View Article Online View Journal

ChemComm

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: W. Fang, Y. Wei and M. Shi, *Chem. Commun.*, 2017, DOI: 10.1039/C7CC07042J.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/chemcomm

Published on 02 October 2017. Downloaded by Freie Universitaet Berlin on 02/10/2017 16:28:41

Journal Name

COMMUNICATION

Gold(I)-Catalyzed Intramolecular Tandem Cyclization Reaction of Alkylidenecyclopropane-Containing Alkynes⁺

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Wei Fang,^a Yin Wei^{*b} and Min Shi^{*a,b,c}

A novel gold(I)-catalyzed intramolecular tandem cyclization reaction of *ortho*-(arylethynyl)arenemethylenecyclopropanes provided an efficient approach to prepare functionalized 11*H*-benzo[a]fluorene derivatives in moderate to good yields. The further transformations as well as application of the product have been presented and a plausible reaction mechanism has been also proposed on the basis of deuterium labeling and control experiments.

Gold catalysis has witnessed a rapid development in the past decades in organic chemistry. Nowadays homogeneous gold catalysis has become one of the most efficient strategies for the construction of carbon-carbon or carbon-heteroatom bonds.^[1] Gold-catalyzed transformations^[2] have been also widely used in material science, medicinal chemistry and total synthesis in recent years due to the mild reaction conditions and unique catalytic activities. Methylenecyclopropanes (MCPs) or alkylidenecyclopropanes, containing a highly strained cyclopropane ring, are readily accessible and highly reactive molecules that have served as useful building blocks in organic synthesis.^[3] Owing to their unique structural features and electronic properties, transition metal-catalyzed (Pd, Rh, Pt, Au, Ni etc.) reactions of MCPs have been extensively investigated.^[4] For example, in 2010, Zhang's group reported a Ni-catalyzed intramolecular cycloaddition of MCPs to arylalkynes via proximal bond cleavage, giving polycyclic products (Scheme 1, a).^[5] Moreover, our group also disclosed a gold(I)-catalyzed tandem cyclization-oxidation of MCP-containing 1,5-enynes with 3,5-dibromopyridine N-oxide via proximal bond cleavage

and non-carbene reaction model (Scheme 1, b).^[6] On the basis of above information and previous studies, we attempted to utilize substrate **1a** under gold catalysis to examine the reaction outcomes (Scheme 1, c). To our delight, we found that a novel gold(I)-catalyzed intramolecular tandem cyclization reaction took place smoothly via distal bond cleavage, giving the desired 6-methyl-11*H*-benzo[a]fluorene product **2a** in good yield under mild conditions.^[7] In this paper, we wish to report this finding.

We initially stated to optimize the reaction conditions for the production of **2a** using **1a** as a model substrate and the screening results are shown in Table 1. Substrate **1a** in the presence of IPrAu(MeCN)NTf₂ (5.0 mol%) in toluene at 100 °C did not deliver the desired product **2a** after 3 hours (Table 1, entry 1). The use of (2,4-*t*-BuC₆H₃O)₃PAu(MeCN)OTf (5.0 mol%) as the catalyst also failed to give **2a** under the same condition (Table 1, entry 2). It was found that **2a** was afforded in 42% yield in the presence of Me₄-*t*-BuXphosAuCl/AgSbF₆ (5.0 mol%) in toluene at 100 °C within 3 hours (Table 1, entry 3). Cy₃PAuCl/AgSbF₆ (5.0 mol%) and *t*-BuXphosAuCl/AgSbF₆ (5.0 mol%) did not further improve the yield of **2a** (Table 1, entries

^{a.} Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanahai 200237, China

^{b.} State Key Laboratory of Organometallic Chemistry, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China.

E-mail: weiyin@sioc.ac.cn, mshi@sioc.ac.cn.

^c State Key Laboratory and Institute of Elemento-organic Chemistry, Nankai University, Tianjin 300071, P. R. China.

[†] Electronic Supplementary Information (ESI) available: Experimental procedures, characterization data of new compounds, and CCDC 1539942, 1559789. See DOI: 10.1039/b000000x

Published on 02 October 2017. Downloaded by Freie Universitaet Berlin on 02/10/2017 16:28:41

DOI: 10.1039/C7CC07042J Journal Name

4 and 5). JackiephosAuCl/AgSbF₆ (5.0 mol%) provided 2a in the same yield as that of Me_4 -t-BuXphosAuCl/AgSbF₆ (Table 1, entry 6). Utilizing XphosAuCl/AgSbF₆ (5.0 mol%) as catalyst, 2a was formed in 52% yield in toluene at 100 °C within 3 hours (Table 1, entry 7) and SphosAuCl/AgSbF₆ (5.0 mol%) only gave 2a in 34% yield under the preceding condition (Table 1, entry 8). Delightfully, t-BuBrettphosAuCl/AgSbF₆ (5.0 mol%) could deliver 2a in 89% yield in toluene at 100 °C within 3 hours (Table 1, entry 9), although the use of JohnphosAuCl/AgSbF₆ (5.0 mol%) only gave 2a in 50% yield under identical conditions (Table 1, entry 10). Furthermore, (p-CF₃C₆H₄)₃PAu(MeCN)SbF₆ (5.0 mol%), IPrAu(MeCN)SbF₆ (5.0 mol%), and Ph₃PAu(MeCN)SbF₆ (5.0 mol%) and AgSbF₆ itself (5.0 mol%) did not promote the transformation under the preceding condition (Table 1, entries 11-14). Next, we screened solvent effects in the presence of t-BuBrettphosAuCl/AgSbF₆ (5.0 mol%). Using 1,2-dichloroethane (DCE), dioxane, MeCN and PhCl as the solvent, 2a was obtained in lower yields and no reaction could take place in PhOMe (Table 1, entries 15-19). The examination of reaction temperature revealed that carrying out the reaction at 90 or 110 °C did not enhance the yield of 2a (Table 1, entries 20 and 21). The optimal conditions have been identified as that using t-BuBrettphosAu(MeCN)SbF₆ (5.0 mol%) as the catalyst and performing the reaction in toluene at 100 °C within 2 hours afforded 2a in 90% yield NMR yield (83% isolated yield) within 2 hours (Table 1, entry 22).

Table 1 Optimization of the reaction conditions for the synthesis of 2a					
	$\begin{array}{c} cat (5.0 \text{ mol}\%) \\ \hline solvent, temp, 3 \text{ h} \end{array} 2a \end{array}$				
_	entry	catalyst	solvent	temp (°C)	yield ^a (%)
	1	IPrAu(MeCN)NTf ₂	toluene	100	NR
	2	(2,4-t-BuC ₆ H ₃ O) ₃ PAu(MeCN)OTf	toluene	100	NR
	3	Me ₄ -t-BuXphosAuCl/AgSbF ₆	toluene	100	42
	4	Cy ₃ PAuCl/AgSbF ₆	toluene	100	14
	5	t-BuXphosAuCl/AgSbF ₆	toluene	100	32
	6	JackiephosAuCl/AgSbF ₆	toluene	100	42
	7	XphosAuCl/AgSbF ₆	toluene	100	52
	8	SphosAuCl/AgSbF ₆	toluene	100	34
	9	t-BuBrettphosAuCl/AgSbF6	toluene	100	89
	10	JohnphosAuCl/AgSbF ₆	toluene	100	50
	11	(p-CF ₃ Ph) ₃ PAuSbF ₆	toluene	100	NR
	12	IPrAu(MeCN)SbF ₆	toluene	100	NR
	13	Ph ₃ PAu(MeCN)SbF ₆	toluene	100	NR
	14	AgSbF ₆	toluene	100	NR
	15	t-BuBrettphosAuCl/AgSbF6	DCE	100	21
	16	t-BuBrettphosAuCl/AgSbF6	dioxane	100	55
	17	t-BuBrettphosAuCl/AgSbF6	MeCN	100	20
	18	t-BuBrettphosAuCl/AgSbF ₆	PhCI	100	16
	19	t-BuBrettphosAuCl/AgSbF6	PhOMe	100	NR
	20	t-BuBrettphosAuCl/AgSbF6	toluene	90	42
	21	t-BuBrettphosAuCl/AgSbF ₆	toluene	110	75
-	22	t-BuBrettphosAu(MeCN)SbF6	toluene	100	90 (83 ^b)

Reaction conditions: **1a** (0.1 mmol), catalyst (5.0 mol%), solvent (0.5 mL).^{*a*} Yields were determined by ¹H NMR spectroscopy. ^{*b*} The isolated yield within 2 hours. NR is no reaction.

Having the optimal reaction conditions in hand, we next investigated substrate scope of the reaction with respect to various substituted *ortho*-(arylethynyl)arenemethylenecyclopropanes **1**. Firstly, we examined the substituents R¹ at the aromatic ring and the results are shown in Table 2. As can be seen, the desired products **2b-2f** were afforded in good to excellent yields when R¹ was an alkyl group having different steric bulkiness at *para*

position. Introducing halogen atoms such as F, Cl and Br at para positions afforded the corresponding 6-methyl-11Hbenzo[a]fluorenes 2g-2i in moderate to good yields. If R¹ was OMe, Ph and CF₃, the corresponding products 2j-2l were obtained in 92%, 68% and 20% yields, respectively, suggesting a significant electronic impact on the reaction proceeding. In the case of R^1 = CN at the *para* position of alkynyl group, no reaction occurred. We also introduced electron-donating substituents such as t-Bu and OMe at the meta positions of aklynyl group and found that the reaction proceeded smoothly, giving the desired 6-methyl-11H-benzo[a]fluorenes 2n and 2o in 62% and 86% yields, respectively. However, when substituents such as F, Cl and OMe were introduced at the ortho positions of alkynyl group, the corresponding 6-methyl-11H-benzo[a]fluorenes 2p-2r were given in 29%, 32% and 25% yield, respectively, indicating a significant steric effect. Notably, introducing a heterocycle at terminal alkyne, such as substrate 1s, furnished the desired product 2s in 74% yield. Furthermore, a gram scale synthesis of 2a was also accessible, affording 2a in 66% yield. In general, the electron-rich aromatic ring having substituent R^1 is in favour of the transformation.

Table 2 Reaction scope of substituent R¹.^a

^{*a*} Reactions were carried out by use of **1** (0.2 mmol) in toluene (1.0 mL) with *t*-BuBrettphosAu(MeCN)SbF₆ (9.0 mg, 5.0 mol %) at 100 ^{*o*}C within 2 hours, isolated yields. ^{*b*} Reaction was carried out on a 0.900 gram scale of **1a** by use of 32.8 mg *t*-BuBrettphosAu(MeCN)SbF₆ (1.0 mol %). NR is no reaction.

Next, the substituents R² at the benzene ring bearing MCP moiety were also examined with substrates 1aa-1kk as shown in Table 3. When R² was Me, F and Cl at C4 position, the reactions proceeded smoothly to deliver the corresponding products 2aa-2cc in 82%, 88% and 85% yields, respectively. Introducing Me, F, Cl, CF₃ and NO₂ at C5 position, the corresponding 6-methyl-11H-benzo[a]fluorenes 2dd-2hh were formed in 78%, 76%, 80%, 72% and 46% yields, respectively. The structure of 2ff was assigned by X-ray diffraction (see Supporting Information for the details). CF_3 and NO_2 groups are both tolerated in the reaction. Notably, substrate 1ii containing benzo[d][1,3]dioxole heterocycle offered the desired product 2ii in a significantly decreased yield. Furthermore, if utilizing naphthalene or pyridine to replace benzene ring, the reaction did not take place under the standard conditions.

Published on 02 October 2017. Downloaded by Freie Universitaet Berlin on 02/10/2017 16:28:41

lease do not adjust margins ChemComm

View Article Online DOI: 10.1039/C7CC07042J COMMUNICATION

Table 3 Reaction scope of substituent R².^a

Journal Name

^{*a*} Reactions were carried out by use of **1** (0.2 mmol) in toluene (1.0 mL) with *t*-BuBrettphosAu(MeCN)SbF₆ (9.0 mg, 5.0 mol %) at 100 $^{\circ}$ C within 2 hours, isolated yields. NR is no reaction.

To further clarify the substrate scope, substrates **3**, **5**, **7** and **8** were prepared and the experimental results are shown in Scheme 2. Substrate **3** bearing an isoproylidene moiety as well as substrate **5** having a cyclobutylidene moiety afforded the corresponding products **4** and **5** in 84% and 88% yields, respectively via a 1,5-enyne 5-*endo-dig* cycloisomerization^[8] pathway (Scheme 2, entries 1-2). Substrate **7** bearing an benzyl group and substrate **8** having a methyl group both gave complex product mixtures (Scheme 2, entries 3-4).

To demonstrate the synthetic utility of these functionalized 11*H*-benzo[a]fluorene derivatives, further transformations were performed as shown in Scheme 3. 6-methyl-11*H*-benzo[a]fluorene **2a** was oxidized to 6-methylbenzo[a]fluorene-11-one **9** in 99% yield in the presence of KOH in DMF under air. Product **9** has potential application in material science, including optical materials, organic dyes, organic light emitting materials (OLEDs).^[9] Treatment of **9** with NaBH₄ provided the corresponding reduction product **10** in 99% yield.

To illuminate the reaction mechanism, four deuteriumlabeling experiments were performed under the standard conditions. Adding 5.0 equiv of D_2O into the reaction gave the deuterated product [D]-**2a-1** in 83% yield along with deuterium incorporation at C1 with 43% D content, at C2 with 80% D content and at C3 with 10% D content (Scheme 4, eq. 1). When 2.0 equiv of D_2O was employed, the deuterated product [D]-**2a-2** was given in 81% yield along with deuterium incorporation at C1 with 26% D content and at C2 with 65% D content (Scheme 4, eq. 2). Utilizing deuterated [D]-**1a-H** as substrate, the reaction proceeded smoothly to offer the corresponding partially deuterated product [D]-**2a-3** in 79% yield along with 26% D content at C1 and 65% D content at C2 (Scheme 4, eq. 3). Trace of the desired product was formed when 99% deuterated [D]-**1a-Ph** was used as substrate, probably because the C-D bond is more stable^[10] which hindered the form of intermediate **IV** derived from intermediate **III** shown in Scheme 5 and the desired product could not be accessed smoothly (Scheme 4, eq. 4).

Based on the above experimental results and pervious reports, a plausible mechanism for gold(I)-catalyzed intramolecular tandem cyclization reaction of 1a is outlined in Scheme 5. At the beginning, substrate 1a evolves through a 5endo-dig cycloisomerization to give intermediate I in the presence of gold catalyst, which produces intermediate II through deprotonation. Intermediate II undergoes i) protodeauration, ii) reactivation by gold(I) and iii) cyclopropane ring-opening process (distal C-C bond cleavage) to produce allylic carbocation III.^[11] A subsequent Friedel-Crafts-type cyclization delivers intermediate IV, which undergoes dehydro-aromatization to afford intermediate V. Following olefinic isomerization, intermediate VI is formed. Then, a stable vinyl-gold(I) species VII is generated through a 1,3-gold migration.^[12] Protonation of intermediate VII releases gold(I) catalyst to afford intermediate VIII, which undergoes intramolecular 1,3-proton transfer to give the final product 2a. In the presence of large amount of D_2O (5.0 equiv), the high concentration of D^+ may cause the deuteration at C3 during the reaction proceeding since product 2a remained unchanged upon treatment with D₂O under identical conditions (see Supporting Information).

Fluorine derivatives have high solution- and solid-state photoluminescence quantum yields and are used in the field of blue-emitting materials.^[13] Therefore, compounds **2b** and **2ii** were selected for studying their photonic properties. As shown in Figure 1, **2ii** showed a better fluorescence emission than **2b** when they were excited at $\lambda = 271$ nm. The quantum yield (Φ) of **2ii** even reached to 0.59 (see Supporting Information), suggesting that 11*H*-benzo[a]fluorene derivatives could be also realized as the highly promising candidates for blue OLEDs.^[14]

Figure 1 Fluorescence emission of 2b and 2ii: samples were measured in CH₂Cl₂, c = 1.0 μМ.

In conclusion, we have developed a novel gold(I)-catalyzed intramolecular tandem cyclization reaction of alkylidenecyclopropane-containing alkynes provided an efficient access to 11H-benzo[a]fluorene derivatives in moderation to excellent yields under mild conditions. In addition, a plausible mechanism has been proposed on the basis of deuterium-labeling and control experiments and a promising application of these 11H-benzo[a]fluorene products for blue OLEDs has been also explored. Further investigations on the mechanistic details and exploration of new methodology based on gold(I)-catalyzed transformations of MCPs are currently underway in our laboratory.

Conflicts of interest

Published on 02 October 2017. Downloaded by Freie Universitaet Berlin on 02/10/2017 16:28:41

There are no conflicts of interest to declare.

Acknowledgment

We are grateful for the financial support from the National Basic Research Program of China (973)-2015CB856603, the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDB2000000, the National Natural Science Foundation of China (20472096, 21372241, 21572052, 20672127, 21421091, 21372250, 21121062, 21302203, 20732008, 21772037 and 21772226), and the Fundamental Research Funds for the Central Universities 222201717003.

Notes and references

- L.-P. Liu and G. B. Hammond, Chem. Soc. Rev., 2012, 41, 3129. 1.
- (a) A. Fürstner and P. Hannen, Chem. Eur. J., 2006, 12, 3006; 2. (b) L. Xin, K. -S. J. Joshua and F. D. Toste, Angew. Chem. Int. Ed.,

2007, 46, 7671; (c) N. Marion and S. P. Nolan, Chem. Soc. Rev., 2008, 37, 1776; (d) A. Fürstner and A. Schlecker, Chem. - Eur. J., 2008, 14, 9181; (e) M. Rudolph and A. S. K. Hashmi, Chem. Soc. Rev., 2012, 41, 2448; (f) W. Chaladaj, M. Corbet and A. Fürstner, Angew. Chem. Int. Ed., 2012, 51, 6929; (g) H. C. Shen and T. H. Graham, Drug Discov Today Technol, 2013, 10, e3; (h) L. Hoffmeister, T. Fukuda, G. Pototschnig and A. Fürstner, Chem. - Eur. J., 2015, 21, 4529; (i) J. Carreras, M. S. Kirillova and A. M. Echavarren, Angew. Chem. Int. Ed., 2016, 55, 7121; (j) A. M. Echavarren, A. S. K. Hashmi and F. D. Toste, Adv. Synth. Catal., 2016, 358, 1347; (k) M. S. Kirillova, M. E. Muratore, R. Dorel and A. M. Echavarren, J. Am. Chem. Soc., 2016, 138, 3671; (I) D. Pflaesterer and A. S. K. Hashmi, Chem. Soc. Rev., 2016, 45, 1331.

- For selected reviews, see: (a) L. Yu and R. Guo, Org. Prep. 3. Proced. Int., 2011, 43, 209; (b) A. Brandi, S. Cicchi, F. M. Cordero and A. Goti, Chem. Rev., 2014, 114, 7317; (c) D.-H. Zhang, X.-Y. Tang and M. Shi, Acc. Chem. Res., 2014, 47, 913; (d) L. Yu, M. Liu, F. Chen and Q. Xu, Org. Biomol. Chem., 2015, 13, 8379
- 4. (a) M. Shi, L.-P. Liu and J. Tang, Org. Lett., 2006, 8, 4043; (b) H. Taniguchi, T. Ohmura and M. Suginome, J. Am. Chem. Soc., 2009, 131, 11298; (c) K. Ogata, Y. Atsuumi and S.-i. Fukuzawa, Org. Lett., 2010, 12, 4536; (d) K. Chen, Z.-Z. Zhu, Y.-S. Zhang, X.-Y. Tang and M. Shi, Angew. Chem. Int. Ed., 2014, 53, 6645; (e) T. Ohmura, H. Taniguchi and M. Suginome, ACS Catal., 2015, 5, 3074; (f) Z. Zhu, K. Chen, Q. Xu and M. Shi, Adv. Synth. Catal., 2015, 357, 3081; (g) Z.-Z. Zhu, K. Chen, L.-Z. Yu, X.-Y. Tang and M. Shi, Org. Lett., 2015, 17, 5994; (h) K. Chen, Z.-Z. Zhu, J.-X. Liu, X.-Y. Tang, Y. Wei and M. Shi, Chem. Commun., 2016, 52, 350
- B. Yao, Y. Li, Z. Liang and Y. Zhang, Org. Lett., 2011, 13, 640. 5.
- L.-Z. Yu, Y. Wei and M. Shi, ACS Catal., 2017, 7, 4242. 6.
- 7. Compound 2a was synthesized upon heating with 20% hydrochloric acid at 150 °C for 2.0 days. V. Bilinski and A. S. Dreiding, Helvetica Chimica Acta, 1974, **57**, 2525.

- 8. (a) C. Nevado, D. J. Cardenas and A. M. Echavarren, Chem. -Eur. J., 2003, 9, 2627; (b) A. Escribano-Cuesta, V. Lopez-Carrillo, D. Janssen and A. M. Echavarren, Chemistry, 2009, 15, 5646; (c) A. M. Sanjuan, M. A. Rashid, P. Garcia-Garcia, A. Martinez-Cuezva, M. A. Fernandez-Rodriguez, F. Rodriguez and R. Sanz, Chemistry, 2015, 21, 3042; (d) S. Jalal, K. Paul and U. Jana, Org. Lett., 2016, 18, 6512; (e) S. Tamke, Z.-W. Qu, N. A. Sitte, U. Floerke, S. Grimme and J. Paradies, Angew. Chem. Int. Ed., 2016, 55, 4336.
- (a) L. Oldridge, M. Kastler and K. Müllen, Chem. Commun., 9. 2006, 885; (b) K. Zhang, Z. Chen, C.-L. Yang, Y.-T. Tao, Y. Zou, J.-G. Qin and Y. Cao, J. Mater. Chem., 2008, 18, 291; (c) H. S. Oh, S. Liu, H. Jee, A. Baev, M. T. Swihart and P. N. Prasad, J. Am. Chem. Soc., 2010, 132, 17346; (d) K. M. Omer, S.-Y. Ku, Y.-C. Chen, K.-T. Wong and A. J. Bard, J. Am. Chem. Soc., 2010, 132, 10944; (e) C.-J. Qin, A. Islam and L.-Y. Han, J. Mater. Chem., 2012, 22, 19236.
- 10. P. Wang, F.-F. Wang, Y. Chen, Q. Niu, L. Lu, H.-M. Wang, X.-C. Gao, B. Wei, H.-W. Wu, X. Cai and D.-C. Zou, J. Mater. Chem. C, 2013. **1**. 4821.
- 11. M. Shi, L. Wu and J.-M. Lu, J. Org. Chem., 2008, 73, 8344.
- 12. G. Kovacs, A. Lledos and G. Ujaque, Angew. Chem. Int. Ed., 2011. 50. 11147.
- 13. K. S. Kim, Y. M. Jeon, J. W. Kim, Ch. W. Lee and M. S. Gong, Org. Electron., 2008, 9, 797.
- 14. J. Wang, W. Wan, H. Jiang, Y. Gao, X. Jiang, H. Lin, W. Zhao and J. Hao, Org. Lett., 2010, 12, 3874.

DOI: 10.1039/C7CC07042J

Journal Name

Journal Name

do not adjust margins ChemComm

View Article Online DOI: 10.1039/C7CC07042J COMMUNICATION

ChemComm Accepted Manuscript

Gold(I)-catalyzed intramolecular tandem cyclization reaction of alkylidenecyclopropane-containing alkynes

t-BuBrettPhosAu(NCMe)SbF₆ R² R toluene, 100 °C 30 examples up to 93% yield a promising candidate for blue OLEDs -R[^]

gold-catalyzed distal C-C bond cleavage of MCPs and tandem cyclization

A novel strategy for gold(I)-catalyzed intramolecular cyclization orthotandem reaction of (arylethynyl)arenemethylenecyclopropanes has been developed, providing a facile access to functionalized 11*H*-benzo[a]fluorene derivatives.

Wei Fang, Yin Wei* and Min Shi*