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ABSTRACT: Although (+)-catharanthine is an attractive
alkaloid for both clinical research and organic synthetic
chemistry, only a limited number of approaches for its catalytic
asymmetric synthesis exist. Herein, we describe a novel strategy
for synthesizing a chiral intermediate of (+)-catharanthine via
phosphoric acid-catalyzed asymmetric desymmetrization of a
meso-isoquinuclidine possessing a 1,3-diol unit that was
synthesized by a formal amide insertion reaction.

The two-azabicyclo[2.2.2]octane ring system, isoquinucli-
dine, is a privileged chemical structure found in bioactive

alkaloids and pharmaceuticals (Figure 1).1,2 Novel natural

products with an isoquinuclidine core, notably a family of
monoterpenoid indoles, continue to be isolated.3 The
molecular architecture is an advantageous scaffold for
synthesizing other natural products through functionalization
of the framework.4 The development of synthetic methods,
especially asymmetric syntheses, for isoquinuclidine, is there-
fore in high demand.5,6

(+)-Catharanthine is an important member of the Iboga
class of alkaloids.7 It is a representative indole alkaloid and has
attracted the attention of clinical researchers because it can be
converted into some (pseudo)natural products4b and vinblas-
tine in one step,8 which has strong anticancer activity and is

used in the treatment of several human cancers.9 The supply of
(+)-catharanthine, however, has long relied on its extraction
from the leaves of Madagascan periwinkle (Catharanthus roseus
L. Don).10 The low natural abundance (approximately
0.0003% of dried leaf mass) and unique functionalized
isoquinuclidine with a seven-membered ring-fused indole
ring system has motivated the development of a new synthetic
route to catharanthine. Although syntheses of (±)-cathar-
anthine in a racemic format have been investigated well,11 only
one asymmetric total synthesis was achieved by Oguri,12 using
a chiral auxiliary. Asymmetric formal synthesis of catharanthine
based on a chiral pool method,13 catalytic enantioselective
Diels−Alder reaction using chiral amines5b,14 or a chiral
Brønsted acid,6 and an enantioselective Pictet−Spengler-type
reaction15 have been reported to date. Given its biological
importance and limited synthetic methodology, new synthetic
approaches to the catalytic asymmetric construction of
isoquinuclidines for synthesizing (+)-catharanthine are in
high demand.
We recently developed a formal amide insertion of metal-

carbene16 followed by a diastereoselective reduction sequence
for the synthesis of meso-isoquinuclidine 5 with a 1,3-diol unit
from easily available diazo compounds 3 (Scheme 1).17 This
meso compound could be a versatile synthetic scaffold for a
chiral 2-azabicyclo[2.2.2]octane ring system with four chiral
stereocenters if an asymmetric desymmetrization of 5 is
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Figure 1. Indole alkaloids possessing an isoquinuclidine framework.
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achieved. Methods for the desymmetrization of meso-1,3-diol,
however, are quite limited18 compared with that of meso-1,2-
diol,19 for which reactions using structurally simple 1,3-diols
were developed. Takasu and Yamada developed an asymmetric
acylation of cyclic secondary alcohols20 to separate the
enantiomeric constituents from a racemic mixture21 using a
chiral phosphoric acid.22 The acid catalyst enhanced the
electrophilicity of an acylation reagent and activated one
enantiomer of the secondary alcohol under a chiral environ-
ment. This background led us to hypothesize that desymmet-
rization of 5 would be realized using a chiral phosphoric acid
under the appropriate conditions. The application allowed us
to overcome the fundamental limitations of the yield (≤50%)
in our previous method based on kinetic resolution and
enantioselective synthesis of the isoquinuclidine architecture.
Herein, we report an amide insertion-asymmetric desym-

metrization strategy for the synthesis chiral isoquinuclidine,
leading to the formal asymmetric synthesis of (+)-cathar-
anthine.
Our synthesis commenced by the synthesis of 5 via a formal

amide insertion reaction, and then asymmetric acylation of the
meso-1,3-diol was examined using chiral phosphoric acid
catalyst 8a (Scheme 2).23 At first, the asymmetric acylation

was applied to 5 in CHCl3 at room temperature, but that
resulted in low yield with no enantiomeric excess. This is
presumably due to a basic nitrogen functionality of the
substrate, which would cause a background reaction promoted
by intramolecular hydrogen bonding and/or deactivation of
the acid catalyst. Actually, the reaction of 5 without a catalyst
proceeded even at low temperatures (Scheme 3). To suppress
the nonselective reaction, we prepared N-Boc-protected
substrate 9 and tried desymmetrization, which afforded 10
with a 53:47 er. The reaction of 12 with an N-Ns group24 as a
more powerful electron-withdrawing substituent using 8a

furnished the corresponding monoester 13 in an enantioen-
riched form, although a prolonged reaction time and a higher
temperature were required [89:11 er (entry 1, Table 1)].

Subsequent solvent screening to optimize the reaction
conditions revealed that a polar solvent was not suitable for
this reaction, giving 13 with decreased enantioselectivity (1,4-
dioxane, 66:34 er, entry 2). Nonpolar solvents, such as
benzene, PhCF3, and toluene, afforded 13 with good
enantioselectivity, although the product yields were still low
(36−55% yield, entries 3−5, respectively). Next, electronic
tuning and steric tuning of the Brønsted acid catalyst were
performed. The use of catalyst 8b, 8c, or 8f possessing a 3,5-
(CF3)2-C6H3, 4-Mes-C6H3, or Ph3Si group, respectively, at the
3,3′-positions of the BINOL core was not effective (77:23−
80:20 er, entries 6−8). Meanwhile, introduction of a nitro
group at the 6,6′-positions of the BINOL backbone was
beneficial for improving both the yield and the enantiose-
lectivity (8d, 60% yield, 96:4 er, entry 9).20,25 Isopropyl groups
on catalyst 8e were replaced with cyclohexyl groups to further
increase the reaction efficiency, producing 13 in 74% yield and
97:3 er (entry 10).26,27

Having successfully constructed chiral isoquinuclidine 13,
we moved on to the formal synthesis of (+)-catharanthine
(Scheme 4). First, 13 was converted into 14 via cost-friendly
Albright−Goldman oxidation28 using Ac2O in DMSO in 89%
yield. After recrystallization of 14 to increase the optical purity,
triflation using KHMDS and PhNTf2 proceeded in good yield.
Triflate 15 was next exposed to reductive conditions with
PdCl2(PPh3)2/HCOOH, affording disubstituted olefin 16 in

Scheme 1. Synthetic Strategy for Chiral Isoquinuclidine
Based on an Amide Insertion-Asymmetric
Desymmetrization Sequencea

aPMB is p-methoxybenzyl.

Scheme 2. Initial Trial of Desymmetrization

Scheme 3. Acylation Reaction without the Use of a Catalyst

Table 1. Optimization of the Reaction Conditions for
Asymmetric Desymmetrization

entry catalyst solvent yield (%) er

1a 8a CHCl3 40 89:11
2 8a 1,4-dioxane 35 66:34
3 8a benzene 55 86:14
4 8a PhCF3 36 91:9
5 8a toluene 51 92:8
6 8b toluene 68 78:22
7 8c toluene 55 77:23
8 8f toluene 49 80:20
9 8d toluene 60 96:4
10 8e toluene 74 97:3

aReaction was performed under reflux.

Organic Letters Letter

DOI: 10.1021/acs.orglett.9b01198
Org. Lett. XXXX, XXX, XXX−XXX

B

http://dx.doi.org/10.1021/acs.orglett.9b01198


85% yield. Direct dehydration of 13 to 16 using Burgess
reagent or Martin’s Sulfurane did not proceed. The ester unit
at each side in 16 was cleaved with aqueous NaOH in 1,4-
dioxane at 80 °C. The hydroxyl group of 17 was oxidized
under Albright−Goldman oxidation conditions, and its crude
product was pure enough to be utilized for the next step
without further purification. Although deprotection of the Ns
group was unsuccessful by common methods such as using
PhSH, it could be removed with a solid-supported thiol resin29

at an elevated temperature for 15 h. After the used MetSthiol
had been removed by filtration, the resulting secondary amine
was condensed with indole-3-acetic acid using EDCI to afford
18 in 47% yield (three steps). The absolute configuration was
determined at this stage by comparing the optical rotation with
the known compound.5b,13 Finally, C−C bond linkage between
the indole C-2 position and the isoquinuclidine ring was
constructed (18 → 19) through the reaction sequence using
Pd-mediated seven-membered ring formation followed by
hydride reduction.11c

In summary, we achieved an asymmetric formal synthesis of
(+)-catharanthine via desymmetrization of meso-isoquinucli-
dine using an electronically and sterically tuned Brønsted acid
catalyst. The key meso-2-amino-1,3-diol was synthesized by an
amide insertion reaction followed by protecting-group
manipulation. The obtained chiral mono ester was converted
into a chiral synthetic intermediate for (+)-catharanthine in
eight steps. The late-stage introduction of the indole unit
would contribute to the development of a diversity-oriented
strategy for the syntheses of other Iboga-class alkaloids with an
array of substituents on the indole ring. Studies based on the
symmetry-breaking strategy for other ring systems are ongoing
in our laboratory.

■ ASSOCIATED CONTENT
*S Supporting Information

The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.or-
glett.9b01198.

Experimental details and characterization data (PDF)

■ AUTHOR INFORMATION
Corresponding Authors

*E-mail: sharada@chiba-u.jp.
*E-mail: tnemoto@faculty.chiba-u.jp.
ORCID
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