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An applicable palladium-based nanocatalyst was constructed through the immobilization of palladium
onto 2-aminobenzamide functionalized silica coated superparamagnetic iron oxide magnetic nanopar-
ticles. The nanocatalyst (named as Pd@ABA@SPIONs@SiO,) was characterized by several characteriza-
tion methods, including scanning electron microscope (SEM), transmission electron microscopy (TEM),
vibrating-sample magnetometry (VSM), energy-dispersive X-ray spectroscopy (EDS), dynamic light scat-
tering (DLS), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), inductively
coupled plasma (ICP), and X-ray photoelectron spectroscopy (XPS) analyses. Microscopy results showed
that the nanoparticles are spherical in shape with 20-25 nm size. The size of the nanoparticles was con-
firmed by the DLS method. The superparamagnetic nature of the catalyst was confirmed by the VSM
method. The successful functionalization of SPIONs@SiO, was confirmed by FT-IR spectroscopy. The pres-
ence of palladium in the structure of the nanocatalyst was illustrated by XRD and EDS analysis. Also using
XPS technique, the oxidation state of palladium in PA@ABA@SPIONs@SiO, was determined zero before
and after the catalyst was applied in Mizoroki-Heck reaction. Several aryl halides and alkenes were re-
acted in the presence of the nanocatalyst and formed the corresponding products in high isolated yields.
The nanocatalyst showed very good reusability and did not decrease its activity after 10 sequential runs.
Density functional theory (DFT) calculation was performed to provide a mechanism for the reaction and
confirmed the role of the palladium catalyst in the reaction function.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

chloride are applied [6]. However, the possibility of simple recov-
ery of the heterogeneous catalysts has led to efforts on introduc-

Mizoroki-Heck reaction, a palladium catalyzed carbon-carbon
bond formation between aryl halides and alkenes is considered as
a significant name reaction in organic synthesis. Design and syn-
thesis of novel and efficient catalysts for the mentioned reaction
is an aim among the researchers [1-5]. In classic Mizoroki-Heck
reaction, palladium salts such as palladium acetate and palladium
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tion of efficient heterogeneous catalysts for this significant reac-
tion [7,8]. Traditional heterogeneous catalysts lack in some proper-
ties, such as lower efficiency and need to higher temperatures and
harsher conditions. An interesting approach for overcoming these
problems is to immobilize catalysts onto nanoparticle-based sup-
ports. These immobilized catalysts offer a collection of the advan-
tages of both homogeneous and heterogeneous catalysts [9-13]. In
this way, a useful approach is to immobilize palladium catalyst on
solid supports, especially nano-sized materials [14-19]. Research
on the application of nanomaterials to improve different factors
of the Mizoroki-Heck reaction has experienced strong growth and
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Scheme 1. Synthesis process of PA@ABA@SPIONs@SiO, nanocatalyst.

an increased interest in recent decades. Among various nanopar-
ticles (NPs), superparamagnetic iron oxide nanoparticles (SPIONs)
are an interesting support for palladium, due to its unique proper-
ties, including high chemical and thermal stability, and the ease
of their recycling and handling. Therefore, SPIONs is extensively
used as support for palladium catalyst for application in differ-
ent reactions, particularly Mizoroki-Heck reaction [20-24]. How-
ever, several methods using different nanomaterials including mag-
netic, SiO,, mesoporous silica nanoparticles (MSNs), metal-organic
frameworks (MOFs), graphene oxide (GO), and polymeric nano-
materials have been investigated for development the stabilized
Pd based nanocatalysts, these are suffering from some limitations
such as high costs, toxic solvents, and high consumption of chem-
icals.

As a key factor, to design an efficient version of any catalyst, in-
vestigating and understanding the mechanism of the reaction is of
particular importance. Deep insight into the mechanism of the re-
action helps the researchers to extend the knowledge of the path-
way, by which the substrates convert to the corresponded products
in the presence of the catalyst. Computational studies, which cal-
culate the energy level of the intermediates and transition states,
are of the most reliable methods, due to the well-founded quan-
tum chemical calculations using density functional theory [25-29].

In this paper, we introduce a recyclable nanocatalyst based on
the modified silica coated superparamagnetic iron oxide magnetic
(SPIONs@Si0,). Immobilization of catalysts onto the surface of NPs,
especially modified SPIONs is an efficient approach for increasing
the efficiency and reusability of the catalysts. 2-Aminobenzamide
modified silica coated superparamagnetic iron oxide magnetic
(ABA@SPIONs@SiO,) was used as a water dispersible support
for palladium catalyst (denoted by Pd@ABA@SPIONs@SiO,). 2-
Aminobenzamide was a suitable ligand for the immobilization of

palladium and the results showed that no significant leaching of
palladium was observed under the reaction conditions. To prove
the structure of PA@ABA@SPIONs@SiO,, it was fully characterized
by various techniques and its catalytic activity was evaluated to-
ward Mizoroki-Heck carbon-carbon bond formation reaction. Den-
sity functional theory was applied to propose and determine the
mechanism of the reaction.

2. Results and discussion

Herein, a boosted nanocatalyst is fabricated, based on the im-
mobilization of palladium onto 2-aminobenzamide SPIONs@SiO,
core-shell nanostructures. The preparation steps are schematically
illustrated in Scheme 1. For the synthesis of the catalyst, SPIONs
was prepared by the co-precipitation of Fe?t and Fe?* in basic
media. After the synthesis of SPIONs, these NPs were encapsulated
by SiO, shell. SPIONs@SiO, core-shell NPs were then functional-
ized by (3-aminopropyl)triethoxysilane (APTES) and isatoic anhy-
dride, respectively to achieve ABA@SPIONs@SiO,. The fabricated
ABA@SPIONs@SiO, was used as a magnetic bidentate support for
the immobilization of palladium catalyst.

The structure of PA@ABA@SPIONs@SiO, nanocatalyst was stud-
ied by SEM and TEM. TEM with different magnifications and SEM
images are presented in Fig. 1a-c. The spherical structure of the
catalyst particles was approved by TEM microscopy. SEM images
showed that the structure of the catalyst nanoparticles is spherical
with an average particle size about 20-25 nm. The hydrodynamic
size of the NPs was determined about 85 nm using DLS method.
The EDS was applied to prove the presence of the expected ele-
ments in the structure of the catalyst. EDS result is presented in
Fig. 1d. The presence of “Fe”, “O”, and “Si” elements represent the
SPIONs@SiO, NPs. The ligand atoms are presented as “C” and “O”
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Fig. 1. (a) Low magnification; (b) high magnification TEM, (c) SEM images; and (d) EDS result of PA@ABA@SPIONs@SiO, nanocatalyst.

elements in EDS. The presence of palladium catalyst clearly proves
by the observation of Pd in EDS results.

The successful synthesis of PA@QABA@SPIONs@SiO, catalyst was
confirmed by FT-IR spectroscopy. The FT-IR spectra of SPIONs@SiO,
and Pd@ABA@SPIONs@SiO, catalyst are presented in Fig. 2a. Vi-
bration at 3424 cm~! could be correlated to O-H vibrations. C-H
bonds could be observed as a peak at 2926 cm~!. Amide group
of aminobenzamide ligand was observed at 1635 cm~!. An intense
peak at 1099 could be correlated to Si-O vibrations. Fe-O vibrations
could be observed at 570 cm~!. Apart from FI-IR, XRD analysis was
used to characterize PA@QABA@SPIONs@SiO, catalyst. XRD pattern
of PA@ABA@SPIONs@SiO, nanocatalyst is presented in Fig. 2b. The
presence of Pd (0) could be observed in the XRD pattern of the
catalyst, with (111) and (200) reflections at 26 40° and 48°, respec-
tively [30,31].

The surface area of the synthesized solids was deter-
mined by BET (Brunauer-Emmett-Teller). The N, adsorption-
desorption isotherms of SPIONs@SiO, and Pd@ABA@SPIONs@SiO,
were 309.44 m2.g-! and 301.17 m2.g~!, respectively. The large sur-
face area of SPIONs@SiO, could be correlated to the small particle
size of the magnetic nanoparticles. In addition, the palladium con-
tent of the catalyst was analysed by inductively coupled plasma
(ICP) method. The ICP results showed the palladium content in
Pd@ABA@SPIONs@SiO, catalyst to be 0.24 mmol.g~!. The magnetic
behaviour of the catalyst was studied by vibrating-sample magne-
tometer (VSM) analysis. VSM results proved the superparamagnetic
behaviour of the catalyst. Functionalization of SPIONs@SiO, has led
to decrease in the magnitude of the magnetization of the catalyst
nanoparticles. However, the magnetic behaviour of the catalyst has
still been retained in PA@ABA@SPIONs@SiO, catalyst. The VSM re-
sult is presented in Fig. 2c.

The catalytic activity of PA@ABA@SPIONs@SiO, catalyst as eval-
uated in catalytic Mizoroki-Heck reaction. The catalyst was applied
for the conversion of aryl halide and alkene to the corresponding
substituted alkene. To find the optimal reaction condition, the re-

action was performed in various reaction conditions. The reaction
of styrene and bromobenzene for the synthesis of stilbene was se-
lected as the model reaction and the effect of various variables on
the reaction performance was evaluated (Table 1).

The reaction was performed in various protic and aprotic sol-
vents with different polarities. It could be observed that the de-
sired product was formed in all the solvents. The yields of the re-
actions showed to be advantageous, when water was used as the
reaction solvent. Performing the reaction in with different bases
showed that the best results were obtained when the reaction was
performed with sodium acetate as base. The highest isolated yield
was obtained when 1.5 equivalent of sodium acetate was added
to the reaction mixture. Finally, the effect of temperature on the
reaction performance was studied by performing the reaction in
different temperatures. This studies showed a proportional inde-
pendence of the reaction to the temperature. Therefore, the re-
action was performed at room temperature (average 25 °C) in all
cases.

The effect of the nanocatalyst amount of the reaction perfor-
mance was also evaluated. It could be observed that the high-
est isolated yields were obtained in the presence of 0.08 mol%
of the nanocatalyst. In the lower amount of the nanocatalyst, the
isolated yields of the products were intensely decreased. How-
ever, increasing the amount of the nanocatalyst to the amounts
above 0.08 mol% did not increase the yield of the reaction. The
optimal reaction conditions were observed to be water as sol-
vent, 1.5 equivalent of sodium acetate as base, 0.08 mol% of
Pd@ABA@SPIONs@SiO, nanocatalyst at room temperature (Table 1,
Entry 3).

The scope and the generality of this nanocatalyst was evalu-
ated in PA@ABA@SPIONs@SiO, catalyzed Mizoroki-Heck reaction.
For this purpose, alkenes, including styrene and n-butyl acrylate
were reacted with various aryl halides with different electron do-
nating or electron withdrawing functionalities. The results are pre-
sented in Table 2.
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Fig. 2. (a) FT-IR spectrum; (b) XRD pattern; and (c) VSM graph of PA@ABA@SPIONs@SiO, catalyst.

It could be observed both styrene and n-butyl acrylate have
participated in the reaction and have given the desired prod-
ucts in high isolated yields. In addition, all of the aryl halides
have successfully given the products. Aryl halides with electron-
withdrawing groups, such as nitro, nitril, and carbaldehyde func-
tions, have given the products with both styrene and n-butyl
acrylate (Table 2, Entries 2-7, 16-18). On the other hand, aryl
halides with electron-donating functionalities, including methoxy,
dimethylamino, hydroxyl, and methyl have successfully partici-

pated in the reaction with styrene and n-butyl acrylate to give
the products (Table 2, Entries 8-14, 19-22). In addition, a large-
scale experiment was performed with 10 mmol of the start-
ing materials (Table 2, Entry 23). It could be observed that in
large scale experiments, the product is formed and isolated in
high isolated yield. In addition, aryl halides with different halo-
gen groups (bromide or iodide) have been used in the reaction
and the desired products have been obtained in all cases in high
yields.
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Table 1
Optimization of Mizoroki-Heck reaction conditions catalyzed by PdA@ABA@SPIONs@SiO,.?
Entry  Solvent  Base (mmol)  Catalyst mol%  Temperature(°C) Yield (%)"
1 EtOH NaOAc (1.5) 0.08 rt. © 67
2 MeOH " " " 55
3 Hzo " " " 98
4 DMSO " " " 73
5 DMF " " " 6]
6 CH,Cl, " " " 40
7 CH53CN " " " 59
8 H,0 NaOH (1.5) " " 90
9 ” KOH (1.5) " " 93
10 ” K,CO3 (1.5) " " 84
11 ” NaOAc (1.0) " " 77
12 " NaOAc (1.2) " " 82
13 4 NaOAc (1.7) " " 98
14 ” NaOAc (2.0) " " 96
15 " NaOAc (1.5) 0.03 " 49
16 ” " 0.05 " 79
17 " " 0.10 " 98
18 " " 0.15 " 98
19 ” " 0.08 0 66
20 " n " 40 98
21 ” " " 80 98

2 Reaction conditions: bromobenzene (1.0 mmol), styrene (1.1 mmol), solvent (3 mL)

b jsolated yield
¢ room temperature, about 25 °C.

Table 2
Mizoroki-Heck reaction in the presence of PA@ABA@SPIONs@SiO, as catalyst. ?
R2 NN R2
@X —/ Pd catalyst, r.t.
R' NaOAc, H,O
R1

Entry R! X R? Yield(%) P

1 H Br CgHs- 98

2 H Cl CgHs- 91

3 4-NO, Br CeHs- 96

4 4-NO, I CsHs- 99

5 2-CN Br CgHs- 93

6 4-CN Br CgHs- 95

7 4-CN Cl CgHs- 84

8 4-CHO Br CgHs- 91

9 4-CHO I CgHs- 95

10 4-CH, Br CeHs- 97

11 4-CH; I CgHs- 99

12 4-OH Br CgHs- 96

13 4-NMe, | CeHs- 96

14 4-CH;0 Br CgHs- 91

15 2-CH5;0 Br CgHs- 93

16 3-CH; Br CeHs- 97

17 H Br BuCO, 96

18 4-NO, Br BuCO, 90

19 4-NO, I BuCO, 93

20 4-CHO Br BuCO, 95

21 4-CHO Cl BuCO, 88

22 4-CH;3 Br BuCO, 93

23 4-CH, I BuCO, 95

24 4-NMe, Br BuCO, 94

25 4-CH3;0 Br BuCO, 96

26 ¢ H Br CeHs- 88

3 reaction conditions: halobenzene (1 mmol), alkene (1.1 mmol), sodium acetate
(1.5 mmol), H,0 (3 mL), PA@ABA@SPIONs@SiO, catalyst (0.08 mol%), r.t.

b jisolated yield

¢ large scale conditions: bromobenzene (10 mmol), alkene (12 mmol), sodium
acetate (15 mmol), H,0 (30 mL), PA@ABA@SPIONs@SiO, (0.08 mol%), r.t.

As an advantage of PA@QABA@SPIONs@SiO, nanocatalyst, the re-
covery of the catalyst was evaluated. For this purpose, the reaction
of styrene and bromobenzene was selected and after the reaction
completion, the PA@ABA@SPIONs@SiO, catalyst was separated us-

ing an external magnet, washed, dried and was finally applied in
the next reaction under optimized conditions. This cycle was re-
peated for 10 sequential runs. The results are presented in Fig. 3.
It could be observed that the catalyst has remained active after the
10t reaction run. This catalyst is efficient due to the high turnover
number (TON). PA@ABA@SPIONs@SiO, catalyst achieved cumula-
tive TONs of about 12,250 over 10 successive runs. It should be
noted that the cumulative TON is obtained by the sum of the val-
ues for the TONs for all examined runs.

To confirm the stability of PA@ABA@SPIONs@SiO, catalyst un-
der the reaction conditions, the catalyst recovered after 5th-run
was characterized by SEM microscopy. The SEM image of the
5th-recovered catalyst is presented in Fig. 4. It could be ob-
served that the morphology and the structure of the catalyst has
remained unchanged during the reaction cycles. In addition, a
leaching test was performed to investigate the robustness of the
Pd@ABA@SPIONs@SiO, nanocatalyst. To this purpose, a blank run
was performed under the reaction condition. After 12 h, the cat-
alyst was magnetically separated and the remaining solution was
characterized by ICP for possible presence of palladium. ICP results
showed no leaching of the catalyst, which proved the stability of
Pd@ABA@SPIONs@SiO, under the reaction conditions.

The oxidation state of palladium before and after recovery
of the catalyst was studied by X-ray photoelectron spectroscopy
(XPS) method. The XPS results of the oxidation state of palla-
dium before the reaction and after the 5th cycle is presented in
Fig. 5. The XPS results showed that palladium was as Pd(0) in
Pd@ABA@SPIONs@SiO, nanocatalyst with no change after 5th run.
Two lines at 334.8 and 339.9 eV represents the presence of Pd(0)
in the structure of the catalyst [32].

The mechanism of the reaction was studied by density func-
tional theory (DFT) method. The result of the DFT study of the
mechanism of the reaction is presented in Scheme 2. According to
the results of the optimization of the energy of the catalyst, the
most stable species of catalyst is established by the bonding of pal-
ladium to “N” atom of the amine group and “C” atom of the amide
carbonyl in the structure of ABA ligand. A catalytic cycle starts with
the coordination of aryl halide to Pd (0) catalyst, which is an oxida-
tive addition reaction. This leads to a transition state with higher
energy level. The carbon-halogen bond cleavage and coordination
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Fig. 4. SEM image of PA@ABA@SPIONs@SiO, catalyst after 5th cycle.

of the halide and the “C” atom of the aryl group leads to a more
stable intermediate.

In the next step, the alkene participates the reaction, which
leads to a C-C bond formation between the alkene and the “C”
atom of the aryl halide. This non-stable product forms the second
transition state, which forms an intermediate by conformational
rotations. A hydrogen transfer reaction leads to the next transition
state and forms the desired product, which is coordinated to the
palladium via the m bond of the product. Removal of the product
via a bond cleavage between the 7w bond of the product and palla-
dium forms the next intermediate. An intermolecular bond cleav-
age between palladium and the “N” and “C” atoms of the ligand,
and simultaneously bond formation between palladium and the

Journal of Organometallic Chemistry 936 (2021) 121711

Run

“0” atom of the ligand leads to the final transition state. A reduc-
tive elimination of hydrogen halide forms the initial stable catalyst,
which is ready for the next cycle of the reaction.

For evaluating the efficiency and applicability of
Pd@ABA@SPIONs@SiO, nanocatalyst in Mizoroki-Heck cross
coupling reaction, a comparison was made between the present
catalyst and a number of previously reported ones. For better com-
parison, the reaction of styrene and bromobenzene was selected
and the reaction time and yield of the product was compared for
the reaction, which was catalyzed by PA@ABA@SPIONs@SiO, cata-
lyst and those catalyzed by previously reported ones. The results
are presented in Table 3. It could be observed in Table 3 that,
Pd@ABA@SPIONs@SiO, catalyst is highly efficient for this reac-
tion, compared to other reported ones. In addition, the use of a
small amount (0.08 mol%) of PA@ABA@SPION@SiO, nanocatalyst,
compared to other ones is another advantage of the present
catalyst.

3. Experimental
3.1. General remarks

All the chemicals, reagents and solvent were purchased from
Merck, Germany and Sigma, Germany. TEM images were recorded
on a CM 10 Philips instrument. 'H (500 MHz) spectra were
recorded on a Bruker Avance spectrometer in DMSO, dg solution
with tetramethylsilane (TMS) as an internal standard. A TESCAN
T3000 instrument was applied to record the SEM images. OP-
TIMA7300DV ICP analyzer was applied for analyzing the palla-
dium content of the catalyst. The FT-IR spectra were recorded on a
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Fig. 5. XPS spectra of PA@ABA@SPIONs@SiO, catalyst (a) before the reaction and (b) after the 5th cycle of the recovery of the catalyst.



Y. Fatahi, A. Ghaempanah, L. Ma 'mani et al.

Journal of Organometallic Chemistry 936 (2021) 121711

}1*
oy, B0
< et
r i e
3‘;‘"' :.-: - ;
. A -4 Z
— — P 5 {.’ 1‘;
\ ' A} & 4 " e
. A T G A - 5
& ' ' \ :
1 \ A
i \ 20 T \ A—
3 ‘ N—v/ Y ’ s vi e % '
y % 4 \ ’ \ S i X
' Y L \ ’ Y p \
' v { \ ’ A ’ v
i 3 N \ ’ \ ’ '
' Al ’ Al
: v ! — — '
A} { | -
' . (23.7) (20.51) ©
‘ — \ S %
1 A IA
U
/ (48.5) ‘ {
— ' % . @
>4 '  AMY '
-d - ' BY L e
s : o - ‘-‘
e
N—v ’l e =y '
'
'
fopan ;
' ‘|
g 1
'
' “
I
' “
! \
'
0.00) , \
s
—
I 7 - 4 o «; 4 »e
. < <
T

Reaction path way

Scheme 2. DFT calculation of the mechanism of PA@ABA@

SPIONs@SiO, catalyst Mizoroki-Heck reaction.

Table 3
A catalytic activity comparison of PA@ABA@SPION@SiO, with some other catalysts, which are reported in

previous reports.

{ Hore

Pd catalyst,
reaction condition

OO

Yield @ (%) [refl

Entry  Catalyst (mol%) Condition Time (h)

1 TiO,@Pd NPs (1) DMF, Et3N, 140°C 10 93[33]
2 HMMS-NH,-Pd (4) NMP, K,CO3, 130°C 20 96[34]
3 Fe;04-NH,-Pd (5) NMP, K,CO03, 130°C 24 96[35]
4 Pd@AGu@MGO (1) EtOH/H,O0, K,COs, r.t. 2 92[23]
5 SMNPs-DF-Pd (1) Solvent free, DABCO, 140°C 0.9 93[36]
6 CO-NHC@MWCNTs (0.35) PEG, Li,COs, 80°C 10 67[37]
7 MPCS-TI/Pd (0.1) DMF/H,0, Et5N, 110°C 4 93[38]
8 Pd-BIP-y-Fe,0;@SiO; (0.5) DMF, Et3N, 100°C 35 82[39]
9 Pd@ABA@SPION@SiO; (0.08)  H,0, NaOAg, r.t. 1 99>

2 Isolated yields
b current work.

Nicolet Magna FT-IR 550 spectrophotometer using potassium bro-
mide disks. BET of the samples was analyzed by an ASAPTM mi-
cromeritics 2020 instrument. The particle size was measured us-
ing HORIBA SZ100-Z DLS instrument. Thermo-gravimetric Analyzer
(TGA) at heating rate of 10 °C min~! over the temperature range of

40-600 °C under nitrogen atmosphere.

3.1.1. Preparation of amine modified SPIONs@SiO,
SPIONs@SiO, were synthesized according to the previous re-
ported method [40]. 3-Aminopropyltriethoxysilane (0.1 g) was
added to ethanol (30 mL) and the resulting solution was added
dropwise to a vigorous mixing sample, containing SPIONs@SiO,
nanoparticles (100 mg) and ethanol/water mixture (30 mL, 1:2 v/v)
and HCI at pH = 4. The reaction mixture was stirred for 24 h and
then, the product was isolated by an external magnet and washed

by a mixture of EtOH and water (1:2 v/v, 3 x 5 mL). The product
was dried at 100 °C overnight under reduced pressure.

3.1.2. Preparation of ABA@SPIONs@SiO,
To a mixture of amine modified Fe;0,@SiO, (100 mg) and

trimethylamine (0.1 g) in ethanol was added isatoic anhydride
(450 mg) and stirred at 60 °C for 24 h. After the reaction time,
the solid was separated by an external magnet and washed with

ethanol (3 x 10 mL) and dried in vacuum at 60 °C.

3.1.3. Preparation of PA@ABA@SPIONs@SiO,
ABA@SPIONs@SiO, (0.1 g) was added to a flask containing dry

CH,Cl, (50 mL) and then, Pd(OAc), (5 mmol) was added. The re-
action mixture was stirred under an inert atmosphere at room
temperature for 24 h. The product was magnetically separated
and washed with CH,Cl, (2 x 10 mL) and Et,0 (2 x 10 mlL).
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Pd@ABA@SPIONs@SiO, catalyst was obtained after drying under
vacuum for 12 h.

3.14. General procedure for Mizoroki-Heck reaction

The reaction mixture, containing halobenzene (1.0 mmol),
alkene (1.1 mmol), sodium acetate (1.5 mmol) in H,0 (3.0 mL) and
Pd@ABA@SPIONs@SiO, catalyst (0.08 mol%) was stirred at room
temperature until the reaction completion. TLC was used to moni-
tor the reaction performance. After the reaction was completed, an
external magnet was used to separate the nanocatalyst. The cat-
alyst was washed with water and EtOH, and dried in a vacuum
oven and retained for re-using in the next reaction. The product of
the reaction was separated by extracting the filtrate with ethyl ac-
etate. The organic phase was collected and dried over Na,SO4 and
then was obtained by evaporating the solvent under reduced pres-
sure. The product was purified by column chromatography, using
n-hexane: ethyl acetate (6:1, v/v) as eluent.

3.1.5. Reusability of the catalyst

To study the reusability of PA@ABA@SPIONs@SiO, nanocatalyst,
the reaction of styrene and bromobenzene was selected as a sam-
ple reaction. The reaction was performed under the optimized con-
ditions and the separation of the catalyst from the reaction mixture
was done by an external magnet. The separated nanocatalyst was
washed with water and EtOH, and dried under vacuum at room
temperature. The recovered nanocatalyst was used directly in the
next reaction. The reusability study was evaluated for 10 sequential
runs.

3.1.6. DFT calculations

All calculations were performed with Gaussian program 09.
B3LY hybrid was used in conjunction with the 6-31G and DKH-DZP
(for Pd atom) basis for optimizing all stationary points and transi-
tion states in the gas phase. The all electron contracted Gaussian
basis set of double zeta valence quality plus polarization functions
(DZP) for the atoms from Rb to Xe is presented. The original DZP
basis set has been re-contracted, the values of the contraction coef-
ficients were re-optimized using the relativistic DKH Hamiltonian.
First of all, the structure of each reactant and its product were op-
timized. These optimized structures defined the appropriate tran-
sition state structure for each mechanism, and optimal transition
state structures were obtained with the Qst2 and Qst3 approaches.
These calculations were done to find the minimum-energy paths.
Moreover, normal vibration frequencies (Hessian force constant
matrices) computation confirms that every point on each station-
ary point is a transition structure or not. One of the methods for
identifying the transition state structure is the existence of a neg-
ative frequency.

4. Conclusion

In this paper, a novel supported palladium nanocatalyst was
designed and fabricated. To this, the superparamagnetic iron ox-
ide nanoparticles were synthesized and encapsulated by silica
shells (SPIONs@SiO, NPs) and followed by surface functionaliza-
tion using 2-aminobenzamide, which was then utilized for im-
mobilization of palladium as a bidentate ligand. The immobi-
lized Pd@ABA@SPIONs@SiO, nanocatalyst was characterized by
various characterization methods. TEM and SEM images showed
that the NPs are spherical in shape with an average particle size
of about 20-25 nm. As seen in the FT-IR spectrum, the adsorp-
tion bond related to the carbonyl functional group in the amide
proved the successful surface functionalization of SPIONs@SiO,
NPs with 2-aminobenzamide functionalities. The presence of pal-
ladium in the structure of the nanocatalyst was also proved by
XRD and EDS analysis. In addition, XPS spectroscopy showed
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the oxidation state of palladium was zero in the fresh and
reused PA@ABA@SPIONs@SiO, nanocatalyst samples. The VSM re-
sults demonstrated that functionalization of SPIONs@SiO, nanopar-
ticles have slightly reduced its magnetization, but it was still su-
perparamagnetic and practical experiments showed that the cata-
lyst was easily separable from the reaction mixture using an exter-
nal magnet.

Pd@ABA@SPIONs@SiO, nanocatalyst was evaluated for
Mizoroki-Heck reaction. The optimization studies showed that
the optimal reaction condition was observed to be water as
solvent, 1.5 equivalent of sodium acetate as base, 0.08 mol% of
Pd@ABA@SPIONs@SiO, nanocatalyst at room temperature. Several
aryl halides reacted with styrene or n-butyl acrylate and gave the
products in high isolated yields. The nanocatalyst was magnetically
recoverable and did not lose its activity after 10 sequential runs.
After the 5™ cycle of the recovery, the catalyst was separated and
characterized by XPS and SEM methods.

A comparison between the nanocatalyst before reaction and af-
ter the 5th cycle showed that its structure and properties has not
changed under the reaction conditions. The DFT method was used
to study the mechanism of the reaction. The calculations show that
palladium is coordinated to the “N” atom of amine and “C” atom of
amide groups of 2-aminobenzamide ligand. Additionally, the calcu-
lated mechanism shows the role of the nanocatalyst is critical for
the reaction performance and after each cycle of the reaction, the
catalyst goes back to its initial state and is available for the next
reaction cycle.
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