes, and excellent results were obtained.⁵ However the reagents were limited to dialkylzinc. To date, there is no report on the enantioselective ring opening of oxabicyclic alkenes with organozinc

2833-2835

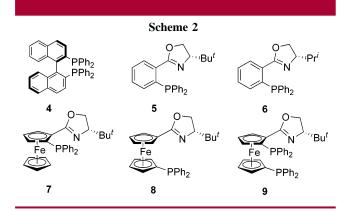
[†] State Key Laboratory of Organometallic Chemistry.

[‡] Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis.

 ⁽¹⁾ For reviews, see: (a) Noyori, R.; Kitamura, M. Angew. Chem., Int. Ed. Engl. 1991, 30, 49. (b) Soai, K.; Niwa, S. Chem. Rev. 1992, 92, 833.
 (c) Knochel, P. Chemtracts: Inorg. Chem. 1996, 8, 129. (d) Boudier, A.; Bromm, L. O.; Lotz, M.; Knochel, P. Angew. Chem., Int. Ed. 2000, 39, 4415. (e) Pu, L.; Yu, H.-B. Chem. Rev. 2001, 101, 837.


^{(2) (}a) Hayashi, T.; Hagihara, T.; Katsuro, Y.; Kumada, M. Bull. Chem. Soc. Jpn. 1983, 56, 363. (b) Hayashi, T.; Yamamoto, A.; Hojo, M.; Ito, Y. J. Chem. Soc., Chem. Commun. 1989, 495. (c) Uemura, M.; Van Horn, D. E.; Yoshida, T.; Matsumoto, Y.; Hayashi, T. Tetrahedron: Asymmetry 1992, 3, 213. (d) Cross, G.; Kellogg, R. M. J. Chem. Soc., Chem. Commun. 1987, 1746. Catalytic asymmetric Reformatsky reactions: (e) Braun, M.; Vonderhagen, A.; Waldmüller, D. Liebigs Ann. 1995, 1447. (f) Andrés, J. M.; Martinez, M. A.; Pedrosa, R.; Pérez-Encabo, A. Synthesis 1996, 1070. (g) Pini, D.; Mastantunono, A.; Salvadori, P. Tetrahedron: Asymmetry 1994, 5, 1875. (h) Soai, K.; Kawase, Y. Tetrahedron: Asymmetry 1991, 2, 781. (i) Soai, K.; Oshio, T. J. Chem. Soc., Chem. Commun. 1993, 811. (j) Andrés, J. M.; Martin, Y.; Pedrosa, R.; Pérez-Encabo, A. Tetrahedron 1997, 53, 3787.

⁽³⁾ Caple, R.; Chen, G. M.-S.; Nelson, J. D. J. Org. Chem. 1971, 36, 2874.


⁽⁴⁾ For reviews, see: (a) Chiu, P.; Lautens, M. Top. Curr. Chem. 1997, 190, 1. (b) Lautens, M. Synlett 1993, 177. (c) Lautens, M.; Fagnou, K.; Hiebert, S. Acc. Chem. Res. 2003, 36, 48 and reference therein. For a recent paper: (d) Rayabarapu, D. K.; Chiou, C.-F.; Cheng, C.-H. Org. Lett. 2002, 4, 1679. (e) Murakami, M.; Igawa, H. Chem. Commun. 2002, 390. (f) Lautens, M.; Dockendorff, C. Org. Lett. 2003, 5, 3695. (g) Li, L.-P.; Rayabarapu, D. K.; Nandi, M.; Cheng, C.-H. Org. Lett. 2003, 5, 1621. (h) Feng, C.-C.; Nandi, M.; Sambaiah, T.; Cheng, C.-H. J. Org. Chem. 1999, 64, 3538. (i) Nakamura, M.; Matsuo, K.; Inoue, T.; Nakamura, E. Org. Lett. 2003, 5, 1373. (j) Millward, D. B.; Sammis, G.; Waymouth, R. M. J. Org. Chem. 2000, 65, 3902. (k) Arrayás, R. G.; Cabrera, S.; Carretero, J. C. Org. Lett. 2003, 5, 1333.

halides, although they are more versatile and more easily available.⁶ We now report here the palladium-catalyzed ring opening of 7-oxabenzonorborna-diene and its derivatives with alkylzinc halides to furnish 2-alkyl-1,2-dihydro-1-naphthol in high enantiomeric excess.

In our initial experiment, 7-oxabenzonorbornadiene (1a) was treated with benzylzinc bromide7 in the presence of 5 mol % of Pd(dppb)Cl₂ in dichloromethane under reflux for 8 h to provide 2-benzyl-1,2-dihydro-1-naphthol 3aa in 78% yield (Scheme 1). A control experiment indicated that no reaction occurred in the absence of Pd-catalyst.

Encouraged by this result, we carried out an asymmetric version of the same reaction using different kinds of chiral ligands commercially available or developed by us (Scheme 2), and the results are shown in Table 1.

From Table 1, it can be seen that *N*,*P*-ligands are effective, although diphosphine ligands are most often used in this ringopening reaction.^{4,5} Among them, (S)- Pr^{i} -PHOX 6⁸ gave the highest ee value with acceptable chemical yield at 10 °C (Table 1, entry 3). (R)-BINAP 4, (S)-Bu^t-PHOX 5,⁸ and ferrocene 7⁹ gave moderate enantioselectivity (entries 1, 2, and 4), and ferrocene 8^{10} and 9^{11} gave low enantioselectivity,

Table 1.	Effect of Reaction Conditions on the				
Enantioselectivity of Ring Opening of 1a with Benzylzinc					
Bromide ^a					

entry	ligand	yield (%) b	ee (%) ^c
1	4	46	47
2	5	66	66
3	6	64	90
4	7	70	66
5	8	80	6
6	9	85	2
7^d	6	13	84
8 ^e	6	98	78

^a All reactions run at 10 °C with ratio of 1a/BnZnBr/Pd(CH₃CN)₂Cl₂/ ligand = 1:1.5:0.05:0.05. ^b Isolated yield based on oxabicyclic alkene. ^c Determined by HPLC. ^d The reaction runs at -20 °C. ^e The reaction runs at reflux.

although the chemical yield was higher (entries 5 and 6). Temperature effect was also significant, with a lower enantioselectivity being given at temperatures either lower or higher than 10 °C. However, the yield was higher if the reaction proceeded at higher temperature (entries 7 and 8).

To extend the scope of substrate, other substituted benzylzinc bromides were investigated. In almost all cases, substituted benzylzinc bromides reacted with 1a smoothly to provide corresponding 2-benzyl-1,2-dihydro-1-naphthol with high ee values (Table 2, entries 1-4 and 6-10), while

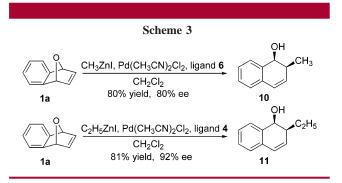
Table 2. Enantioselective Ring Opening of Oxabicyclic Alkenes with Benzylzinc Bromide^a

$\begin{array}{c} R^{5} \\ R^{4} \\ \textbf{2a-f} \end{array} \begin{array}{c} R^{6} \\ R^{4} \\ \textbf{2a-f} \end{array} \begin{array}{c} R^{6} \\ R^{6} \\ R^{4} \\ \textbf{R}^{4} \\ \textbf{R}^{6} \\ R^{4} \\ \textbf{R}^{6} \\ \textbf{R}^{2} \\ \textbf{R}^{2} \\ \textbf{R}^{2} \\ \textbf{R}^{2} \\ \textbf{R}^{3} \\ \textbf{R}^{3} \\ \textbf{1a-e} \\ \textbf{R}^{2} \\ \textbf{R}^{3} \\ \textbf{R}^{2} \\ \textbf{R}^{3} \\ \textbf{R}^{2} \\ \textbf{R}^{3} \\$								
entry	R ¹ , R ² , R ³	R ⁴ , R ⁵ , R ⁶		yield (%) ^b	ee (%) ^{c,d}			
1	H, H, H	H, H, H	3aa	64	90			
2	H, H, H	Br, H, H	3ab	70	96			
3	H, H, H	F, H, H	3ac	57	90			
4	H, H, H	Me, H, H	3ad	65	87			
5	H, H, H	H, OMe, H	3ae	44	76			
6	H, H, H	Cl, Cl, H	3af	53	89			
7	H, H, H	H, Br, H	3ag	35	95			
8	H, H, H	H, H, Br	3ah	76	93			
9	H, H, H	H, H, OMe	3ai	49	94			
10	H, H, H	H, H, Me	3aj	20	88			
11	Me, H, H	Br, H, H	3bb	76	95			
12	H, Me, H	Br, H, H	3cb	72	90			
13	H, Br, H	Br, H, H	3db	52	81			
14	H, H, Me	Br, H, H	3eb	52	64			

^a All reactions run at 10 °C with ratio of 1a/BnZnBr/Pd(CH₃CN)₂Cl₂/ ligand = 1:1.5:0.05:0.05. ^b Isolated yield based on oxabicyclic alkenes. ^c Determined by HPLC. ^d Rotation sign is (+) for all products.

the yield varied from 20% (entry 10) to 76% (entry 8) despite the position of substituents. When 4-bromobenzylzinc bromide was used, product **3ab** was given with 70% yield and

^{(5) (}a) Lautens, M.; Renaud, J.-L.; Hiebert, S. J. Am. Chem. Soc. 2000, 122, 1804. (b) Bertozzi, F.; Pineschi, M.; Macchia, F.; Arnold, L. A.; Minnaard, A. J.; Feringa, B. L. Org. Lett. 2002, 4, 2703-2705. (c) Priego, J.; Mancheňo, O. G.; Čabrera, S.; Arrayás, R. G.; LIamas, T.; Carretero, J. C. Chem. Commun. 2002, 2512–2513.
 (6) Duan, J.-P.; Cheng, C.-H. Tetrahedron lett. 1993, 34, 4019


^{(7) (}a) Organozinc Reagents; Knochel, P., Jones, P., Eds.; Oxford University Press: New York, 1998. (b) Berk. S. C.; Yeh, M. C. P.; Jeong, N.; Knochel, P. Orgnometallics 1990, 9, 3053. (c) Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. J. Org. Chem. 1988, 53, 2390.

^{(8) (}a) Williams, J. M. J. Synlett 1996, 705 and references therein. (b) Spinz, J.; Helmchen, G. Tetrahedron Lett. 1993, 34, 1769. (c) Von Matt, P.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1993, 32, 566. For reviews, see: (d) Ghosh, A. K.; Mathivanan, P.; Cappiello, J. Tetrahedron: Asymmetry 1998, 9, 1. (e) Pfaltz, A. Synlett 1999, 835.

96% ee (Table 2, entry 2), which increased to 99% after one single recrystallization from diethyl ether. Ring opening of oxabenzonorbornadienes bearing substituents at various positions with 4-bromobenzylzinc bromide also provided the corresponding products in high enantioselectivity (entries 11-13), except that derived from dimethylfuran, which gave the product containing quaternary chiral carbon **3eb** in 64% ee (entry 14). Addition of 4-bromobenzyl-zinc bromide to 5,8-dimethyl derivative **1b** delivered the corresponding adduct **3bb** with 95% ee (entry 11).

The relative and absolute configuration of adduct **3ab** was unequivocally demonstrated by single-crystal X-ray analysis (see Supporting Information). Configuration of it was assigned as (S,S), and the hydroxyl group and benzyl group are in a *syn*-substituted pattern.

Not only benzylzinc bromide but also methyl- and ethylzinc iodide are suitable reagents in this ring-opening reaction. 1,2-Dihydro-2-methyl-1-naphthol **10** was obtained with 80% yield and 80% ee with 5 mol % of (*S*)-Pr^{*i*}-PHOX **6**, and in the presence of 5 mol % of (*R*)-BINAP **4**, 1,2-dihydro-2-ethyl-1-naphthol **11** was obtained with 81% yield and 92% ee (Scheme 3).

Although the detailed pathway is not clear, on the basis of the *syn*-stereochemistry of products and the known chemistry of ring opening of oxabicylic alkene with dialkyl-zinc in the presence of Pd catalyst,^{12, 6} the mechanism for

the reaction is expected to involve transmetalation of the palladium catalyst with benzylzinc bromide to generate palladium alkyl species.¹³ Coordination of the carbon–carbon double bond of the alkene substrate and subsequent β -oxygen elimination and then protonation of the latter species afford the ring-opening product and a Pd(II) species.

In conclusion, we have developed a Pd-catalyzed nucleophilic ring-opening reaction of oxabicylic alkenes with readily available organozinc halides, and high ee is provided. It is complementary to metal-catalyzed ring opening with dialkylzinc developed by Lautens^{3,4} and thus widens the scope of the reaction. Further applications of organozinc halides in asymmetric synthesis are in progress.

Acknowledgment. Financially supported by the National Natural Science Foundation of China, the Major Basic Research Development Program (Grant G2000077506), the National Outstanding Youth Fund, the Chinese Academy of Sciences, and the Shanghai Committee of Science and Technology. This paper is dedicated to Professor Li Xin Dai on the occasion of his 80th Birthday.

Supporting Information Available: Experimental details describing the synthesis, spectral data, and HPLC analysis for all new compounds and CIF file for compound **3ab**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL048816I

(11) Tu, T.; Deng, W.-P.; Hou, X.-L.; Dai, L.-X.; Dong, X.-C. Chem. Eur. J. 2003, 9, 3073.

(12) Lautens, M.; Hiebert, S.; Renaud, J.-L. J. Am. Chem. Soc. 2001, 123, 6834.

(13) For transfer of organic fragment from zinc of alkylzinc halides to palladium, see: Negishi, E. Acc. Chem. Res. **1982**, *15*, 340.

^{(9) (}a) Richards, C. J.; Locke, A. J. *Tetrahedron: Asymmetry* 1998, 9, 2377.
(b) Nishibayashi, Y.; Uemura, S. *Synlett* 1995, 79.
(c) Richards, C. J.; Damalidis, T.; Hibbs, D. E.; Hursthouse, M. B. *Synlett* 1995, 74.
(d) Sammakia, T.; Latham, H. A.; Schaad, D. R. *J. Org. Chem.* 1995, 62, 10.
(10) (a) Deng, W.-P.; Hou, X.-L.; Dai, L.-X.; Yu, Y.-H.; Xia, W. *Chem.*

^{(10) (}a) Deng, W.-P.; Hou, A.-L.; Dai, L.-X.; Iu, I.-H.; Ala, W. Chem. Commun. **2000**, 285. (b) Deng, W.-P.; You, S.-L.; Hou, X.-L.; Dai, L.-X.; Yu, Y.-H.; Xia, W. J. Am. Chem. Soc. **2001**, 123, 6508. For a review, see: (c) Dai, L.-X.; Tu, T.; You, S.-L.; Deng, W.-P.; Hou, X.-L. Acc. Chem. Res. **2003**, 36, 659.