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Aromatic non-conjugated tetraynes underwent step-by-step
cycloaromatization to yield 6,60-bi(benzo[b]fluoren-5-ol) deriv-
ative 1 via benzo[b]fluoren-5-ol derivatives. Treatment of com-
pound 1 with a kind of organic guest compounds afforded crys-
talline inclusion compounds (clathrates).

Benzo[b]fluorenes (BFs) have received considerable atten-
tion in the field of organic chemistry and medicinal chemistry.
They are among the most fundamental intermediates for the
synthesis of natural products possessing a tetracycline core such
as kinobscurinone, stealthin C, kinamycin, and cysfluoretin.1

A number of these natural products show Gram-positive and
-negative antibacterial properties, and antitumor activity.2

Recently, preparations of BFs as estrogen receptor antagonists
have also been reported.3 We have reported the synthesis of a
series of polycyclic aromatic compounds, including BFs, by
cycloaromatization of non-conjugated polyyne derivatives
since 1997.4 Two research groups reported the preparation of a
benzo[b]fluorene core by cycloaromatization of non-conjugated
benzodiynes5 and benzotriynes6 using our cyclization procedure.
In the hope of further developing our procedure and discovering
a new class of BFs, we newly designed 6,60-bi(5-phenylbenzo-
[b]fluoren-5-ol) derivative 1 in this study. Compound 1 was
expected to possess inclusion properties because it possesses a
double ‘‘diarylmethanol unit,’’ which is characteristic of a series
of wheel-and-axle-type host compounds with inclusion proper-
ties, such as A (Chart 1).7 We herein describe the first synthesis
of 1 by cycloaromatization of non-conjugated novel tetraynes,
along with the inclusion properties.

In the first place, we planned to synthesize the target
compound 1 by double cycloaromatization of tetrayne 5
(Scheme 1). Reaction of aldehyde 28 with lithium salt of (tri-
methylsilyl)acetylene, obtained by treatment of (trimethylsilyl)-
acetylene with n-butyllithium, gave alcohol 3 in a quantitative
yield. o-Iodoxybenzoic acid (IBX) oxidation of 3 led to the
formation of ketone derivative, followed by Grignard reaction
of the resulting ketone with phenylmagnesium bromide
(PhMgBr), and subsequent deprotection of the trimethylsilyl
group gave non-conjugated diyne 4 in 98% yield in three steps.
Dimerization of 4 for the synthesis of tetrayne 5, which is a

precursor of target compound 1, under Hay’s conditions yielded
interesting results. The Hay’s coupling9 of 4 in the presence of
tetramethylethylenediamine (TMEDA) and copper(I) iodide
(CuI) in acetone under an oxygen atmosphere gave 6,60-bi-
(5-phenylbenzo[b]fluoren-5-ol) derivative 1 directly and mono-
cycloaromatized product 6 in 23 and 18% yields, respectively,
along with unchanged 4 in a recovery yield of 45%, without
isolating tetrayne 5. It is noteworthy that cycloaromatization of
6 gave a diastereomer of 1, (5S�, 50R�, 6R�)-1, in 30% yield.

We then examined the synthesis of 1 by the step-by-step cy-
cloaromatization approach as shown in Scheme 2. Treatment of
3 with K2CO3 gave 8 in a quantitative yield. Protection of alco-
hol group of 8 with dihydropyran and subsequent iodonation of
the acetylene terminus, followed by deprotection of tetrahydro-
pyranyl group afforded 9 in 88% yield by three steps. Cross cou-
pling reaction of 4 with 9 in the presence of CuI in pyrrolidine
gave asymmetrical tetrayne 10 in 85% yield, along with 3%
yield of the homo-coupling product of 4. Cycloaromatization
of 10 in acetone gave mono-benzo[b]fluoren-5-ol 11 in 55%
yield as a mixture of diastereomers. IBX oxidation of 11 afford-
ed ketone 12 in 88% yield. Grignard reaction of 12with PhMgBr
gave selectively alcohol 13 in 47% yield, which was found to be
a diastereomer of 6 on the basis of 1HNMR. This selectivity
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Scheme 1. Cycloaromatization of non-conjugated tetraynes.
Reagents and conditions: (a) n-BuLi, (trimethylsilyl)acetylene,
THF, �78 �C. (b) (1) IBX, DMSO, rt; (2) PhMgBr, THF, 0 �C;
(3) K2CO3, MeOH, 0 �C. (c) TMEDA, CuI, O2, acetone, 45

�C.

58 Chemistry Letters Vol.35, No.1 (2006)

Copyright � 2006 The Chemical Society of Japan



would be caused by chelation-control in the Grignard reaction of
12. Finally, cycloaromatization of 13 in benzene led to the for-
mation of 1 in 67% yield. All compounds obtained in this study
were characterized by spectroscopy (NMR, IR, and FABMS)
and elemental analysis.10

Among the many species of wheel-and-axle-type host com-
pounds, molecules containing the hydroxyl group, especially the
‘‘diarylmethanol unit,’’ are known to be effective for the forma-
tion of crystalline inclusion compounds (clathrates).11 The inclu-
sion behavior of compound 1 bearing a double diarylmethanol
unit was estimated using a broad variety of guest compounds
(Table 1). The results showed that compound 1 mainly favored
clathrates in the 1:2 host/guest stoichiometric ratio, though a
few examples of the formation of clathrates in the 1:1 ratio or
2:1 ratio were observed.12

In conclusion, we have demonstrated that step-by-step
cycloaromatization of non-conjugated tetraynes proceeded
smoothly to produce 6,60-bi(5-phenylbenzo[b]fluoren-5-ol)
derivative with inclusion properties. Further studies for the syn-

thesis of a series of BFs and their detailed inclusion properties,
including determination of crystal structure, are now in progress.

We thank the Materials Analysis Center of ISIR-Sanken,
Osaka University for assisting us with elemental analysis.
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Scheme 2. Step-by-step cycloaromatization of non-conjugated
tetrayne. Reagents and conditions: (a) K2CO3, MeOH, 0 �C.
(b) (1) DHP, PPTS, CH2Cl2, rt; (2) MeLi, I2, THF, �23 �C;
(3) PPTS, MeOH, 55 �C. (c) 4, CuI, O2, pyrrolidine, �23 �C.
(d) Acetone, �45 �C. (e) IBX, DMSO, rt. (f) PhMgBr, THF,
0 �C. (g) Benzene, 80 �C.

Table 1. Crystalline inclusion compounds of 1a

CH2Cl2 DMSO DMF Et3N Pyridine PhCHO

1:1 1:2 1:2 1:1 1:2 1:2

Acetone Butan-2-one CPb Acetophenone BPc

1:2 NTd NT 1:2e 2:1e

aHost/guest stoichiometric ratios, which were determined by
1HNMR. bCyclopentanone. cBenzophenone. dNot detected.
eBinding constants of acetophenone and BP were 3:64�
103 and 4:29� 103 M�1, respectively.
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