Accepted Manuscript

SET-promoted photoaddition reactions of fullerene C_{60} with tertiary N-trimethylsilylmethyl substituted α -aminonitriles. Approach to the synthesis of fulleropyrrolidine nitriles

Suk Hyun Lim, Dae Won Cho, Jungkweon Choi, Hyunjun An, Jun Ho Shim, Patrick S. Mariano

PII: S0040-4020(17)30904-3

DOI: 10.1016/j.tet.2017.08.057

Reference: TET 28951

To appear in: Tetrahedron

Received Date: 8 August 2017

Revised Date: 29 August 2017

Accepted Date: 31 August 2017

Please cite this article as: Lim SH, Cho DW, Choi J, An H, Shim JH, Mariano PS, SET-promoted photoaddition reactions of fullerene C₆₀ with tertiary *N*-trimethylsilylmethyl substituted α -aminonitriles. Approach to the synthesis of fulleropyrrolidine nitriles, *Tetrahedron* (2017), doi: 10.1016/j.tet.2017.08.057.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

SET-Promoted Photoaddition Reactions of Fullerene C₆₀ with Tertiary *N*-Trimethylsilylmethyl Substituted α-Aminonitriles. Approach to the Synthesis of Fulleropyrrolidine Nitriles

Suk Hyun Lim,¹ Dae Won Cho,^{1*} Jungkweon Choi,² Hyunjun An,³ Jun Ho Shim,³

Patrick S. Mariano^{4*}

¹Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Korea

(dwcho00@yu.ac.kr)

²Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS),

Daejeon 305-701, Korea

³Department of Chemistry and Institute of Basic Science, Daegu University, Gyeongsan, Gyeongbuk

38453, Korea

⁴Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque,

New Mexico 97131, USA

(mariano@unm.edu)

Graphical Abstract

Abstract

Photoaddition reactions of C_{60} with tertiary *N*-arylmethyl-*N*-trimethylsilylmethyl substituted α aminonitriles were explored. The results show that these photoreactions produce both trimethylsilyland cyano group containing fulleropyrrolidines as major products through pathways involving 1,3dipolar cycloadditon of azomethine ylide intermediates. The ylides are formed either by SET from α aminonitriles to the triplet excited state of C_{60} (in N₂-purged solutions) followed by desilylation or deprotonation, or by hydrogen atom abstraction by singlet oxygen (in O₂-purged solutions). In contrast, photoreactions of C_{60} with analogous amines that do not contain trimethylsilyl group form fulleropyrrolidines that contain aryl- and cyano substitutents on the pyrrolidine ring. The efficiencies of these photoaddition reactions are influenced by several factors including reaction condition (N₂ or O₂-purged), solvent polarity, the electronic and structural nature of α -aminonitriles and additive. The presence of trimethylsilyl group in the α -aminonitrile substrates plays a crucial role in enhancing the efficiencies of the fulleropyrrolidine forming reactions.

3

Introduction

Chemical transformation of fullerenes to organofullerene derivatives, which possess unique photochemical and photophysical properties, is required for potential applications in the fields of material and biological sciences.¹⁻⁷ Among a number of organofullerene families probed so far, those containing appended amine functionality have attracted interests owing to their synthetic accessibility and well-defined structures. Especially interesting in this regard are fulleropyrrolidines in which the fullerene ring system is fused to a five-membered N-heterocyclic ring.⁸⁻¹⁴ A variety of thermal, metal-catalyzed and photochemical methods using α -amino acid derivatives have been developed for the preparation of fulleropyrrolidines. For instance, the pioneering work of Prato and co-workers^{7a,7b,8} led to the development of thermally promoted 1,3-dipolar cycloaddition reactions of fullerene C_{60} with azomethine ylides. The ylide serving as the intermediate in this process is generated through condensation reaction of N-methylglycine with formaldehyde followed by decarboxylation. Since that time, related approaches have been devised to prepare fulleropyrrolidines using a variety of other azomethine ylide precursors such as a combination of α -amino acids and aldehydes,¹⁵ aziridinoesters⁸ and α -iminoesters (Scheme 1).^{13,14} Recently, during an exploration of Prato type thermal reactions of C₆₀, Wang and co-workers^{10a} discovered that α -amino acids and α aminoesters undergo sequential deamination-decarboxylation to generate aldehydes, which then react in situ with the starting α -amino acids/esters to form azomethine ylides that add to C₆₀ to form fulleropyrrolidines. More recently, Liu and co-workers⁹ reported that thermal reactions of C_{60} with mixtures of arylmethylamines (ArCH₂NHR, R = H, alkyl) and arylaldehydes (ArCHO) give rise to stereoselective formation of 2,5-diaryl substituted pyrrolidine containing fullerene adducts.

Scheme 1.

a) Prato thermal reaction of α-amino acid

$$Me^{-H} \xrightarrow{CO_2H} + H^{H} \xrightarrow{O}_{H} \xrightarrow{\Delta} Me^{-H} \xrightarrow{C_{60}}$$

b) Aziridinoester ring opening

$$\overset{\text{Bn}}{\underset{\text{CO}_2\text{Me}}{\overset{\text{N}}{\underset{\text{ring-open}}{\overset{\text{Dn}}{\xrightarrow{}}}}} \overset{\text{Bn}}{\underset{\text{N}_{+}}{\overset{\text{CO}_2\text{Me}}{\xrightarrow{}}}} \overset{\text{CO}_{60}}{\underset{\text{CO}_2\text{Me}}{\overset{\text{CO}_{60}}{\xrightarrow{}}}}$$

c) Deprotonation of α -iminoester

$$Ph_{u \neq v} N CO_{2}Me \xrightarrow{\Delta} Ph_{u \neq v} H CO_{2}Me \xrightarrow{C_{60}}$$

From a) ; $R^1 = R^3 = H$, $R^2 = Me$ From b) ; $R^1 = H$, $R^2 = CH_2Ph$, $R^3 = CO_2Me$ From c) ; $R^1 = Ph$, $R^2 = H$, $R^3 = CO_2Me$

Metal-catalyzed cycloaddition reactions of amines with C_{60} also have been employed to prepare fulleropyrrolidines. Martin and co-workers¹⁴ revealed that α -iminoesters, derived by reactions of arylaldehydes with primary α -aminoesters, add to C_{60} in the presence of Cu(II) or Ag(I) at room temperature to generate mixtures of diasteromeric fulleropyrrolidines (Scheme 2). Interestingly, when these processes were conducted in the presence of chiral organic additives, stereoselective and enantioselective formation of fulleropyrrolidine adducts took place. In addition, the results of a study by Liu and co-workers^{12a} showed that Fe(III)-catalyzed reactions of primary and secondary arylmethylamines (ArCH₂NHR, R = H, alkyl) with C₆₀ occur to produce fulleropyrrolidines stereoselectively.

Scheme 2.

In addition to these efforts, earlier studies by Foote,¹⁶ Gan¹¹ and others^{10b,10c,10d} showed that irradiation of oxygenated (O_2 -purged or air-saturated) solutions of C_{60} containing aliphatic amines possessing α -hydrogens gives rise to formation of fulleropyrrolidine adducts through pathways involving singlet oxygen (¹O₂) and/or single electron transfer (SET) steps. In recent studies exploring photochemical reactions of C₆₀, we observed that irradiation of both O₂ and N₂-purged 10% EtOHtoluene (v/v) solutions of C₆₀ and tertiary α -aminoesters 1 (MeN(ArCH₂)CH₂CO₂Et, Ar = parasubstituted phenyl) gives rise to formation of fulleropyrrolidines 6 via [3+2]-dipolar cycloaddition between C_{60} and in situ generated azomethine ylides 3 (a in Scheme 3).¹⁷ More interesting results came from an investigation of the photoreactions of C_{60} with α -aminoesters possessing the trimethylsilyl group (2 (Me₃SiCH₂N(ArCH₂)CH₂CO₂Et, Ar = *para*-substituted phenyl). Specifically, irradiation of O₂-purged 10% EtOH-toluene solutions containing C_{60} and α -aminoesters 2 resulted in the formation of fulleropyrrolidines 7 (b in Scheme 3). Importantly, these reactions were more efficient than those of the related non-trimethylsilyl substituted α -aminoester analogs 1. In contrast, photoreaction of N₂-purged solutions of C_{60} and trimethylsilyl substituted α -aminoesters 2 led to predominant/exclusive formation of 1-aminomethyl-1,2-dihydrofullerenes 8, via addition of α -amino radicals 5 to fullerene radical anions (C_{60}), formed by SET from 2 to the excited state of C_{60} .¹⁷ (c in Scheme 3) These observations show that O_2 plays an important role in governing pathways followed in these photochemical processes.

Another interesting observation made relates to the different substitution patterns in the fulleropyrrolidine adducts **6** and **7** that arise from photoreactions of non-trimethylsilyl- (1) and trimethylsilyl (2) substituted α -aminoesters. Specifically, while irradiation of C₆₀ in the presence of non-trimethylsilyl containing α -aminoesters **1** (MeN(ArCH₂)CH₂CO₂Et) led to formation of products **6** arising from cycloaddition of ethoxycarbonyl- and aryl substituted azomethine ylides **3**, irradiation of C₆₀ in solutions containing trimethylsilyl substituted α -aminoesters **2**

(Me₃SiCH₂N(ArCH₂)CH₂CO₂Et) brought about formation of fulleropyrrolidines **7**, derived from ethoxycarbonyl- and trimethylsilyl substituted ylides **4** (Scheme 3).

Scheme 3.

In a continuing research program aimed at exploring the nature and range of photoaddition reactions employed for the synthesis of fulleropyrrolidines, we designed, prepared and probed photoaddition reactions of C₆₀ with *N*-arylmethyl and *N*-trimethylsilylmethyl substituted tertiary α -aminonitriles (Me₃SiCH₂N(ArCH₂)CH₂CN), in which the aryl groups contain either electron donating or withdrawing substituents. Despite the simplicity of their preparation and their high utility as potential azomethine ylide precursors,¹⁸ to the best of our knowledge, these amines have only rarely been utilized in photochemical reactions. Because α -aminonitriles bearing α -hydrogens (*pK_a* ca. 25) can potentially serve as chemical equivalents of α -aminoesters (*pK_a* ca. 25), they should be useful substrates in photocycloaddition reactions leading to fulleropyrrolidines. Observation made in

studies with these substances, summarized below, show that photoaddition reactions of trimethylsilyl group containing α -aminonitriles with C₆₀ occur stereoselectively to form fulleropyrrolidines in a highly efficient manner, even when conducted using N₂-purged conditions.

Results and Discussion

Synthesis and photochemistry. The *N*-arylmethyl and *N*-trimethylsilylmethyl substituted tertiary α -aminonitriles **11a-11k**, employed as substrates in photoreactions with C₆₀, were prepared by using sequences beginning with well-known base-catalyzed substitution reactions of commercially available substituted benzylamines **9a-9k** and iodomethyltrimethylsilane (ICH₂SiMe₃). (Scheme 4) These processes produced secondary *N*-trimethylsilylmethyl-*N*-benzylamines **10a-10k**,¹⁹ which then reacted with iodoacetonitrile (ICH₂CN) in the presence of base (K₂CO₃) to form the target tertiary α -aminonitriles **11a-11k** (66-91 %).

Scheme 4.

Photoreactions were performed by irradiation (450W Hanovia medium pressure Hg lamp and flint glass filter (>300 nm)) of 10% EtOH-toluene (v/v) and 10% EtOH-*o*-dichlorobenzene (ODCB) solutions (220 mL, N₂ or O₂ purged condition) containing the α -aminonitriles (0.59 mmol) and C₆₀ (0.28 mmol). The concentrated photolysates were then subjected to column chromatography to give

the products and yields displayed in Scheme 5 and Tables 1-4.

Scheme 5.

Table 1. Products and yields of photoaddition reactions of C_{60} with α -aminonitriles **11a-11k** in N₂-

		irradiation	conversion	L
entry	amine			product (%) ^b
		Time (h)	$(\%)^{a}$	
1	11a	2	83	12a (42), 13a (13)
2^{c}	11a	2	83	12a (41), 13a (13)
3	11b	2	85	12b (40)
4	11c	2	85	12c (42)
				~ /
5	11d	2	86	12d (42), 13d (17), 14 (4)
	()			
6	11e	2	87	12e (50)
-	-			
7	11f	2	85	12f (43), 13f (15)
8	11 σ	6	81	12 g (39).
U	8	0	U 1	

purged 10% EtOH-toluene solutions.

ACCEPTED MANUSCRIPT							
	9	11h	6	84	12h (41)		
	10	11i	6	69	12i (40)		
	11	11j	8	85	12j (44)		
	12	11k	8	80	12k (40)		

^aDetermined based on recovered C₆₀. ^bIsolated yields.

^cExcess of α -amino nitrile **11a** (2.95 mmol) is used.

As the results in Scheme 5 and Table 1 show, 2 h irradiation of a N₂-purged 10% EtOH-toluene solution containing C₆₀ and α -aminonitrile **11a** gave rise to formation of the *N*-benzyl, trimethylsilyland cyano group substituted fulleropyrrolidine **12a** as the major photoadduct, along with a minor amount of cycloadduct **13a** that does not contain the trimethylsilyl group (entry 1 in Table 1). No change in the percent conversion or product ratio occurred when a molar excess of **11a** (2.95 mmol) was used (entry 2 in Table 1). Similar product distributions arose from photoreactions of *p*-Me (**11d**) and *p*-OMe (**11f**) substituted analogs (entries 5 and 7 in Table 1). Interestingly, reaction of **11d** with C₆₀ also generated the *N*-trimethylsilyl, toluyl- and cyano group substituted fused pyrrolidine **14** as a minor photoproduct. Moreover, photoreactions of C₆₀ in the presence of α -aminonitriles **11b**, **11c**, **11e** and **11g-11k** generated the corresponding trimethylsilyl- and cyano group substituted fulleropyrrolidines **12** as sole photoadducts (39-44%) (entries 3, 4, 6, 8-12 in Table 1). Notably, in contrast to those of *p*-H and *p*-electron donating group substituted analogs **11a-11f** (2 h), photoreactions of electron withdrawing (F and CF₃) group substituents containing cyanoamines **11g-11k** with C₆₀ required much longer irradiation times (6-8 h) to bring about high conversions of C₆₀.¹⁷⁻

It is noteworthy to compare the product profiles of photoreactions of the α -aminonitriles with those arising from α -aminoesters (c in Scheme 3). While photoreactions of trimethylsilyl containing α -aminoesters 2 (Scheme 3) occurred under anaerobic conditions to produce 1-aminomethyl-1,2-

dihydrofullerenes 8 predominantly,¹⁷ those of the corresponding α -aminonitriles produced fulleropyrrolidines solely. (Scheme 5) It should be noted that photoreactions of C₆₀ with all of the α -aminonitriles examined in this effort led to stereoselective formation of *trans*-isomers of the fulleropyrrolidines **12a-12k** (see below).

Studies were carried out to assess the nature of photoaddition reactions of oxygenated (O₂purged) 10% EtOH-toluene solutions containing C₆₀ and α -aminonitriles **11a-11k**. As can be seen by viewing the results in Scheme 5 and Table 2, the product distributions of these reactions were quite similar to those arising from reactions in N₂-purged solutions. However, relatively shorter irradiation times were required in all cases to bring about high conversion of C₆₀ (> 90%) and modest product yields (39-50%). Moreover, photoreactions of respective α -aminonitriles **11a**, **11d** and **11f** gave rise to exclusive formation of trimethylsilyl- and cyano group substituted fulleropyrrolidines **12a**, **12d** and **12f** (entries 1, 4 and 6 in Table 2).

Table 2. Products and yields of photoaddition reactions of C_{60} with α -aminonitriles **11a-11k** in O₂purged 10% EtOH-toluene.

		Irradiation	Conversion	L
entry	amine		(, , ,) 9	Product $(\%)^{D}$
		Time (h)	(%)"	
1	11a	1	94	12a (44), 13a (3)
2	11b	1	95	12b (47)
)			
3	11c	1	96	12c (50)
4	11d	1	96	12d (44), 13d (5), 14 (1)
5	11e	1	96	12e (49)
2		_		())
6	11f	1	96	12f(49) 13f(5)
0	111	T	20	$\mathbf{I}_{\mathbf{I}}(\mathbf{T}), \mathbf{I}_{\mathbf{I}}(\mathbf{J})$

ACCEPTED MANUSCRIPT							
7	11g	3	93	12g (48)			
8	11h	3	94	12h (48)			
9	11i	3	86	12i (43)			
10	11j	5	90	12j (53)			
11	11k	5	91	12k (44)			

^aDetermined based on recovered C₆₀. ^bIsolated yields.

We observed earlier that solvent polarity is an important factors in governing the efficiencies of SET-promoted photochemical reactions of C_{60} with amines.^{10b,10c,17,19-21} As a result, photoaddition reactions of C_{60} with **11a-11k** in the 10% EtOH-*o*-dichlorobenzene (ODCB), which is less polar solvent system than 10% EtOH-toluene, were explored. Photoreactions of N₂-purged 10% EtOH-ODCB solutions containing C_{60} and **11a-11k** took place less efficiently than those of N₂-purged 10% EtOH-toluene solutions to produce fulleropyrrolidines exclusively (Table 3). For example, even 10 h irradiation of solutions containing *o*,*p*-di-F (**11j**) and *p*-CF₃ (**11k**) aryl ring substituted α -aminonitriles resulted in low conversion of C_{60} with **11a**, **11d** and **11f** produce the trimethylsilyl- and cyano group containing fulleropyrrolidines **12a**, **12d** and **12f** exclusively. The product distributions were comparable to those from reactions of N₂-purged 10% EtOH-toluene solutions containing the same α -aminonitriles.

Table 3. Products and yields of photoaddition reactions of C_{60} with α -aminonitriles **11a-11k** in N₂purged 10% EtOH-ODCB.

Entry	amine	irradiation	conversion (%) ^a	product (%) ^b

Time (h)

1	11 a	3	87	12a (39), 13a (3)
2	11b	3	80	12b (35)
3	11c	3	79	12c (35)
4	11d	3	80	12d (37), 13d (5)
5	11e	3	82	12e (43)
6	11f	3	89	12f (46), 13f (trace)
7	11g	6	65	12g (26)
8	11h	6	62	12h (30)
9	11i	6	62	12i (33)
10	11j	10	52	12j (26)
11	11k	10	41	12k (23)

^aDetermined based on recovered C₆₀. ^bIsolated yields.

Photoreactions of O₂-purged 10% EtOH-ODCB solutions containing C₆₀ and **11a-11k** were also conducted (Table 4). Interestingly, the results showed that photoreactions of all of α -aminonitriles, including **11a**, **11d** and **11f**, take place efficiently and give rise to trimethylsilyl- and cyano group containing fulleropyrrolidiens **12a-12k** solely. Moreover, photoreactions of the respective *o*,*p*-di-F (**11j**) and *p*-CF₃ (**11k**) substituted α -aminonitriles took place with increased conversion efficiencies and chemical yields (entries 10-11 in Table 4).

Table 4. Products and yields of photoaddition reactions of C_{60} with α -aminonitriles **11a-11k** in O₂-purged 10% EtOH-ODCB.

entry	amine	irradiation	conversion (%) ^a	product (%) ^b
		Time (ii)		
1	11a	2	85	12a (45)
2	11b	2	83	12b (39)
3	11c	2	82	12c (39)
4	11d	2	84	12d (44)
5	11e	2	93	12e (46)
6	11f	2	96	12f (52)
7	11g	5	89	12g (43),
8	11h	5	86	12h (46)
9	11i	5	88	12i (46)
10	11j	10	76	12j (39)
11	11k	10	74	12k (37)

^aDetermined based on recovered C₆₀. ^bIsolated yields.

Solvent effect. In earlier studies,^{17a} we explored the effects of the EtOH content in EtOHtoluene solvent systems on the efficiencies of SET-promoted photoaddition reactions between tertiary N- α -silylamines 15 and C₆₀. The results showed that the presence of EtOH in the mixed solvent system was essential for formation of 1-aminomethyl-1,2-dihydrofullerenes 17 (Scheme 6). This observation is consistent with the sequential SET-desilylation mechanism for these photoreactions (Scheme 6).

Scheme 6.

The earlier findings stimulated us to probe the effect of EtOH content in toluene or ODCB solutions on photoreactions of C_{60} with α -aminonitriles **11a-11k**. For this purpose, photoreactions of C_{60} with two α -aminonitriles **11a** and **11d** were performed in N₂ or O₂-purged pure toluene solutions (Table 5). While photoreactions of N₂-purged pure toluene solutions of **11a** and **11d** (entries 1-2 in Table 5) took place less efficiently than those in 10% EtOH-toluene solutions (see entries 1 and 5 in Table 1), no significant differences existed in the photoreactions of O₂-purged pure (entries 3-4 in Table 5) and EtOH-toluene mixed solutions (entries 1 and 4 in Table 2).

Table 5. Products and yields of photoaddition reactions of C_{60} with α -amino nitriles **11a** and **11d** in pure toluene.

entry	amine	reaction	irradiation	conversion	product (%) ^b
5		condition	time (h)	$(\%)^{a}$	
1	11a	N_2	2	77	12a (32), 13a (2)

ACCEPTED MANUSCRIPT							
2	2	11d	N_2	2	77	12d (26), 13d (8)	
3	3	11a	O ₂	1	93	12a (46), 13a (2)	
4	1	11d	O ₂	1	95	12d (42), 13d (10)	

^aDetermined based on recovered C₆₀. ^bIsolated yields.

The same probes were made in photoaddition reactions of C_{60} with α -aminoesters **20-21** in O₂purged pure toluene solutions (Scheme 7 and Table 6). In a previous study,^{17b} we found that photoaddition reactions of α -aminoesters **20-21** in O₂-purged 10% EtOH-toluene solutions give rise to fulleropyrrolidines **22-23**, respectively (entries 1-2 in Table 6). While the reactions of **20-21** in O₂purged pure toluene solutions also produced **22-23**, they required much longer irradiation times to bring about the same conversions.

Scheme 7.

Table 6. Products and yields of photoaddition reactions of C_{60} with α -aminoesters **20-21** in O₂purged 10% EtOH-toluene or pure toluene solutions.

entry omine		irradiation conversion		product $(\%)^{b}$	
entry am	amme	time (h)	$(\%)^{a}$	product (70)	
1 ^c	20	2	89	22 (57)	
2^{c}	21	2	90	23 (56)	

ACCEPTED MANUSCRIPT							
	3 ^d	20	5	85	22 (50)		
	4 ^d	21	5	87	23 (50)		

^aDetermined based on recovered C_{60} . ^bIsolated yields. ^cReaction in 10% EtOH-toluene. ^dReaction in pure toluene

Effect of trimethylsilyl group. As mentioned above (Scheme 3), not only the efficiencies but also the product distributions of photoaddition reactions of α -aminoesters to C₆₀ are highly dependent on the presence of a α -trimenthylsilyl group.¹⁷ To explore if this effect also plays a role in photoreactions with α -aminonitriles, we prepared and explored the photochemistry of the non-trimethylsilyl α -aminonitrile analogs 24-26²² (Scheme 8). The results showed that photoreactions of 24-26 with C₆₀ are comparable to those of the trimethylsilyl group containing α -aminonitriles. For example, no photoreactions took place when N₂-purged 10%-EtOH solutions of 24-26 were irradiated even for long irradiation period (entries 1, 4 and 7 in Table 7). In contrast, photoreactions to form *trans*- and *cis*-diastereomeric mixtures of the corresponding fulleropyrrolidines 27-29, along with 13a (from 24) and 13d (from 25).

Scheme 8.

		reaction	irradiation	conversion	product
entry	amine	condition	time (h)	$(\%)^{\mathrm{a}}$	(% yield, <i>trans:cis</i> ratio) ^b
1	24	N_2	8	_c	_c
2	24	O_2	8	54	27 (38, 1: 0.7), 13a (2)
3	24	O_2	15	77	27 (44, 1: 0.7), 13a (4)
4	25	N_2	8	_c	c
5	25	O_2	8	53	28 (33, 1: 0.3), 13d (4)
6	25	O_2	15	78	28 (46, 1: 0.3), 13d (8)
7	26	N_2	15	_ ^c	_c
8	26	O_2	15	10	29 (4, 1: 0.9)
9	26	O_2	40	28	29 (14, 1: 0.9)

aminonitriles 24-26 in 10% EtOH-toluene solutions.

^aDetermined based on recovered C_{60} . ^bIsolated yields and *trans:cis* isomer molar ratio. ^cNo reaction

Another interesting observation concerned the stereochemistry features of photoproducts 27-29. Specifically, in contrast to the *trans*-specific formation of fulleropyrrolidines (12a, 12d and 12i) in photoreactions of the trimethylsilyl group containing α -aminonitriles 11a, 11d and 11i, photoreactions of the non-trimethylsilyl counterparts 24-27 produced *trans*- and *cis*- isomeric mixtures of fulleropyrrolidines products 27-29. A possible explanation for the lack of stereoselectivity observed in photoreactions of C₆₀ with the non-trimethylsilyl containing α -aminonitriles comes from a proposal made by Liu and co-workers^{9a,12a} that the conformation of insitu formed azomethine ylides are responsible for stereochemistry of these photoreactions of fulleropyrrolidines. Accordingly, azomethine ylides generated from trimethylsilyl group containing α -aminonitriles should prefer to have conformation 31, which minimizes steric repulsion between

the sterically bulky benzyl, cyano and trimethylsily groups. In contrast, the conformations **32** and **33** of ylides generated from non-trimethylsilyl containing α -aminonitriles **24-26** are energetically more similar. (Scheme 9)

Scheme 9.

Structural and stereochemical assignments. Structural assignments of the fulleropyrrolidines photoproducts formed in the reactions described above were made by using ¹H and ¹³C NMR, FT-IR, UV-visible spectroscopy and HRMS (see Experimetnal Section and Supplementary data), as well as by comparing the data to those previously reported for related fulleropyrrolidines.^{9a,12a,14,16-19} In ¹H NMR spectra of fulleropyrrolidines **12a-12k**, the presence of two stereogenic carbons adjacent to the nitrogen atom caused the the benzyl protons to appear as AB quartets in the *ca*. 4.0-5.0 ppm region. In addition, the two methine protons on carbons bearing trimethylsilyl and cyano groups appeared as singlet peaks at *ca*. 4.3-4.4 and 5.3-5.4 ppm region, respectively. In the ¹³C NMR spectra of **12a-12k**, the quaternary sp³ carbons in the hydro-C₆₀ core resonated at *ca*. 68-74 ppm region and the methine carbons possessing the trimethylsilyl and cyano groups resonated at *ca*. 66-67 ppm. Importantly, cyano carbon resonated at *ca*. 114-115 ppm in all cases. FT-IR spectra of **12a-12k** also clearly contained characteristic absorptions at 2260 cm⁻¹ for cyano stretching vibrations. Fulleropyrrolidines **13a**, **13d**, **13f** contain one chiral center and, as a result, ¹H NMR showed that their methylene protons appear as AB quartets at *ca*. 4.5-4.7 ppm as AB

quartets. In addition, the ¹³C NMR spectra of **13a**, **13d**, **13f** contained peaks that correspond to two quaternary sp³ carbons, two methylene carbons and one methine carbon. The UV-visible absorption spectra of all of photoproducts contained maxima at *ca*. 431-433 nm, which are characteristic of 1,2-adducts formed by addition across the [6,6]-juncture of C_{60} .^{10b,10c,17-21} Finally, spectroscopic data for the isomeric mixtures of **27-29** and comparisons of these data with those for **12a-12k** and **14** enabled assignments of their structures of photoproducts. These data clearly showed the characteristic peaks corresponding to fulleropyrrolidines **27-29**.

It should be noted that ¹H and ¹³C NMR spectral data provide no information to enable assignments of stereochemistry (trans versus cis) to the generated fulleropyrrolidines. In addition, despite repeated attempts to obtain clear x-ray crystallographic data on photoproducts, we met with failure. We recently became aware of studies by Liu and co-workers^{9a,12a} in which the stereochemistry of isomeric fulleropyrrolidines was assigned by using NOESY. As a result, we utilized this technique to assign stereochemistry of 12a-12k. Based on the results of previous studies, 9a,12a we expected that while the methine protons in *trans*-fulleropyrrolidines would display no correlation NOE peaks owing to their great spatial separation, the analogous cisfulleropyrrolidines would display strong NOE correlation peaks between the two methine protons. In fact, NOESY spectra of *trans*-fulleropyrrolidines 12a, 12d and 14 did not display any NOE correlation peaks for the two methine protons on the trimethylsilyl and cyano substituted carbons (Supporting Information). Analysis of NOESY data for the isomers of fulleropyrrolidines 27-29, produced by photoreactions of C_{60} with non-trimethylsilyl containing α -aminonitriles 24-26, support the proposal that the absence or presence of NOE correlation peaks would be decisive in assigning stereochemistry. Although separation of the cis and trans isomers of fulleropyrrolidines 27-29 was exceedingly difficult, it was possible to isolate isomerically pure *cis*-27 and *trans*-28. The results of NOESY analysis of these substances showed that, as expected, cis-27 displays strong NOE

correlation peaks and *trans-28* does not (Supporting Information).

Additive effect. To gain information about factors governing the efficiencies of photoaddition reactions leading to formation of the trimethylsilyl (12a-12k) and non-trimethylsilyl (13a, 13d and 13f) containing fulleropyrrolidines, photoreactions of N₂ and O₂-purged pure toluene solutions containing C₆₀ and α -aminonitriles 11a and 11d along with pyridine were explored. In the absence of pyridine, 2 h irradiation of N₂-purged solutions of 11a and 11d brought about high conversion of C₆₀ (77%) and relatively low yields of fulleropyrrolidines (12a+13a (34%), 12d+13d (34%), entries 1-2 in Table 5). Interestingly, in the presence of pyridine (1.26 mM), 2 h photoreactions of these substances occurred with higher conversions (> 94%), higher yields (> 54%) and greater degrees of chemoselectivity favoring the trimethylsilyl group containing adducts (entries 1-2 in Table 8). However, pyridine had no significant effects on both the conversions (C₆₀) and yields (12a+13a and 12d+13d) on photoreactions of oxygenated toluene solutions containing these substrates (entries 3-4 in Table 5), a finding that has mechanistic implications.

Table 8. Products and yields of photoaddition reactions of pure toluene solutions containing C_{60} and α -aminonitriles **11a** and **11d** in the presence of pyridine (1.26 mM).

		reaction	irradiation	conversion	I coub
entry	amine	condition	time (h)	(%) ^a	product (%) [*]
1	11a	N ₂	2	94	12a (54)
2	11d	N_2	2	95	12d (55)
3	11 a	O_2	1	95	12a (50), 13a (3)
4	11d	O ₂	1	96	12d (53), 13d (2)

^aDetermined based on recovered C₆₀. ^bIsolated yields.

Mechanistic analysis. The observations outlined above enabled the proposal of feasible mechanistic pathways for formation of the trimethylsilyl and non-trimethylsilyl containing fulleropyrrolidines formed in the photoreactions of C_{60} with the α -aminonitriles. The routes for reactions taking place in N₂ purged solutions (Scheme10) are initiated by SET from the α aminonitrile **34** to the triplet excited state of C_{60} (${}^{3}C_{60}$), generated by efficient intersystem crossing of ${}^{1}C_{60}^{*}$ ($\Phi_{ISC} = 1$).²³ This process forms a radical ion pair consisting of the fullerene radical anion radicals (C_{60}) and aminium radicals **35**. The generated aminium radicals undergo competitive α -CH deprotonation by C_{60} · vs ethanol promoted desilylation to give the respective trimethylsilyl and nontrimethylsilyl containing α -amino radicals **36** and **37**, along with the hydrofullerene radical (H-C₆₀). Although it is known that typical α -silvl substituted aminium radicals undergo solvent assisted desilvlation with rates that exceed those of α -CH deprotonation,²⁴⁻²⁵ the latter process could overwhelm desilvlation when, like in the current case, the acidity of the aminium radicals is enhanced by α -substituents. The α -amino radicals 36 and 37, generated by deprotonation or desilylation, are oxidized by SET to either H-C₆₀ or C₆₀, to form the respective iminium ions **38** and **39** along with the hydrofullerene anion $(H-C_{60})$. Deprotonation of **38** and **39** then produces the respective ylides 40 and 41. Alternatively, desilvlation of 38 can also generate 41. The processes are then terminated by [3+2]-dipolar cycloaddition to give fulleropyrrolidine adducts 42. If a much stronger base such as pyridine ($pK_a ca. 5.2$) rather than H-C₆₀⁻ ($pK_a ca. 4.7$) is present, deprotonation of aminium radical 35 occurs more rapidly, explaining why the reaction efficiency increases and the products arising from azomethine ylides 40 are more predominant.

Scheme 10.

In photoreactions occurring in O₂-purged solutions, the triplet excited state of C₆₀ (${}^{3}C_{60}^{*}$) participates in energy transfer to form singlet oxygen (${}^{1}O_{2}$).²³ As suggested by Foote, 16b reactions of ${}^{1}O_{2}$ with amines take place through α -H atom abstraction to generate α -amino radicals **36**. This process with α -aminonitriles generates α -amino radicals **36** along with the hydroperoxy radicals (HOO[•]) in pathways leading to the production of the key azomethine ylides **40** and **41**, which cycloadd to C₆₀ to produce fulleropyrrolidines **42**.

Conclusion

In the study described above, photoaddition reactions of C₆₀ with N-arylmethyl-Ntrimethylsilylmethyl substituted tertiary α -aminonitriles were explored. The results show that photoreactions of C_{60} with trimethylsilyl group containing α -aminonitriles produce predominantly trimethylsilyl and cyano group containing pyrrolidine ring fused fullerenes in a trans-stereoselective manner through a pathway involving azomethine ylide intermediates. The azomethine ylides, generated by either SET process or H-atom abstraction, cycloadd to C₆₀ at [6,6]-juncture positions to form fulleropyrrolidines. In contrast, photoreaction of C₆₀ with non-trimethylsilyl containing amine analogs give rise to inefficient formation of trans- and cis isomers of phenyl- and cyano group containing pyrrolidine ring fused fullerenes. Importantly, the efficiencies of photoaddition reactions of C₆₀ with α-aminonitriles are influenced by several factors including reaction condition (N₂ or O₂purged), solvent polarity, the electronic and structural nature of the α -aminonitriles and additive. For example, photoreactions occurring in either oxygenated (O₂ purged) or 10% EtOH-toluene solutions, rather than either deoxygenated (N₂-purged) or 10% EtOH-ODCB solutions, require much shorter irradiation times to bring about high conversions of C₆₀ as well as high product yields. In addition, short period irradiation of solutions containing C_{60} and α -aminonitriles, possessing arene rings that are either un-substituted or substituted with electron donating groups (H, Me and OMe), promotes high conversions and product yields. Finally, presence of trimethylsilyl group in α -aminonitrile substrates plays a crucial role in enhancing reaction efficiencies.

Finally, in contrast to thermal and photochemical strategies developed previously for fulleropyrrolidine synthesis, the currently developed SET-promoted photoaddition reactions of C_{60} with trimethylsilyl group containing amine substrates are mild and efficient, and as a results they should be highly useful in preparing a broader library of functionalized fulleropyrrolidines.

Experimental

General Procedure ¹H and ¹³C NMR spectra were recorded using CDCl₃ solutions and chemical shifts are reported in parts per million relative to CHCl₃ (7.24 ppm for ¹H and 77.0 ppm for ¹³C) as an internal standard. High resolution (HRMS) mass spectra were obtained by using an electrospray ionization unless otherwise noted. All starting materials used in the synthetic routes came from commercial sources. All new compounds described were isolated in >90% purity (by NMR analysis) unless noted otherwise.

General procedure for synthesis of *N*-arylmethyl-*N*-trimethylsilylmethyl substituted α aminonitriles 11a-11k. Individual solutions of secondary *N*- α -trimethylsilylmethyl-*N*benzylamines¹⁹ (5 mmol) in acetonitrile (100 mL) containing K₂CO₃ (10 mmol) and 2iodoacetonitrile (4.5 mmol) were stirred for 12 h at room temperature and concentrated in vacuo to give residues that were partitioned between water and CH₂Cl₂. The CH₂Cl₂ layers were dried and concentrated in vacuo to afford residues that were subjected to silica gel column chromatography (EtOAc/hexane = 1: 15 - 1: 30) to yield corresponding α -aminonitiriles 11a¹⁸ (91%), 11b (74%), 11c (78%), 11d (85%), 11e (75%), 11f (75%), 11g (74%), 11h (75%), 11i (78%), 11j (78%) and 11k (66%).

11a (liq): ¹H-NMR 0.12 (s, 9H), 2.18 (s, 2H), 3.40 (s, 2H), 3.62 (s, 2H), 7.27-7.34 (m, 5H).

11b (liq): ¹H-NMR 0.13 (s, 9H), 2.20 (s, 2H), 2.40 (s, 3H), 3.36 (s, 2H), 3.63 (s, 2H), 7.17-7.21 (m, 3H), 7.29-7.32 (m, 1H); ¹³C-NMR -1.9, 18.9, 44.1, 46.2, 60.0, 114.5, 125.6, 127.5, 129.7, 130.3, 135.1, 137.4; HRMS (ESI) *m/z* 269.1449 (M+Na, C₁₄H₂₂N₂SiNa requires 269.1450).

11c (liq): ¹H-NMR 0.15 (s, 9H), 2.18 (s, 2H), 2.36 (s, 3H), 3.39 (s, 2H), 3.58 (s, 2H), 7.09-7.15 (m, 3H), 7.20-7.25 (m, 1H); ¹³C-NMR -1.8, 21.2, 44.7, 46.3, 61.0, 114.5, 125.7, 128.2, 128.3, 129.3, 137.3, 137.9; HRMS (ESI) *m/z* 269.1461 (M+Na, C₁₄H₂₂N₂SiNa requires 269.1450).

11d (liq): ¹H-NMR 0.10 (s, 9H), 2.14 (s, 2H), 2.32 (s, 3H), 3.36 (s, 2H), 3.54 (s, 2H), 7.12 (d, 2H, J = 8.1 Hz), 7.20 (d, 2H, J = 8.1 Hz); ¹³C-NMR -1.1, 21.6, 45.3, 46.9, 61.4, 115.1, 129.3, 129.7, 135.0, 137.7; HRMS (ESI) m/z 269.1473 (M+Na, C₁₄H₂₂N₂SiNa requires 269.1450).

11e (liq): ¹H-NMR 0.15 (s, 9H), 2.20 (s, 2H), 2.33 (s, 3H), 2.37 (s, 3H), 3.35 (s, 2H), 3.60 (s, 2H), 6.97-6.70 (m, 2H), 7.19 (d, 1H, J = 7.5 Hz); ¹³C-NMR -1.9, 18.8, 20.7, 43.9, 46.2, 59.8, 114.4, 126.2, 129.8, 131.1, 132.0, 137.0, 137.2; HRMS (FAB) m/z 283.1609 (M+Na, C₁₅H₂₄N₂SiNa requires 283.1606).

11f (liq): ¹H-NMR 0.10 (s, 9H), 2.12 (s, 2H), 3.33 (s, 2H), 3.50 (s, 2H), 3.75 (s, 3H), 6.83 (d, 2H, J = 8.7 Hz), 7.21 (d, 2H, J = 8.7 Hz); ¹³C-NMR -1.9, 44.4, 46.0, 54.8, 60.3, 113.6, 114.4, 129.3, 129.7, 158.8; HRMS (FAB) m/z 285.1397 (M+Na, C₁₄H₂₂N₂OSiNa requires 285.1399).

11g (liq): ¹H-NMR 0.09 (s, 9H), 2.15 (s, 2H), 3.39 (s, 2H), 3.64 (s, 2H), 6.98-7.04 (m, 1H), 7.06-7.11 (m, 1H), 7.20-7.28 (m, 1H), 7.32-7.37 (m, 1H); ¹³C-NMR -1.9, 44.9, 46.3, 54.2, 114.5, 115.4 (d, $J_{C-F} = 86.7$ Hz), 123.9 (d, $J_{C-F} = 14.1$ Hz), 124.2 (d, $J_{C-F} = 56.4$ Hz), 129.3 (d, $J_{C-F} = 32.7$ Hz), 130.9 (d, $J_{C-F} = 16.5$ Hz), 161.2 (d, $J_{C-F} = 985.8$ Hz); HRMS (FAB) m/z 273.1196 (M+Na, C₁₃H₁₉FN₂SiNa requires 273.1199).

11h (liq): ¹H-NMR 0.09 (s, 9H), 2.13 (s, 2H), 3.38 (s, 2H), 3.57 (s, 2H), 6.90-6.96 (m, 1H), 7.01-7.08 (m, 2H), 7.22-7.29 (m, 1H); ¹³C-NMR -1.9, 44.8, 46.1, 60.6, 114.3, 114.4 (d, $J_{C-F} = 76.5$ Hz), 115.2 (d, $J_{C-F} = 85.2$ Hz), 124.1 (d, $J_{C-F} = 11.1$ Hz), 129.9 (d, $J_{C-F} = 32.7$ Hz), 140.1 (d, $J_{C-F} = 28.2$ Hz), 162.8 (d, $J_{C-F} = 978.6$ Hz); HRMS (FAB) m/z 273.1193 (M+Na, C₁₃H₁₉FN₂SiNa requires 273.1199).

11i (liq): ¹H-NMR 0.09 (s, 9H), 2.13 (s, 2H), 3.37 (s, 2H), 3.55 (s, 2H), 6.97-7.04 (m, 2H), 7.25-7.30 (m, 2H); ¹³C-NMR -2.3, 44.2, 45.6, 60.1, 113.9, 114.8 (d, $J_{C-F} = 84.6$ Hz), 129.9 (d, $J_{C-F} = 31.5$ Hz), 133.0 (d, $J_{C-F} = 12.9$ Hz), 161.7 (d, $J_{C-F} = 977.1$ Hz); HRMS (FAB) *m/z* 273.1221 (M+Na, C₁₃H₁₉FN₂SiNa requires 273.1199). **11j** (liq): ¹H-NMR 0.06 (s, 9H), 2.11 (s, 2H), 3.37 (s, 2H), 3.58 (s, 2H), 6.70-6.84 (m, 2H), 7.26-7.34 (m, 1H); ¹³C-NMR -2.1, 44.7, 46.0, 53.7, 10.7 (t, $J_{C-F} = 101.7$ Hz), 111.0 (dd, $J_{C-F} = 83.6$ Hz, 15Hz), 114.3, 120.2 (dd, $J_{C-F} = 57.5$ Hz, 14.7 Hz), 131.7 (dd, $J_{C-F} = 38.1$ Hz, 23.1 Hz), 161.2 (dd, $J_{C-F} = 996.5$ Hz, 47.1 Hz), 162.2 (dd, $J_{C-F} = 989.1$ Hz, 47.4 Hz); HRMS (FAB) *m*/*z* 291.1104 (M+Na, C₁₃H₁₈F₂N₂SiNa requires 291.1105).

11k (liq): ¹H-NMR 0.10 (s, 9H), 2.16 (s, 2H), 3.39 (s, 2H), 3.65 (s, 2H), 7.44 (d, 2H, J = 7.8 Hz), 7.57 (d, 2H, J = 7.8 Hz); ¹³C-NMR -1.8, 45.0, 46.3, 60.8, 114.3, 125.4 (q, $J_{C-F} = 15$ Hz), 128.9, 141.7; HRMS (FAB) m/z 301.1333 (M+H, C₁₄H₂₀F₃N₂Si requires 301.1342).

General procedure of photoreactions of C_{60} with α -aminonitriles 11a-11k. Photochemical reactions were conducted using an apparatus consisting of a 450 W Hanovia medium vapor pressure mercury lamp surrounded by a flint glass filter (>300 nm). Nitrogen or oxygen-purged 10% EtOHtoluene or 10% EtOH-ODCB solutions (220 mL) containing C_{60} (0.278 mmol, 1.26 mM) and the α aminonitriles **11a-11k** (0.555 mmol, 2.5 mM) were irradiated for a fixed time period given below. Photolysates were concentrated in vacuo and the unreacted C_{60} was recovered by filtration using CHCl₃ to determine conversion yields. Photoproducts were separated by using silica gel column chromatographic isolation (CS₂) of crude photolysates.

Photoreaction of C_{60} with 11a. In N₂-purged, 10% EtOH-toluene solution: 2 h irradiation (83% conversion), column chromatography (CS₂) to yield 12a (42%) and 13a (13%). In O₂-purged, 10% EtOH-toluene solution: 1 h irradiation (94% conversion), column chromatography (CS₂) to yield 12a (44%) and 13a (3%); In N₂-purged, 10% EtOH-ODCB solution: 3 h irradiation (87% conversion), column chromatography (CS₂) to yield 12a (39%) and 13a (3%). In O₂-purged, 10% EtOH-ODCB solution: 2 h irradiation (85% conversion), column chromatography (CS₂) to yield 12a (45%).

12a (sol, mp > 400 °C): ¹H-NMR 0.58 (s, 9H), 4.04 (d, 1H, J = 12.3 Hz), 4.37 (s, 1H), 4.90 (d, 1H, J = 12.3 Hz), 5.34 (s, 1H), 7.35-7.40 (m, 1H), 7.43-7.48 (m, 2H), 7.70 (d, 1H, J = 7.2 Hz); ¹³C-

NMR (CDCl₃ + CS₂) 0.5, 55.7, 66.6, 66.8, 73.1, 74.2, 114.8, 128.2, 128.6, 129.1, 136.3, 136.4, 136.6, 137.3, 138.7, 138.8, 139.8, 139.9, 141.3, 141.4, 141.6 (2C), 141.8, 141.9, 142.0, 142.4, 142.5, 142.8, 142.9, 144.1, 144.2, 144.4, 144.9, 145.0, 145.1, 145.3 (2C), 145.4, 145.8 (2C), 146.1, 146.7, 147.0; HRMS (MALDI-TOF) *m/z* 949.1163 (M-H, C₇₃H₁₇N₂Si requires 949.1166).

13a (sol, mp > 400 °C): ¹H-NMR 4.30 (d, 1H, J = 12.9 Hz), 4.57 (d, 1H, J = 9.9 Hz), 4.58 (d, 1H, J = 12.9 Hz), 4.71 (d, 1H, J = 9.9 Hz), 5.44 (s, 1H), 7.37-7.42 (m, 1H), 7.46-7.51 (m, 2H), 7.72 (d, 1H, J = 6.9 Hz); ¹³C-NMR (CDCl₃ + CS₂) 55.5, 64.2, 65.5, 68.6, 71.9, 114.4, 128.1, 128.7, 128.9, 135.5, 135.8, 136.3, 136.9, 137.8, 139.7, 139.8, 140.0, 140.1, 141.5 (2C), 141.6 (2C), 141.7 (3C), 141.8, 141.9, 142.0, 142.3, 142.4, 142.5, 142.8, 144.1, 144.2, 144.7 (2C), 145.1, 145.2 (2C), 145.4 (2C), 145.5, 145.6, 145.8, 145.9, 146.0, 146.1 (2C), 147.1, 147.2, 149.3, 151.6, 151.9, 154.0; HRMS (MALDI-TOF) *m/z* 877.0775 (M-H, C₇₀H₉N₂ requires 877.0771).

Photoreaction of C₆₀ with 11b. *In* N₂-*purged*, *10% EtOH-toluene solution*: 2 h irradiation (85% conversion), column chromatography (CS₂) to yield **12b** (40%). *In* O₂-*purged*, *10% EtOH-toluene solution*: 1 h irradiation (95% conversion), column chromatography (CS₂) to yield **12b** (47%); *In* N₂-*purged*, *10% EtOH-ODCB solution*: 3 h irradiation (80% conversion), column chromatography (CS₂) to yield **12b** (35%). *In* O₂-*purged*, *10% EtOH-ODCB solution*: 2 h irradiation (83% conversion), column chromatography (CS₂) to yield **12b** (35%). *In* O₂-*purged*, *10% EtOH-ODCB solution*: 2 h irradiation (83% conversion), column chromatography (CS₂) to yield **12b** (39%) (sol, mp > 400 °C). ¹H-NMR 0.58 (s, 9H), 2.76 (s, 3H), 4.11 (d, 1H, *J* = 12 Hz), 4.37 (s, 1H), 4.89 (d, 1H, *J* = 12 Hz), 5.23 (s, 1H), 7.28-7.32 (m, 3H), 7.68-7.71 (m, 1H); ¹³C-NMR (CDCl₃ + CS₂) 0.8, 19.9, 54.9, 66.9, 72.9, 74.2, 115.1, 126.4, 128.4, 130.1, 131.0, 134.3, 136.1, 136.2, 137.3, 137.4, 138.6, 138.8, 139.7, 141.3, 141.4, 141.5 (2C), 141.7, 141.8 (2C), 141.9, 142.0, 142.4 (2C), 142.5, 142.7, 142.8, 144.1 (2C), 144.3 (2C), 144.4, 144.9, 145.0 (2C), 145.1, 145.2, 145.3, 145.4 (2C), 145.7 (2C), 145.8, 146.1, 146.9, 147.0, 150.3, 151.9, 153.2, 153.8; HRMS (MALDI-TOF) *m*/z 963.1331 (M-H, C₇₄H₁₉N₂Si requires 963.1323).

Photoreaction of C₆₀ with 11c. In N₂-purged, 10% EtOH-toluene solution: 2 h irradiation (85%

conversion), column chromatography (CS₂) to yield **12c** (42%). *In O*₂-*purged*, *10% EtOH-toluene solution*: 1 h irradiation (96% conversion), column chromatography (CS₂) to yield **12c** (50%); *In N*₂-*purged*, *10% EtOH-ODCB solution*: 3 h irradiation (79% conversion), column chromatography (CS₂) to yield **12c** (35%). *In O*₂-*purged*, *10% EtOH-ODCB solution*: 2 h irradiation (82% conversion), column chromatography (CS₂) to yield **12c** (35%). *In O*₂-*purged*, *10% EtOH-ODCB solution*: 2 h irradiation (82% conversion), column chromatography (CS₂) to yield **12c** (39%) (sol, mp > 400 °C). ¹H-NMR 0.58 (s, 9H), 2.46 (s, 3H), 4.01 (d, 1H, *J* = 12.3 Hz), 4.38 (s, 1H), 4.88 (d, 1H, *J* = 12.3 Hz), 5.38 (s, 1H), 7.19 (d, 1H, *J* = 7.5 Hz), 7.35 (t, 1H, *J* = 7.5 Hz), 7.48 (s, 1H), 7.54 (d, 1H, *J* = 7.5 Hz); ¹³C-NMR (CDCl₃ + CS₂) 0.6, 21.4, 55.7, 66.7, 66.8, 73.1, 74.3, 115.0, 125.7, 129.0 (2C), 129.4, 136.4, 136.6, 138.5, 138.7, 138.8, 139.8, 141.4 (2C), 141.5, 141.6 (2C), 141.8, 141.9, 142.0 (2C), 142.4, 142.5, 142.8, 144.1 (2C), 144.3, 144.4 (2C), 145.1, 145.2, 145.3 (2C), 145.4 (2C), 145.7, 145.8 (2C), 146.1, 146.7, 147.0 (2C), 150.5, 152.2, 153.1, 153.5; ; HRMS (MALDI-TOF) *m/z* 963.1333 (M-H, C₇₄H₁₉N₂Si requires 963.1323).

Photoreaction of C₆₀ with 11d. In N₂-purged, 10% EtOH-toluene solution: 2 h irradiation (86% conversion), column chromatography (CS₂) to yield 12d (42%), 13d (17%) and 14 (4%). In O₂-purged, 10% EtOH-toluene solution: 1 h irradiation (96% conversion), column chromatography (CS₂) to yield 12d (44%), 13d (5%) and 14 (1%); In N₂-purged, 10% EtOH-ODCB solution: 3 h irradiation (80% conversion), column chromatography (CS₂) to yield 12d (37%) and 13d (5%). In O₂-purged, 10% EtOH-ODCB solution: 2 h irradiation (84% conversion), column chromatography (CS₂) to yield 12d (44%).

12d (sol, mp > 400 °C): ¹H-NMR 0.58 (s, 9H), 2.43 (s, 3H), 4.02 (d, 1H, J = 12.3 Hz), 4.38 (s, 1H), 4.88 (d, 1H, J = 12.3 Hz), 5.38 (s, 1H), 7.28 (d, 2H, J = 7.8 Hz), 7.61 (d, 2H, J = 7.8 Hz); ¹³C-NMR (CDCl₃ + CS₂) 0.6, 21.2, 55.4, 66.6, 66.7, 73.0, 74.3, 115.0128.6, 129.7, 133.6, 136.3, 136.4, 137.8, 138.7 (2C), 139.8, 141.2, 141.3, 141.4, 141.5 (2C), 141.7 (2C), 141.9, 142.0, 142.3, 142.4, 142.5, 144.1, 144.3 (2C), 144.4, 144.8, 145.0, 145.1 (2C), 145.2, 145.3 (2C), 145.4, 145.7 (2C),

145.8, 146.1 (2C), 146.7, 147.0 (2C), 150.4, 152.1, 153.1, 153.5; HRMS (MALDI-TOF) *m/z* 963.1322 (M-H, C₇₄H₁₉N₂Si requires 963.1323).

13d (sol, mp > 400 °C): ¹H-NMR 2.42 (s, 3H), 4.25 (d, 1H, J = 12.9 Hz), 4.54 (d, 1H, J = 12.9 Hz), 4.55 (d, 1H, J = 9.9 Hz), 4.69 (d, 1H, J = 9.9 Hz), 5.43 (s, 1H), 7.29 (d, 2H, J = 7.8 Hz), 7.60 (d, 2H, J = 7.8 Hz); ¹³C-NMR (CDCl₃ + CS₂) 21.2, 55.3, 64.2, 65.5, 68.7, 72.0, 114.8, 128.8, 129.6, 132.8, 137.8, 137.9, 140.2, 141.6, 141.7 (3C), 141.8 (3C), 142.0 (2C), 142.1 (2C), 142.5, 142.6, 142.9, 144.2, 144.3, 144.5, 144.8, 144.9, 145.0, 145.1, 145.2, 145.3 (2C), 145.4, 145.5, 145.6 (2C), 145.7, 145.8, 145.9, 146.0, 146.1, 146.2 (2C), 147.2, 147.3, 149.5, 151.7, 152.1, 154.2; ; HRMS (MALDI-TOF) *m*/*z* 891.0930 (M-H, C₇₁H₁₁N₂ requires 891.0928).

14 (sol, mp > 400 °C): ¹H-NMR 0.40 (s, 9H), 2.36 (s, 3H), 2.40 (d, 1H, J = 14.7 Hz), 2.81 (d, 1H, J = 14.7 Hz), 5.35 (s, 1H), 5.82 (s, 1H), 7.20 (d, 2H, J = 7.5 Hz), 7.58 (s, 2H); ¹³C-NMR (CDCl₃ + CS₂) -1.6, 21.2, 39.3, 67.7, 70.3, 74.6, 81.5, 114.6, 132.3, 135.6, 136.0, 136.9, 137.5, 138.4, 139.4, 139.8 (2C), 141.4 (2C), 141.5, 141.6 (3C), 141.7, 141.8, 141.9, 142.0, 142.3, 142.4, 142.5, 142.8 (2C), 144.1 (2C), 144.2, 144.4, 144.5, 144.8, 144.9, 145.1, 145.2 (2C), 145.3, 145.5 (2C), 145.8, 145.9, 146.0, 146.1, 146.2, 147.2, 151.7, 152.4, 152.7; HRMS (MALDI-TOF) *m/z* 963.1327 (M-H, C₇₄H₁₉N₂Si requires 963.1323).

Photoreaction of C₆₀ with 11e. In N₂-purged, 10% EtOH-toluene solution: 2 h irradiation (87% conversion), column chromatography (CS₂) to yield 12e (50%). In O₂-purged, 10% EtOH-toluene solution: 1 h irradiation (96% conversion), column chromatography (CS₂) to yield 12e (49%); In N₂-purged, 10% EtOH-ODCB solution: 3 h irradiation (82% conversion), column chromatography (CS₂) to yield 112e (43%). In O₂-purged, 10% EtOH-ODCB solution: 2 h irradiation (93% conversion), column chromatography (CS₂) to yield 12e (43%). In O₂-purged, 10% EtOH-ODCB solution: 2 h irradiation (93% conversion), column chromatography (CS₂) to yield 12e (46%) (sol, mp > 400 °C). ¹H-NMR 0.57 (s, 9H), 2.37 (s, 3H), 2.72 (s, 3H), 4.05 (d, 1H, J = 12 Hz), 4.35 (s, 1H), 4.85 (d, 1H, J = 12 Hz), 5.23 (s, 1H), 7.09 (d, 1H, J = 8.1 Hz); 7.10 (s, 1H), 7.56 (d, 1H, J = 8.1 Hz); ¹³C-NMR (CDCl₃ + CS₂) 0.8, 19.8, 21.0, 54.7,

66.9 (2C), 72.9, 74.2, 115.2, 127.0, 130.2, 131.2, 131.9, 136.1, 136.2, 137.2, 138.0, 138.6, 138.8, 139.8 (2C), 141.3, 141.5 (3C), 141.7, 141.8 (2C), 141.9, 142.0, 142.4, 142.5 (2C), 142.8, 144.3 (2C), 144.4, 145.0 (2C), 145.1, 145.2, 145.3, 145.4, 145.5, 145.7, 145.8 (2C), 146.1 (2C), 146.9, 147.0 (2C), 150.4, 152.0, 153.3, 153.9; HRMS (MALDI-TOF) *m/z* 977.1475 (M-H, C₇₅H₂₁N₂Si requires 977.1479).

Photoreaction of C₆₀ with 11f. In N₂-purged, 10% EtOH-toluene solution: 2 h irradiation (85% conversion), column chromatography (CS₂) to yield 12f (43%) and 13f (15%). In O₂-purged, 10% EtOH-toluene solution: 1 h irradiation (96% conversion), column chromatography (CS₂) to yield 12f (49%) and 13f (5%); In N₂-purged, 10% EtOH-ODCB solution: 3 h irradiation (89% conversion), column chromatography (CS₂) to yield 12f (46%) and 13f (trace). In O₂-purged, 10% EtOH-ODCB solution: 2 h irradiation (96% conversion), column chromatography (CS₂) to yield 12f (46%) and 13f (trace). In O₂-purged, 10% EtOH-ODCB solution: 2 h irradiation (96% conversion), column chromatography (CS₂) to yield 12f (52%).

12f (sol, mp > 400 °C): ¹H-NMR 0.57 (s, 9H), 3.84 (s, 3H), 4.00 (d, 1H, J = 12 Hz), 4.35 (s, 1H), 4.84 (d, 1H, J = 12 Hz), 5.36 (s, 1H), 6.97 (d, 2H, J = 8.4 Hz), 7.61 (d, 2H, J = 8.4 Hz); ¹³C-NMR (CDCl₃ + CS₂) 0.6, 54.8, 55.1, 66.5, 66.7, 73.0, 74.3, 114.3, 115.0, 128.5, 129.8, 136.3, 136.4, 138.7, 139.8, 141.3 (2C), 141.4, 141.5, 141.6, 141.7, 141.8, 141.9, 142.0, 142.4 (2C), 142.5 (2C), 142.8, 144.1, 144.3, 144.4, 144.9, 145.1 (2C), 145.2, 145.3 (2C), 145.4, 145.7 (2C), 145.8 (2C), 146.1 (2C), 146.7, 147.0 (2C), 150.5, 152.2, 153.2, 153.5, 159.3; HRMS (MALDI-TOF) *m/z* 979.1278 (M-H, C₇₄H₁₉N₂OSi requires 979.1272).

13f (sol, mp > 400 °C): ¹H-NMR 3.85 (s, 3H), 4.22 (d, 1H, J = 12.9 Hz), 4.51 (d, 1H, J = 12.9 Hz), 4.55 (d, 1H, J = 9.6 Hz), 4.68 (d, 1H, J = 9.6 Hz), 5.39 (s, 1H), 6.97 (d, 2H, J = 8.7 Hz), 7.61 (d, 2H, J = 8.7 Hz); ¹³C-NMR (CDCl₃ + CS₂) 54.8, 54.9, 64.1, 65.3, 68.6, 71.8, 114.2, 127.6, 128.0, 128.7, 129.9, 135.5, 136.3, 136.9, 137.8, 139.7, 139.8, 140.0, 140.1, 141.5 (2C), 141.6 (2C), 141.7 (2C), 141.8, 141.9, 142.0, 142.3, 142.4, 142.8, 144.1, 144.4, 144.7, 145.1, 145.2 (3C), 145.4 (2C), 145.6, 145.9, 146.0, 146.1 (2C), 147.1, 147.2, 151.6, 152.0, 154.1, 159.3; HRMS (MALDI-TOF) *m/z*

907.0874 (M-H, C₇₁H₁₁N₂O requires 907.0877).

Photoreaction of C₆₀ with 11g. *In* N_2 -*purged*, *10% EtOH-toluene solution*: 6 h irradiation (81% conversion), column chromatography (CS₂) to yield 12g (39%). *In* O_2 -*purged*, *10% EtOH-toluene solution*: 3 h irradiation (93% conversion), column chromatography (CS₂) to yield 12g (48%); *In* N_2 -*purged*, *10% EtOH-ODCB solution*: 6 h irradiation (65% conversion), column chromatography (CS₂) to yield 12g (26%). *In* O_2 -*purged*, *10% EtOH-ODCB solution*: 5 h irradiation (89% conversion), column chromatography (CS₂) to yield 12g (26%). *In* O_2 -*purged*, *10% EtOH-ODCB solution*: 5 h irradiation (89% conversion), column chromatography (CS₂) to yield 12g (43%) (sol, mp > 400 °C). ¹H-NMR 0.57 (s, 9H), 4.21 (d, 1H, *J* = 12.6 Hz), 4.41 (s, 1H), 4.97 (d, 1H, *J* = 12.6 Hz), 5.39 (s, 1H), 7.16-7.22 (m, 1H), 7.26-7.31 (m, 1H), 7.38-7.46 (m, 1H), 7.78-7.83 (m, 1H); ¹³C-NMR (CDCl₃ + CS₂) 0.5, 49.3, 67.0 (2C), 73.3, 74.2, 115.0, 115.9 (d, *J*_{C-F} = 84.9 Hz), 123.6 (d, *J*_{C-F} = 56.4 Hz), 124.5 (d, *J*_{C-F} = 15 Hz), 125.1, 128.0, 128.7, 130.0 (d, *J*_{C-F} = 32.1 Hz), 130.7 (d, *J*_{C-F} = 14.7 Hz), 136.4, 136.5, 137.2, 138.7, 139.7, 139.8, 141.3, 141.4, 141.5, 141.6, 141.8, 141.9, 142.0, 142.4, 142.5, 142.8 (2C), 144.1 (2C), 144.3, 144.9, 145.0, 145.1, 145.2, 145.3 (2C), 145.4, 145.6, 145.7, 145.8 (2C), 146.1, 146.7, 147.0, 150.4, 152.2, 152.9, 153.4, 161.3 (d, *J*_{C-F} = 917.4 Hz); HRMS (MALDI-TOF) *m*/z 967.1076 (M-H, C₇₃H₁₆FN₂Si requires 967.1072).

Photoreaction of C₆₀ with 11h. *In N*₂-*purged*, *10% EtOH-toluene solution*: 6 h irradiation (84% conversion), column chromatography (CS₂) to yield 12h (41%). *In O*₂-*purged*, *10% EtOH-toluene solution*: 3 h irradiation (94% conversion), column chromatography (CS₂) to yield 12h (48%); *In N*₂-*purged*, *10% EtOH-ODCB solution*: 6 h irradiation (62% conversion), column chromatography (CS₂) to yield 12h (30%). *In O*₂-*purged*, *10% EtOH-ODCB solution*: 5 h irradiation (86% conversion), column chromatography (CS₂) to yield 12h (30%). *In O*₂-*purged*, *10% EtOH-ODCB solution*: 5 h irradiation (86% conversion), column chromatography (CS₂) to yield 12h (46%) (sol, mp > 400 °C). ¹H-NMR 0.59 (s, 9H), 4.07 (d, 1H, *J* = 12.3 Hz), 4.38 (s, 1H), 4.90 (d, 1H, *J* = 12.3 Hz), 5.35 (s, 1H), 7.06-7.11 (m, 1H), 7.40-7.52 (m, 3H); ¹³C-NMR (CDCl₃ + CS₂) 0.4, 55.1, 66.5, 66.7, 73.0, 74.0, 114.4, 115.1 (d, *J*_{C-F} = 58.2 Hz), 115.4 (d, *J*_{C-F} = 59.4 Hz), 124.0 (d, *J*_{C-F} = 11.7 Hz), 130.5 (d, *J*_{C-F} = 31.5 Hz), 136.3, 136.5, 137.2,

138.6, 138.7, 139.1 (d, $J_{C-F} = 27.6$ Hz), 139.7, 141.2, 141.3 (2C), 141.4, 141.5, 141.7 (2C), 141.8, 142.0, 142.3, 142.4, 142.7, 142.8, 144.0, 144.1, 144.2, 144.3, 144.8, 144.9, 145.0, 145.1, 145.2, 145.3, 145.4, 145.6, 145.7 (2C), 145.8, 146.1, 146.5, 146.9 (2C), 150.2, 151.9, 152.8, 162.9 (d, $J_{C-F} = 1002$ Hz); HRMS (MALDI-TOF) m/z 967.1072 (M-H, C₇₃H₁₆FN₂Si requires 967.1072).

Photoreaction of C₆₀ with 11i. *In* N₂-*purged*, *10% EtOH-toluene solution*: 6 h irradiation (69% conversion), column chromatography (CS₂) to yield 12i (40%). *In* O₂-*purged*, *10% EtOH-toluene solution*: 3 h irradiation (86% conversion), column chromatography (CS₂) to yield 12i (43%); *In* N₂-*purged*, *10% EtOH-ODCB solution*: 6 h irradiation (80% conversion), column chromatography (CS₂) to yield 12i (33%). *In* O₂-*purged*, *10% EtOH-ODCB solution*: 5 h irradiation (88% conversion), column chromatography (CS₂) to yield 12i (33%). *In* O₂-*purged*, *10% EtOH-ODCB solution*: 5 h irradiation (88% conversion), column chromatography (CS₂) to yield 12i (46%) (sol, mp > 400 °C). ¹H-NMR 0.58 (s, 9H), 4.06 (d, 1H, *J* = 12.3 Hz), 4.38 (s, 1H), 4.88 (d, 1H, *J* = 12.3 Hz), 5.34 (s, 1H), 7.13-7.19 (m, 2H), 7.69-7.73 (m, 2H); ¹³C-NMR (CDCl₃ + CS₂) 0.5, 54.9, 66.7, 66.8, 73.1, 74.2, 114.9, 116.0 (d, *J*_{C-F} = 85.2 Hz), 130.2 (d, *J*_{C-F} = 31.8 Hz), 132.4 (d, *J*_{C-F} = 12.6 Hz), 136.3 (2C), 136.5, 137.2, 138.7, 138.8, 139.8, 139.9, 141.3, 141.4, 141.6 (2C), 141.8, 141.9, 142.0, 142.4, 142.5, 142.8, 142.9, 144.1 (2C), 144.3, 144.9, 145.0, 145.1, 145.2, 145.3 (2C), 145.4, 145.7 (2C), 145.8, 145.9, 146.1, 146.7, 147.0 (2C), 150.3, 152.0, 153.0, 153.4, 162.4 (d, *J*_{C-F} = 978.6 Hz); HRMS (MALDI-TOF) *m*/z 967.1076 (M-H, C₇₃H₁₆FN₂Si requires 967.1072).

Photoreaction of C₆₀ with 11 j. In N₂-purged, 10% EtOH-toluene solution: 8 h irradiation (85% conversion), column chromatography (CS₂) to yield 12 j (44%). In O₂-purged, 10% EtOH-toluene solution: 5 h irradiation (90% conversion), column chromatography (CS₂) to yield 12 j (53%); In N₂-purged, 10% EtOH-ODCB solution: 10 h irradiation (52% conversion), column chromatography (CS₂) to yield 12 j (26%). In O₂-purged, 10% EtOH-ODCB solution: 10 h irradiation (76% conversion), column chromatography (CS₂) to yield 12 j (26%). In O₂-purged, 10% EtOH-ODCB solution: 10 h irradiation (76% conversion), column chromatography (CS₂) to yield 12 j (26%). In O₂-purged, 10% EtOH-ODCB solution: 10 h irradiation (76% conversion), column chromatography (CS₂) to yield 12 j (39%) (sol, mp > 400 °C). ¹H-NMR 0.57 (s, 9H), 4.17 (d, 1H, J = 12.6 Hz), 4.38 (s, 1H), 4.92 (d, 1H, J = 12.6 Hz), 5.36 (s, 1H), 6.90-7.05 (m,

2H), 7.75-7.82 (m, 1H); ¹³C-NMR (CDCl₃ + CS₂) 0.5, 48.9, 66.8, 66.9, 73.2, 74.1, 104.4 (t, $J_{C-F} = 100.5 \text{ Hz}$), 111.6 (dd, $J_{C-F} = 84.2 \text{ Hz}$, 15.3 Hz), 114.8, 119.6 (dd, $J_{C-F} = 57.8 \text{ Hz}$, 15.6 Hz), 131.6 (dd, $J_{C-F} = 37.8 \text{ Hz}$, 21.6 Hz), 136.3, 136.4 (2C), 137.2, 138.7, 139.7, 139.8, 141.3 (2C), 141.5 (2C), 141.6, 141.7 (2C), 141.8 (2C), 142.0, 142.4 (2C), 142.5, 142.7, 142.8, 144.0, 144.1, 144.2, 144.3 (2C), 144.8, 144.9, 145.0, 145.1, 145.2 (2C), 145.3, 145.4, 145.5, 145.7 (2C), 145.8 (2C), 146.1, 146.5, 146.9, 147.0, 150.2, 152.0, 152.7, 153.2, 161.3 (dd, $J_{C-F} = 1023.9 \text{ Hz}$, 46.2 Hz), 162.8 (dd, $J_{C-F} = 999.9 \text{ Hz}$, 46.2 Hz); HRMS (MALDI-TOF) m/z 985.0977 (M-H, C₇₃H₁₅F₂N₂Si requires 985.0978).

Photoreaction of C₆₀ with 11k. *In N*₂-*purged, 10% EtOH-toluene solution*: 8 h irradiation (80% conversion), column chromatography (CS₂) to yield 12k (40%). *In O*₂-*purged, 10% EtOH-toluene solution*: 5 h irradiation (91% conversion), column chromatography (CS₂) to yield 12k (44%); *In N*₂-*purged, 10% EtOH-ODCB solution*: 10 h irradiation (41% conversion), column chromatography (CS₂) to yield 12k (23%). *In O*₂-*purged, 10% EtOH-ODCB solution*: 10 h irradiation (74% conversion), column chromatography (CS₂) to yield 12k (37%) (sol, mp > 400 °C). ¹H-NMR 0.58 (s, 9H), 4.17 (d, 1H, *J* = 12.9 Hz), 4.41 (s, 1H), 4.97 (d, 1H, *J* = 12.9 Hz), 5.33 (s, 1H), 7.74 (d, 2H, *J* = 8.1 Hz); ¹³C-NMR (CDCl₃ + CS₂) 0.4, 55.2, 66.7 (2C), 73.0, 74.0, 114.5, 125.9 (q, J = 14.7 Hz), 128.8, 136.2 (2C), 138.7 (2C), 139.8, 140.6, 141.2, 141.3, 141.4, 141.5 (2C), 141.6, 141.7, 141.9 (2C), 142.4 (2C), 142.5, 142.7, 144.0, 144.1, 144.2 (2C), 144.8, 144.9, 145.0 (2C), 145.1, 145.2 (3C), 145.3, 145.4, 145.5, 145.7 (2C), 145.8 (2C), 146.1, 146.5, 146.9, 150.0, 151.8, 152.7, 153.1; HRMS (MALDI-TOF) *m*/*z* 1017.1050 (M-H, C₇₄H₁₆F₃N₂Si requires 1017.1040).

General procedure for synthesis of *N*-arylmethyl-*N*-methyl substituted α -aminonitriles 24-26. Individual solutions of secondary *N*-methyl-*N*-benzylamines (5 mmol) in acetonitrile (100 mL) containing K₂CO₃ (10 mmol) and 2-iodoacetonitrile (4.5 mmol) were stirred for 12 h at room temperature and concentrated in vacuo to give residues that were partitioned between water and

CH₂Cl₂. The CH₂Cl₂ layers were dried and concentrated in vacuo to afford residues that were subjected to silica gel column chromatography (EtOAc/hexane = 1: 10 - 1: 20) to yield corresponding α -aminonitriles **24**²² (81%), **25**²² (77%) and **26** (70%).

24 (liq): ¹H-NMR 2.42 (s, 3H), 3.43 (s, 2H), 3.59 (s, 2H), 7.30-7.33 (m, 5H).

25 (liq): ¹H-NMR 2.33 (s, 3H), 2.42 (s, 3H), 3.42 (s, 2H), 3.55 (s, 2H), 7.14 (d, 2H, *J* = 7.8 Hz), 7.20 (d, 2H, *J* = 7.8 Hz).

26 (liq): ¹H-NMR 2.34 (s, 3H), 3.38 (s, 2H), 3.51 (s, 2H), 6.93-6.99 (m, 2H), 7.22-7.27 (m, 2H); ¹³C-NMR 41.8, 43.8, 58.9, 114.2, 115.1 (d, $J_{C-F} = 84.9$ Hz), 130.3 (d, $J_{C-F} = 32.4$ Hz), 132.5 (d, $J_{C-F} = 12.3$ Hz), 162.0 (d, $J_{C-F} = 977.1$ Hz); HRMS (FAB) m/z 179.0981 (M+H, C₁₀H₁₂N₂F requires 179.0979).

General procedure of photoreactions of C_{60} with α -aminonitiriles 24-26. Photochemical reactions were conducted using an apparatus consisting of a 450 W Hanovia medium vapor pressure mercury lamp surrounded by a flint glass filter (> 300 nm). Nitrogen or oxygen-purged 10% EtOH-toluene (220 mL) containing C_{60} (0.278 mmol, 1.26 mM) and the *N*-cyanomethyl-*N*-methyl-*N*-benzylamines 24-26 (0.555 mmol, 2.5 mM) were irradiated for a fixed time period given below. Photolysates were concentrated in vacuo and the unreacted C_{60} was recovered by filtration using CHCl₃. Photoproducts were then isolated by using silica gel column chromatographic isolation (CS₂) of crude photolysates.

Photoreaction of C₆₀ with 24. In O₂-purged, 10% EtOH-toluene solution: 8 h irradiation (54% conversion), column chromatography (CS₂) to yield *trans*-27 (22%) and *cis*-27 (16%); 15 h irradiation (77% conversion), column chromatography (CS₂) to yield *trans*-27 (26%) and *cis*-27 (18%).

trans-**27** (sol, mp > 400 °C): ¹H-NMR 2.95 (s, 3H), 5.41 (s, 1H), 5.87 (s, 1H), 7.33-7.45 (m, 3H), 7.70-7.90 (m, 2H); ¹³C-NMR (CDCl₃ + CS₂) 36.4, 68.3, 70.1, 75.1, 79.2, 114.5, 128.7, 128.8, 134.7,

135.1, 135.7, 136.0, 139.7, 139.8, 140.0, 141.2, 141.3, 141.4, 141.5 (2C), 141.6 (2C), 141.7, 141.8, 141.9, 142.0, 142.3 (2C), 142.4, 142.7, 144.0 (2C), 144.3, 144.4, 144.9, 145.0 (2C), 145.1, 145.3 (2C), 145.6, 145.7, 145.8 (2C), 146.0, 146.1, 147.0, 147.2, 149.4, 151.3, 151.9, 152.3; HRMS (MALDI-TOF) *m/z* 877.0773 (M-H, C₇₀H₉N₂ requires 877.0771).

cis-**27** (sol, mp > 400 °C): ¹H-NMR 2.97 (s, 3H), 5.01 (s, 1H), 5.07 (s, 1H), 7.35-7.45 (m, 3H), 7.60-7.80 (m, 2H); ¹³C-NMR (CDCl₃ + CS₂) 38.6, 68.7, 70.0, 74.8, 82.1, 115.7, 128.8, 134.8, 135.0, 135.7, 136.1, 137.3, 139.3, 139.7 (2C), 140.0, 141.1, 141.3, 141.4 (2C), 141.5, 141.7 (2C), 141.8, 141.9, 142.0, 142.3 (2C), 142.4, 142.6, 142.7, 143.9, 144.2, 144.3, 144.8, 144.9 (2C), 145.0, 145.2, 145.3, 145.6 (2C), 145.7, 145.8, 145.9; HRMS (MALDI-TOF) *m/z* 877.0770 (M-H, C₇₀H₉N₂ requires 877.0771).

Photoreaction of C₆₀ with 25. In O₂-purged, 10% EtOH-toluene solution: 8 h irradiation (53% conversion), column chromatography (CS₂) to yield *trans*-28 (25%) and *cis*-28 (8%); 15 h irradiation (78% conversion), column chromatography (CS₂) to yield *trans*-28 (35%) and *cis*-28 (11%).

*trans-***28** (sol, mp > 400 °C): ¹H-NMR 2.36 (s, 3H), 2.93 (s, 3H), 5.36 (s, 1H), 5.85 (s, 1H), 7.21 (d, 2H, J = 7.8 Hz), 7.55-7.70 (m, 2H); ¹³C-NMR (CDCl₃ + CS₂) 21.2, 36.4, 68.3, 70.1, 75.3, 79.1, 114.6, 129.4, 131.7, 135.7, 138.5, 139.4, 139.8, 141.4, 141.5 (2C), 141.6 (2C), 141.7, 141.8, 141.9 (2C), 142.0, 142.3, 142.5, 142.7, 142.8, 144.1 (2C), 144.2, 144.4 (2C), 145.0 (2C), 145.1, 145.2 (3C), 145.3, 145.4 (2C), 145.5, 145.7 (2C), 145.8, 145.9, 146.0, 146.1 (2C), 149.5, 151.6, 152.1, 152.4; HRMS (MALDI-TOF) *m/z* 891.0927 (M-H, C₇₁H₁₁N₂ requires 891.0928).

cis-**28** (sol, mp > 400 °C): ¹H-NMR 2.38 (s, 3H), 2.93 (s, 3H), 4.97 (s, 1H), 5.05 (s, 1H), 7.21 (d, 2H, J = 7.8 Hz), 7.60-7.70 (m, 2H); ¹³C-NMR (CDCl₃ + CS₂) 21.1, 36.2, 68.5, 69.8, 74.7, 81.8, 115.7, 129.2, 131.6, 134.9, 135.5, 135.8, 136.7, 137.2, 138.3, 139.2 (2C), 139.6 (2C), 141.0, 141.2 (2C), 141.3 (2C), 141.4, 141.5, 141.6, 141.7, 141.8, 142.1, 142.2 (3C), 143.8 (2C), 143.9 (2C), 144.1 (2C), 144.2 (2C), 144.6, 144.7, 144.8 (3C), 145.0, 145.1, 145.3, 145.5, 145.6, 145.7 (2C), 145.8, 145.9,

146.0, 146.9 (2C), 149.8, 150.5, 151.1, 151.4; HRMS (MALDI-TOF) *m/z* 891.0925 (M-H, C₇₁H₁₁N₂ requires 891.0928).

Photoreaction of C₆₀ with 26. In O₂-purged, 10% EtOH-toluene solution: 15 h irradiation (10% conversion), column chromatography (CS₂) to yield *trans*-29 (2%) and *cis*-29 (2%); 40 h irradiation (28% conversion), column chromatography (CS₂) to yield *trans*-29 (7%) and *cis*-29 (7%).

*trans-***29** (sol, mp > 400 °C): ¹H-NMR 2.94 (s, 3H), 5.39 (s, 1H), 5.84 (s, 1H), 7.08-7.14 (m, 2H), 7.65-7.85 (m, 2H); ¹³C-NMR (CDCl₃ + CS₂) 36.4, 68.3, 70.1, 75.1, 78.5, 115.9, 130.6 (d, $J_{C-F} = 12.6$ Hz), 135.8, 136.3, 136.9, 137.5, 139.9, 140.1, 141.4, 141.6 (2C), 141.8 (2C), 141.9, 142.0, 142.1, 142.4 (3C), 142.9, 144.0 (2C), 144.4, 144.8, 144.9, 145.0, 145.2, 145.3, 145.4, 145.6, 145.7 (2C), 145.9 (2C), 146.1, 146.2, 146.3, 147.1, 147.2, 149.3, 151.0, 151.1 (2C), 162.7 (d, $J_{C-F} = 993$ Hz); HRMS (MALDI-TOF) *m/z* 895.0678 (M-H, C₇₀H₈FN₂ requires 895.0677).

cis-**29** (sol, mp > 400 °C): ¹H-NMR 2.95 (s, 3H), 5.00 (s, 1H), 5.07 (s, 1H), 7.08-7.14 (m, 2H), 7.65-7.85 (m, 2H); ¹³C-NMR (CDCl₃ + CS₂) 38.7, 68.8, 70.0, 74.8, 81.4, 114.3, 130.7 (d, $J_{C-F} = 12.6$ Hz), 135.2, 135.7, 136.2, 137.3, 139.5, 139.8, 141.5 (2C), 141.6, 141.7 (3C), 141.8, 142.0, 142.4 (3C), 142.5, 142.7, 142.8, 144.0, 144.2, 144.3, 144.9 (2C), 145.1 (2C), 145.3, 145.4 (2C), 145.5, 145.7, 145.8, 146.0 (2C), 146.1 (2C), 147.1, 147.2, 149.8, 150.6, 151.6, 152.2, 162.7 (d, $J_{C-F} = 993$ Hz); HRMS (MALDI-TOF) *m/z* 895.0678 (M-H, C₇₀H₈FN₂ requires 895.0677).

Acknowledgments

This investigation was financially supported by a grant from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2015R1D1A3A01020189).

Appendix A. Supplementary data

The Supplementary data related to this article can be found at http://

¹H and ¹³C NMR spectra of all previously unidentified compounds, NOESY spectra of **12a**, **12d**,

cis-27 and trans-28, and UV-visible spectra of synthesized fulleropyrrolidines

References

1. (a) Hebard AF, Rosseinsky MJ, Haddon RC, Murphy DW, Glarum SH, Palstra TTM, et al. *Nature*. 1990;350:600.

(b) Anthopoulos TD, Tanase C, Setayesh S, Meijer EJ, Haummelen JC, Blom PWM, et al. Adv

Mater. 2004;16:2174.

(c) Yang Y. Nature. 1992;356:585.

2. (a) Allemand PM, Khemani KC, Koch A, Wudl F, Holczer K, Konovan S, et al. *Science*. 1991;253:301.

(b) Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Science. 1995;270:1789.

3. (a) Bendikov M, Wudl F. Chem Rev. 2004;104:4891.

(b) Brunetti FG, Kumar R, Wudl F. J Mater Chem. 2010;20:2934.

(c) Takenaka S, Yasmashita K, Takagi N, Hatta T, Tsuge O. Chem Lett. 1999:321.

(d) Friedman SH, DeCamp DL, Sijbesma RP, Srdanov G, Wudl F, Keyton GL. *J Am Chem Soc*. 1993;115:6506.

4. Cataldo F, Da Ros T. Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes; Springer: Netherlands, 2008.

5. (a) Boutorine A, Tokuyama H, Takasugi M, Isobe H, Nakamura E, Helene C. *Angew Chem Int Ed Engl.* 1994;33:2462.

- (b) Tokuyama H, Yamago S, Nakamura E, Shiraki T, Sugiura Y. J Am Chem Soc. 1993;115:7918.
- 6. (a) Kato S, Aoshima H, Saitoh Y, Miwa N. Bioorg Med Chem Lett. 2009;19:5293.

(b) Yang J, Alemany LB, Driver J, Hartgerink JD, Barron AR. Chem -Eur J. 2007;13:2530.

- 7. (a) Prato M, Maggini M. Acc Chem Res. 1998;31:519.
 - (b) Guldi DM, Prato M. Acc Chem Res. 2000;33:695.
 - (c) Matsumoto K, Hashimoto K, Kamo M, Uetani Y, Hayase S, Kawatsura M, et al. J Mater Chem.

2010;20:9226.

(d) Singh TB, Marjanovic N, Matt GJ, Gunes S, Sariciftci NS, Ramil AM, et al. *Org Electron*. 2005;6:105.

- (e) Prato M. J Mater Chem. 1997;7:1097.
- (f) Barron AR. J Enzyme Inhib Me Chem. 2016;31:164.
- 8. (a) Maggini M, Scorrano G, Prato M. J Am Chem Soc. 1993;115:9798.

(b) Maggini M, Scorrano G, Bianco A, Toniolo C, Sijbesma RP, Wudl F, et al. *J Chem Soc Chem Commun.* 1994:305.

- 9. (a) Shi J-L, Zhang X-F, Wang H-J, Li F-B, Zhong X-X, Liu C-X, et al. *J Org Chem*. 2016;81:7662.
 (b) Troshin PA, Peregudov AS, Muhlbacher D, Lyubovskaya RN. *Eur J Org Chem*. 2005:3064.
- 10. (a) Zhu S-E, Cheng X, Li Y-J, Mai C-K, Huang Y-S, Wang G-W, et al. *Org Biomol Chem*. 2012;10:8720.
- (b) Lawson GE, Kitaygorodskiy A, Ma B, Bunker CE, Sun, Y-P. *J Chem Soc Chem Commun.* 1995:2225.
 - (c) Liou K-F, Cheng C-H. Chem Commun. 1996:1423.

(d) Wu S-H, Zhang D-W, Wang G-W, Shu L-H, Wu H-M, Xu, J-F, et al. Synth Commun. 1997;27:2289.

- 11. (a) Zhou D, Tan H, Luo C, Gan L, Huang C, Pan J, et al. Tetrahedron Lett. 1995;36:9169.
 - (b) Gan L, Zhou D, Luo C, Tan H, Huang C, Lu M, et al. J Org Chem. 1996;61:1954.
 - (c) Gan L, Jiang J, Zhang W, Su Y, Shi Y, Huang C, et al. J Org Chem. 1998;63:4240.

(d) Zhang S, Gan L, Huang C, Lu M, Pan J, He X. J Org Chem. 2002;67:883.

12. (a) Shi J-L, Li F-B, Zhang X-F, Wu J, Zhang H-Y, Peng J, et al. *J Org Chem*. 2016;81:1769.
(b) Li F-B, Zhu Y-F, Zhang X-F, Shi J-L, Wu J, Chen L, et al. *RSC Adv*. 2014;4:48085.

13. (a) Iyoda M, Sultana F, Komatsu M. Chem Lett. 1995:1133.

- (b) Wu S-H, Sun W-Q, Zhang D-W, Shu L-H, Wu H-M, Xu J-F, et al. *J Chem Soc Perkin Trans 1*. 1998:1773.
- 14. (a) Filippone S, Maroto EE, Martin-Domenech A, Suarez M, Martin N. Nat Chem. 2009;1:578.

(b) Maroto EE, Izquierdo M, Reboredo S, Marco-Martinez J, Filippone S, Martin N. Acc Chem Res. 2014;47:2660.

(c) Maroto EE, Filippone S, Suarez M, Martinez-Alvarez R, de Cozar A, Cossio FP, et al. *J Am Chem Soc.* 2014;136:705.

- 15. (a) Thomas KG, Biju V, Guldi DM, Kamat PV, George MV. *J Phys Chem A*. 1999;103:10755.
 (b) Guldi DM, Luo C, Swartz A. *J Org Chem*. 2002;67:1141.
 - (c) Rudolf M, Trukhina O, Perles J, Feng L, Akasaka T, Torres T, et al. Chem Sci. 2015;6:4141.
- 16. (a) Bernstein R, Foote CS. *Tetrahedron Lett*, 1998;39:7051.(b) Bernstein R, Foote CS. *J Phys Chem A*. 1999;103:7244.
- 17. (a) Lim SH, Yi J, Moon GM, Ra CS, Nahm K, Cho DW, et al. *J Org Chem*. 2014;79:6946.(b) Lim SH, Cho DW, Mariano PS. *Heterocycles*. 2016;93:202.
- 18. Padwa A, Chen Y-Y, Chiacchio U, Dent W. Tetrahedron. 1985;41:3529.
- 19. (a) Lim SH, Jeong HC, Sohn Y, Kim Y-I, Cho DW, Woo H-J, et al. *J Org Chem*. 2016;81:2460.(b) Jeong HC, Lim SH, Cho DW, Kim SH, Mariano PS. *Org Biomol Chem*. 2016;14:10502.
- 20. (a) Nakamura Y, Suzuki M, O-kawa K, Konno T, Nishimura J. *J Org Chem.* 2005;70:8472.
 (b) Sun Y-P, Ma B, Bunker CE, Liu B. *J Am Chem Soc.* 1995;117:12705.
- 21. (a) Yeo SJ, Pode R, Ahn JS. J Korean Phys Soc. 2009;55:332.

(b) Miyake Y, Ashida Y, Nakajima K, Nishibayashi Y. Chem -Eur J. 2014;20:6120.

- 22. (a) Petride H, Costan O, Draghichi C, Florea C, Petride A. Arkivoc. 2005;10:18.
 - (b) Kumar P, Varma S, Jain SL. J Mater Chem A. 2014;2:4501.
 - (c) Panwar V, Kumar P, Bansal A, Ray SS, Jain SL. Appl Catal A -Gen. 2015;498:25.
- 23. (a) Arbogast JW, Darmanyan AO, Foote CS, Rubin Y, Diederich FN, Alvarez MM, et al. J Phys

Chem. 1991;95:11.

- (b) Terazima M, Hirota N, Shinohara H, Saito Y. J Phys Chem. 1991;95:9080.
- 24. (a) Yoshida J, Maekawa T, Murata T, Matsunaya S, Isoe S. J Am Chem Soc. 1990;112:1962.

(b) Yoshida J, Matsunaga S, Murata T, Isoe S. Tetrahedron. 1991;47:615.

(c) Cooper BE, Owen WJ. J Organomet Chem. 1971;29:33.

25. (a) Pitt CG. J Organomet Chem. 1973;61:49.

(b) Zang XM, Yeh S-R, Hong S, Freccero M, Albini A, Falvey DE, et al. J Am Chem Soc. 1994;116:4211.

(c) Su Z, Mariano PS, Falvey DE, Yoon UC, Oh SW. J Am Chem Soc. 1998;120:10676.

(d) Cho DW, Yoon UC, Mariano PS. Acc Chem Res. 2011;44:204.